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Abstract

We describe and evaluate the application of a
spectral clustering technique (Ng et al., 2002)
to the unsupervised clustering of German verbs.
Our previous work has shown that standard
clustering techniques succeed in inducing Levin-
style semantic classes from verb subcategorisa-
tion information. But clustering in the very
high dimensional spaces that we use is fraught
with technical and conceptual difficulties. Spec-
tral clustering performs a dimensionality reduc-
tion on the verb frame patterns, and provides a
robustness and efficiency that standard cluster-
ing methods do not display in direct use. The
clustering results are evaluated according to the
alignment (Christianini et al., 2002) between
the Gram matrix defined by the cluster output
and the corresponding matrix defined by a gold
standard.

1 Introduction

Standard multivariate clustering technology
(such as k-Means) can be applied to the problem
of inferring verb classes from information about
the estimated prevalence of verb frame patterns
(Schulte im Walde and Brew, 2002). But one
of the problems with multivariate clustering is
that it is something of a black art when applied
to high-dimensional natural language data. The
search space is very large, and the available
techniques for searching this large space do not
offer guarantees of global optimality.

In response to this insight, the present work
applies a spectral clustering technique (Ng et
al., 2002) to the verb frame patterns. At the
heart of this approach is a transformation of
the original input into a set of orthogonal eigen-
vectors. We work in the space defined by the
first few eigenvectors, using standard clustering
techniques in the reduced space. The spectral

clustering technique has been shown to han-
dle difficult clustering problems in image pro-
cessing, offers principled methods for initializ-
ing cluster centers, and (in the version that we
use) has no random component.

The clustering results are evaluated accord-
ing to their alignment with a gold standard.
Alignment is Pearson correlation between corre-
sponding elements of the Gram matrices, which
has been suggested as a measure of agreement
between a clustering and a distance measure
(Christianini et al., 2002). We are also able to
use this measure to quantify the fit between a
clustering result and the distance matrix that
serves as input to clustering. The evidence is
that the spectral technique is more effective
than the methods that have previously been
tried.

2 Verb valency description

The data in question come from a subcate-
gorization lexicon induced from a large Ger-
man newspaper corpus (Schulte im Walde,
2002). The verb valency information is pro-
vided in form of probability distributions over
verb frames for each verb. There are two condi-
tions: the first with 38 relatively coarse syntac-
tic verb subcategorisation frames, the second a
more delicate classification subdividing the verb
frames of the first condition using prepositional
phrase information (case plus preposition), re-
sulting in 171 possible frame types.

The verb frame types contain at most three
arguments. Possible arguments in the frames
are nominative (n), dative (d) and accusative
(a) noun phrases, reflexive pronouns (r), prepo-
sitional phrases (p), expletive es (x), non-finite
clauses (i), finite clauses (s-2 for verb second
clauses, s-dass for dass-clauses, s-ob for ob-
clauses, s-w for indirect wh-questions), and cop-
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ula constructions (k). For example, subcate-
gorising a direct (accusative case) object and
a non-finite clause would be represented by
nai. Table 1 shows an example distribution
for the verb glauben ‘to think/believe’. The
more delicate version of subcategorisation frame
was done by distributing the frequency mass of
prepositional phrase frame types (np, nap, ndp,
npr, xp) over the prepositional phrases, accord-
ing to their frequencies in the corpus. Preposi-
tional phrases are referred to by case and prepo-
sition, such as ‘Dat.mit’, ‘Akk.für’. The present
work uses the latter, more delicate, verb valency
descriptions.

Frame Prob Frame Prob
ns-dass 0.27945 npr 0.00261
ns-2 0.27358 nds-dass 0.00253
np 0.09951 ndi 0.00161
n 0.08811 nrs-dass 0.00029
na 0.08046 ndr 0.00029
ni 0.05015 nrs-w 0.00029
nd 0.03392 nir 0.00027
nad 0.02325 nds-w 0.00024
nds-2 0.01011 xd 0.00017
nai 0.00894 ns-ob 0.00014
ns-w 0.00859 nas-ob 0.00014
nas-w 0.00681 nds-ob 0.00000
nap 0.00594 nrs-ob 0.00000
nr 0.00455 x 0.00000
nar 0.00436 xa 0.00000
nrs-2 0.00391 xp 0.00000
ndp 0.00356 xr 0.00000
nas-dass 0.00342 xs-dass 0.00000
nas-2 0.00281 k 0.00000

Table 1: Probability distribution for glauben

3 Problems with standard clustering

Our previous work on the valency data ap-
plied k-Means (a standard technique) to the
task of inducing semantic classes for German
verbs (Schulte im Walde and Brew, 2002). We
compared the results of k-Means clustering with
a gold standard set prepared according to the
principles of verb classification advocated by
(Levin, 1993), and reported on the sensitivity
of the classes to linguistically motivated ”lesion-
ing” of the input verb frame. The verb classes
we used are listed in Table 2.

The verb classes are closely related to Levin’s
English classes. They also agree with the Ger-
man verb classification in (Schumacher, 1986)
as far as the relevant verbs appear in his less

extensive semantic ‘fields’. The rough glosses
and the references to Levin’s classes in the table
are primarily to aid the intuition of non-native
speakers of German.

Clustering can be thought of as a process
that finds a discrete approximation to a distance
measure. For any data set of n items over which
a distance measure is defined, the Gram matrix
is the symmetric n-by-n matrix whose elements
Mij are the distances between items i and j.
The diagonal elements Mii of this matrix will all
be 0. Every clustering corresponds to a block-
diagonal Gram matrix. Clustering n items into
k classes corresponds to the choice of an order-
ing for the labels on the axes of the Gram matrix
and the choice of k − 1 change points marking
the boundaries between the blocks. Thus, the
search space of clusters is very large. The avail-
able techniques for searching this large space do
not (and probably cannot) offer guarantees of
global optimality. Standard nostrums include
transformations of the underlying data, and the
deployment of different strategies for initializ-
ing the cluster centers. These may produce in-
tuitively attractive clusters, but when we apply
these ideas to our verb frame data many ques-
tions remain, including the following:

• When the solutions found by clustering dif-
fer from our intuitions, is this because of
failures in the features used, the clustering
techniques, or the intuitions?

• How close are the local optima found by the
clustering techniques to the best solutions
in the space defined by the data?

• Is it even appropriate to use frequency in-
formation for this problem? Or would it
suffice to characterize verb classes by the
pattern of frames that their members can
inhabit, without regard to frequency?

• Does the data support some clusters more
strongly than others? Are all the distinc-
tions made in classifications such as Levin’s
of equal validity?

In response to these questions, the present
paper describes an application to the verb data
of a particular spectral clustering technique (Ng
et al., 2002). At the heart of this approach is a
transformation of the original verb frame data
into a set of orthogonal eigenvectors. We work



Aspect 55.1 anfangen, aufhören, beenden, beginnen, enden
start, stop, bring to an end, begin, end

Propositional Attitude 29.5 ahnen, denken, glauben, vermuten, wissen
sense, think, think, guess, know

Transfer of Possession 29.5 bekommen, erhalten, erlangen, kriegen
(Obtaining) receive, obtain, acquire, get

Transfer of Possession 11.1/3 bringen, liefern, schicken, vermitteln, zustellen
(Supply) bring, deliver, send, procure, deliver

Manner of Motion 51.4.2 fahren, fliegen, rudern, segeln
drive, fly, row, sail

Emotion 31.1 ärgern, freuen
irritate, delight

Announcement 37.7 ankündigen, bekanntgeben, eröffnen, verkünden
announce, make known, disclose, proclaim

Description 29.2 beschreiben, charakterisieren, darstellen, interpretieren
describe, characterise, present, interpret

Insistence - beharren, bestehen, insistieren, pochen
all mean insist

Position 50 liegen, sitzen, stehen
lie, sit, stand

Support - dienen, folgen, helfen, unterstützen
serve, follow, help, support

Opening 45.4 öffnen, schließen
open, close

Consumption 39.4 essen, konsumieren, lesen, saufen, trinken
eat, consume, read, drink (esp. animals or drunkards), drink

Weather 57 blitzen, donnern, dämmern, nieseln, regnen, schneien
flash, thunder, dawn/grow dusky, drizzle, rain, snow

Table 2: Levin-style verb classes for German

in the space defined by the first few eigenvec-
tors, using standard clustering techniques in the
transformed space.

4 The spectral clustering algorithm

The spectral clustering algorithm takes as in-
put a matrix formed from a pairwise similarity
function over a set of data points. In image
segmentation two pixels might be declared sim-
ilar if they have similar intensity, similar hue or
similar location, or if a local edge-detection al-
gorithm does not place an edge between them.
The technique is generic, and as (Longuet-
Higgins and Scott, 1990) point out, originated
not in computer science or AI but in molecu-
lar physics. Most of the authors nevertheless
“adopt the terminology of image segmentation
(i.e. the data points are pixels and the set of pix-
els is the image), keeping in mind that all the
results are also valid for similarity-based clus-
tering” (Meilă and Shi, 2001). Our natural lan-
guage application of the technique uses straight-
forward similarity measures based on verb frame
statistics, but nothing in the algorithm hinges

on this, and we plan in future work to elabo-
rate our similarity measures. Although there
are several roughly analogous spectral cluster-
ing techniques in the recent literature (Meilă
and Shi, 2001; Longuet-Higgins and Scott, 1990;
Weiss, 1999), we use the algorithm from (Ng et
al., 2002) because it is simple to implement and
understand.

Here are the key steps of that algorithm:
Given a set of points S = {s1, . . . , sn} in a high
dimensional space.

1. Form a distance matrix D ∈ R2. For
(Ng et al., 2002) this distance measure is
Euclidean, but other measures also make
sense.

2. Transform the distance matrix to an affin-
ity matrix by Aij = exp(−D2

ij

σ2 ) if i 6= j,
0 if i = j. The free parameter σ2 controls
the rate at which affinity drops off with dis-
tance.

3. Form the diagonal matrix D whose (i,i) el-
ement is the sum of A’s ith row, and create
the matrix L = D−1/2AD−1/2.



4. Obtain the eigenvectors and eigenvalues of
L.

5. Form a new matrix from the vectors associ-
ated with the k largest eigenvalues. Choose
k either by stipulation or by picking suffi-
cient eigenvectors to cover 95% of the vari-
ance1.

6. Each item now has a vector of k co-
ordinates in the transformed space. Nor-
malize these vectors to unit length.

7. Cluster in k-dimensional space. Following
(Ng et al., 2002) we use k-Means for this
purpose, but any other algorithm that pro-
duces tight clusters could fill the same role.
In (Ng et al., 2002) an analysis demon-
strates that there are likely to be k well-
separated clusters.

We carry out the whole procedure for a range
of values of σ. In our experiments σ is searched
in steps of 0.001 from 0.01 to 0.059, since that
always sufficed to find the best aligned set of
clusters. If σ is set too low no useful eigenvec-
tors are returned, but this situation is easy to
detect. We take the solution with the best align-
ment (see definition below) to the (original) dis-
tance measure. This is how (Christianini et al.,
2002) choose the best solution, while (Ng et al.,
2002) explain that they choose the solution with
the tightest clusters, without being specific on
how this is done.

In general it matters how initialization of
cluster centers is done for algorithms like k-
Means. (Ng et al., 2002) provide a neat ini-
tialization strategy, based on the expectation
that the clusters in their space will be orthog-
onal. They select the first cluster center to be
a randomly chosen data point, then search the
remaining data points for the one most orthog-
onal to that. For the third data point they look
for one that is most orthogonal to the previ-
ous two, and so on until sufficient have been
obtained. We modify this strategy slightly, re-
moving the random component by initializing n
times, starting out at each data point in turn.
This is fairly costly, but improves results, and
is less expensive than the random initializations
and multiple runs often used with k-Means.

1Srini Parthasarathy suggested this dodge for allow-
ing the eigenvalues to select the appropriate number of
clusters.

5 Experiments and evaluation

We clustered the verb frames data using our ver-
sion of the algorithm in (Ng et al., 2002). To cal-
culate the distance d between two verbs v1 and
v2 we used a range of measures: the cosine of the
angle between the two vectors of frame proba-
bilities, a flattened version of the cosine mea-
sure in which all non-zero counts are replaced
by 1.0 (labelled bcos, for binarized cosine, in Ta-
ble 3), and skew divergence, recently shown as
an effective measure for distributional similar-
ity (Lee, 2001). This last is defined in terms of
KL-divergence, and includes a free weight pa-
rameter w, which we set to 0.9, following(Lee,
2001), Skew-divergence is asymmetric in its ar-
guments, but our technique needs a symmet-
ric measure,so we calculate it in both directions
and use the larger value.

Table 3 contains four results for each of three
distance measures (cos,bcos and skew). The first
line of each set gives the results when the spec-
tral algorithm is provided with the prior knowl-
edge that k = 14. The second line gives the
results when the standard k-Means algorithm is
used, again with k = 14. In the third line of
each set, the value of k is determined from the
eigenvalues, as described above. For cos 12 clus-
ters are chosen, for bcos the chosen value is 17,
and for skew it is 16. The final line of each set
gives the results when the standard algorithm is
used, but k is set to the value selected for that
distance measure by the spectral method.

For standard k-Means, the initialization
strategy from (Ng et al., 2002) does not ap-
ply (and does not work well in any case), so
we used 100 random replications of the initial-
ization, each time initializing the cluster centers
with k randomly chosen data points. We report
the result that had the highest alignment with
the distance measure (cf. Section 5.1).

(Meilă and Shi, 2001) provide analysis in-
dicating that their MNcut algorithm (another
spectral clustering technique) will be exact
when the eigenvectors used for clustering are
piecewise constant. Figure 1 shows the top 16
eigenvectors of a distance matrix based on skew
divergence, with the items sorted by the first
eigenvector. Most of the eigenvectors appear to
be piecewise constant, suggesting that the con-
ditions for good performance in clustering are
indeed present in the language data. Many of



evidence performance

Algorithm k Support Confidence Quality Precision Recall F-Measure
Cos (Ng) 14 0.80 0.83 0.81 0.30 0.43 0.35
Cos (Direct) 14 - 0.78 0.74 0.21 0.44 0.28
Cos (Ng) (12) - 0.79 0.81 0.26 0.40 0.32
Cos (Direct) 12 - 0.72 0.79 0.20 0.45 0.28
BCos (Ng) 14 0.86 0.86 0.86 0.21 0.23 0.22
BCos (Direct) 14 - 0.81 0.78 0.16 0.21 0.18
BCos (Ng) (17) - 0.86 0.83 0.28 0.23 0.25
BCos (Direct) 17 - 0.87 0.80 0.13 0.11 0.12
Skew (Ng) 14 0.84 0.85 0.85 0.37 0.47 0.41
Skew (Direct) 14 - 0.84 0.78 0.22 0.34 0.27
Skew (Ng) (16) - 0.86 0.88 0.49 0.47 0.48
Skew (Direct) 16 - 0.84 0.84 0.35 0.41 0.37

Table 3: Performance of the clustering algorithms

the eigenvectors appear to correspond to a par-
tition of the data into a small number of tight
clusters. Taken as a whole they induce the clus-
terings reported in Table 3.

5.1 Alignment as an evaluation tool
Pearson correlation between corresponding ele-
ments of the Gram matrices has been suggested
as a measure of agreement between a cluster-
ing and a distance measure (Christianini et al.,
2002). Since we can convert a clustering into a
distance measure, alignment can be used in a
number of ways, including comparison of clus-
terings against each other.

For evaluation, three alignment-based mea-
sures are particularly relevant:

• The alignment between the gold standard
and the distance measure reflects the pres-
ence or absence in the distance measure
of evidential support for the relationships
that the clustering algorithm is supposed
to infer. This is the column labelled “Sup-
port” in Table 3.
• The alignment between the clusters in-

ferred by the algorithm and the distance
measure reflects the confidence that the al-
gorithm has in the relationships that it has
chosen. This is the column labelled “Con-
fidence” in Table 3.
• The alignment between the gold standard

and the inferred clusters reflects the quality
of the result. This is the column labelled
“Quality” in Table 3.

We hope that when the algorithms are confi-
dent they will also be right, and that when the

data strongly supports a distinction the algo-
rithms will find it.

5.2 Results

Table 3 contains our data. The columns based
on various forms of alignment have been dis-
cussed above. Clusterings are also sets of pairs,
so, when the Gram matrices are discrete, we
can also provide the standard measures of pre-
cision, recall and F-measure. Usually it is ir-
relevant whether we choose alignment or the
standard measures, but the latter can yield un-
expected results for extreme clusterings (many
small clusters or few very big clusters). The
remaining columns provide these conventional
performance measures.

For all the evaluation methods and all the
distance measures that we have tried, the algo-
rithm from (Ng et al., 2002) does better than di-
rect clustering, usually finding a clustering that
aligns better with the distance measure than
does the gold standard. Deficiencies in the re-
sult are due to weaknesses in the distance mea-
sures or the original count data, rather than
search errors committed by the clustering al-
gorithm. Skew divergence is the best distance
measure, cosine is less good and cosine on bina-
rized data the worst.

5.3 Which verbs and clusters are hard?

All three alignment measures can be applied to
a clustering as whole, as above, or restricted to
a subset of the Gram matrix. These can tell
us how well each verb and each cluster matches
the distance measure (or indeed the gold stan-
dard). To compute alignment for a verb we cal-
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Figure 1: The top 16 eigenvectors of the distance matrix

culate Spearman correlation over its row of the
Gram matrix. For a cluster we do the same, but
over all the rows corresponding to the cluster
members. The second column of Table 4, la-
belled “Support”, gives the contribution of that
verb to the alignment between the gold stan-
dard clustering and the skew-divergence dis-
tance measure (that is, the empirical support
that the distance measure gives to the human-
preferred placement of the verb). The third col-
umn, labelled “Confidence” contains the contri-
bution of the verb to the alignment between the
skew-divergence and the clustering inferred by
our algorithm (this is the measure of the confi-
dence that the clustering algorithm has in the
correctness of its placement of the verb, and
is what is maximized by Ng’s algorithm as we
vary σ). The fourth column, labelled “Correct-
ness”, measures the contribution of the verb to
the alignment between the inferred cluster and
the gold standard (this is the measure of how
correctly the verb was placed). To get a feel
for performance at the cluster level we mea-
sured the alignment with the gold standard.
We merged and ranked the lists proposed by
skew divergence and binary cosine. The figure
of merit, labelled “Score” is the geometric mean
of the alignments for the members of the clus-
ter. The second column, labelled “Method”,
indicates which distance measure or measures
produced this cluster. Table 5 shows this rank-
ing. Two highly ranked clusters (Emotion and
a large subset of Weather) are selected by both
distance measures. The highest ranked clus-
ter proposed only by binary cosine is a sub-

Verb Support Confidence Correctness
freuen 0.97 0.97 1.00
ärgern 0.95 0.95 1.00
stehen 0.93 0.93 1.00
sitzen 0.93 0.93 1.00
liegen 0.92 0.92 1.00
glauben 0.90 0.96 0.89
dienen 0.90 0.94 0.96
pochen 0.89 0.91 0.96
beharren 0.89 0.91 0.96
segeln 0.89 0.87 0.89
. . .
nieseln 0.87 0.92 0.93
. . .
dämmern 0.82 0.87 0.93
. . .
donnern 0.76 0.86 0.68
unterstützen 0.71 0.79 0.68
beenden 0.68 0.80 0.65

Table 4: Empirical support, confidence and
alignment for skew-divergence

set of Position, but this is dominated by skew-
divergence’s correct identification of the whole
class (see Table 2 for a reminder of the defini-
tions of these classes). The systematic superi-
ority of the probabilistic measure suggests that
there is after all useful information about verb
classes in the non-categorical part of our verb
frame data.

6 Related work

Levin’s (Levin, 1993) classification has pro-
voked several studies that aim to acquire lex-
ical semantic information from corpora using
cues pertaining to mainly syntactic structure



Score Method Cluster
1.0 both freuen ärgern
1.0 skew liegen sitzen stehen
0.96 skew dienen folgen helfen
0.96 skew beschreiben charakterisieren

interpretieren
0.96 skew beharren insistieren, pochen
0.96 bcos liegen stehen
0.93 skew liefern vermitteln zustellen
0.93 both dämmern nieseln regnen schneien
0.93 skew ahnen vermuten wissen

Table 5: Cluster quality by origin

(Merlo and Stevenson, 2001; Schulte im Walde,
2000; Lapata, 1999; McCarthy, 2000; Lapata
and Brew, 1999). Other work has used Levin’s
list of verbs (in conjunction with related lexical
resources) for the creation of dictionaries that
exploit the systematic correspondence between
syntax and meaning (Dorr, 1997; Dang et al.,
1997; Dorr and Jones, 1996).

Most statistical approaches, including ours,
treat verbal meaning assignment as a semantic
clustering or classification task. The underly-
ing question is the following: how can corpus
information be exploited in deriving the seman-
tic class for a given verb? Despite the unify-
ing theme of using corpora and corpus distri-
butions for the acquisition task, the approaches
differ in the inventory of classes they employ,
in the methodology used for inferring semantic
classes and the specific assumptions concerning
the verbs to be classified (i.e., can they be pol-
ysemous or not).

(Merlo and Stevenson, 2001) use grammati-
cal features (acquired from corpora) to classify
verbs into three semantic classes: unergative,
unaccusative, and object-drop. These classes
are abstractions of Levin’s (Levin, 1993) classes
and as a result yield a coarser classification.
The classifier used is a decision tree learner.
(Schulte im Walde, 2000) uses subcategoriza-
tion information and selectional restrictions to
cluster verbs into (Levin, 1993) compatible se-
mantic classes. Subcategorization frames are in-
duced from the BNC using a robust statistical
parser (Carroll and Rooth, 1998). The selec-
tional restrictions are acquired using Resnik’s
(Resnik, 1993) information-theoretic measure of
selectional association which combines distribu-
tional and taxonomic information in order to

formalise how well a predicate associates with a
given argument.

7 Conclusions

We have described the application to natural
language data of a spectral clustering technique
(Ng et al., 2002) closely related to kernel PCA
(Christianini et al., 2002). We have presented
evidence that the dimensionality reduction in-
volved in the clustering technique can give k-
Means a robustness that it does not display in
direct use. The solutions found by the spec-
tral clustering are always at least as well-aligned
with the distance measure as is the gold stan-
dard measure produced by human intuition, but
this does not hold when k-Means is used directly
on the untransformed data.

Since we work in a transformed space of low
dimensionality, we gain efficiency, and we no
longer have to sum and average data points
in the original space associated with the verb
frame data. In principle, this gives us the
freedom to use, as is standardly done with
SVMs (Christianini and Shawe-Taylor, 2000),
extremely high dimensional representations for
which it would not be convenient to use k-Means
directly. We could for instance use features
which are derived not from the counts of a single
frame but of two or more. This is linguistically
desirable, since Levin’s verb classes are defined
primarily in terms of alternations rather than in
terms of single frames. We plan to explore this
possibility in future work.

It is also clearly against the spirit of (Levin,
1993) to insist that verbs should belong to only
one cluster, since, for example, both the Ger-
man “dämmern” and the English “dawn” are
clearly related both to verbs associated with
weather and natural phenomena (because of
“Day dawns.”) and to verbs of cognition (be-
cause of “It dawned on Kim that . . . ”). In or-
der to accommodate this, we are exploring the
consequences of replacing the k-Means step of
our algorithm with an appropriate soft cluster-
ing technique.
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