Proceedi ngs of the Conference on Enpirical
Language Processing (EVNLP),
Associ ation for Conputational

Met hods i n Natural
Phi | adel phia, July 2002, pp. 71-78.
Li ngui sti cs.

Kernel Methods for Relation Extraction

Dmitry Zelenko

Chinatsu Aone

Anthony Richardella

{dmitry zelenko,chinatsu_aone,anthony_richardella}@sra.com
SRA International
4300 Fair Lakes Ct.
Fairfax VA 22033 USA

Abstract

We present an application of kernel
methods to extracting relations from
unstructured natural language sources.
We introduce kernels defined over shal-
low parse representations of text, and
design efficient algorithms for comput-
ing the kernels. We use the devised
kernels in conjunction with Support
Vector Machine and Voted Perceptron
learning algorithms for the task of
extracting person-affiliation and
organization-location
from text. We experimentally evaluate
the proposed methods and compare
them with feature-based learning
algorithms, with promising results.

relations

1 Introduction

Information extraction is an important un-
solved problem of NLP. It is the problem of
extracting entities and relations among them
from text documents. Examples of entities
are people, organizations, and locations.
Examples of relations are person-affiliation
and organization-location. The person-
affiliation relation means that a par-
ticular person is affiliated with a certain
organization. For instance, the sentence,
“John Smith is the chief scientist of the Hardcom
Corp.”, contains the person-affiliation rela-
tion between the person “John Smith” and the
organization “Hardcom Corp.”. In this paper,
we address the problem of extracting such rela-
tions from natural language text.

We propose a machine learning approach to
relation extraction and a novel methodology for
information extraction based on kernel methods
(Vapnik, 1998; Cristianini and Shawe-Taylor,
2000).

We believe that shallow parsing is an im-
portant prerequisite for information extraction.
Shallow parsing provides a robust mechanism for
producing text representations that can be effec-
tively used for entity and relation extraction.

Indeed, the first step of our relation extraction
approach is a powerful shallow parsing compo-
nent of an information extraction system (Aone
and Ramos-Santacruz, 2000). The system com-
prises cascading finite state machines that iden-
tify names, noun phrases, and a restricted set of
parts of speech in text. The system also classifies
noun phrases and names as to whether they re-
fer to people, organizations and locations,
thereby producing entities. Thus, the input to
the relation extraction system is a shallow parse,
with noun phrases and names marked with rel-
evant entity types.

We formalize a relation extraction problem
as a shallow parse classification problem in sec-
tion 4. A shallow parse is turned into an ex-
ample whose label reflects whether a relation of
interest is expressed by the shallow parse. The
learning system uses the labeled examples to
output a model that is applied to shallow parses
to obtain labels, and thus extract relations.

A unique property of the kernel methodology
is that we do not explicitly generate features.
More precisely, an example is no longer a feature
vector as is common in machine learning algo-
rithms. Instead, examples retain their original

representations (of shallow parses) and are used
within learning algorithms only via computing
a similarity (or kernel!) function between them.
Such a use of examples allows our learning sys-
tem to implicitly explore a much larger feature
space than one computationally feasible for pro-
cessing with feature-based learning algorithms.

We conduct an experimental evaluation of our
approach in section 6. We compare our ap-
proach with the feature-based linear methods
(Roth, 1999), with promising results.

2 Related Work on Information
Extraction

The problem of relation extraction from nat-
ural language texts was previously addressed
by Message Understanding Conferences (MUC).
A number of systems were developed that re-
lied on parsing and manual pattern development
for identifying the relations of interest (see, for
example, (Aone et al., 1998)). An adaptive
system (Miller et al., 1998), presented under
the aegis of MUC, used lexicalized probabilis-
tic context-free grammars augmented with se-
mantic information to produce a semantic parse
of text for detecting organization-location
relations. Among other popular probabilistic
formalisms for information extraction are Hid-
den Markov Models (HMM) (Bikel et al., 1999),
Maximum Entropy Markov Models (MEMM)
(McCallum et al., 2000) and Conditional Ran-
dom Fields (CRF) (Lafferty et al., 2001).
Online learning algorithms for learning lin-
ear models (e.g., Perceptron, Winnow) are be-
coming increasingly popular for NLP problems
(Roth, 1999). The algorithms exhibit a num-
ber of attractive features such as incremental
learning and scalability to a very large num-
ber of examples. Their recent applications to
shallow parsing (Munoz et al., 1999) and infor-
mation extraction (Roth and Yih, 2001) exhibit
state-of-the-art performance. The linear mod-
els are, however, feature-based which imposes
constraints on their exploiting long-range depen-
dencies in text. In section 6, we compare the
'A kernel function is a similarity function satisfy-

ing certain properties, see (Cristianini and Shawe-Taylor,
2000) for details.

methods with our approach for the relation ex-
traction problem.

We next introduce a class of kernel machine
learning methods and apply them to relation ex-
traction.

3 Kernel-based Machine Learning

Most learning algorithms rely on feature-based
representation of objects. That is, an object is
transformed into a collection features f1,..., fn,
thereby producing a N-dimensional vector.

In many cases, data cannot be easily ex-
pressed via features. For example, in most NLP
problems, feature based representations produce
inherently local representations of objects, for
it is computationally infeasible to generate fea-
tures involving long-range dependencies.

Kernel methods (Vapnik, 1998; Cristianini
and Shawe-Taylor, 2000) are an attractive alter-
native to feature-based methods. Kernel meth-
ods retain the original representation of objects
and use the objects in algorithms only via com-
puting a kernel (or similarity) function between
a pair of objects.

In many cases, it may be possible to compute
a similarity function in terms of certain features
without enumerating all the features. An ex-
cellent example is that of subsequence kernels
(Lodhi et al., 2002). In this case, the objects
are strings of characters, and the similarity (ker-
nel) function computes the number of common
subsequences of characters in two strings. De-
spite the exponential number of features (sub-
sequences), it is possible to compute the sub-
sequence kernel in polytime. We therefore are
able to take advantage of long-range features in
strings without enumerating the features explic-
itly. In section 5, we will extend the subsequence
kernel to operate on shallow parses for relation
extraction.

Another pertinent example is that of parse
tree kernels(Collins and Duffy, 2001), where ob-
jects represent trees and the kernel function
computes the number of common subtrees in
two trees. The tree kernel used within the
Voted Perceptron learning algorithm (Freund
and Schapire, 1999) was shown to deliver excel-

lent performance in improving Penn Treebank
parsing. There are a number of learning al-
gorithms that can operate only using kernels of
examples. The models produced by the learn-
ing algorithms are also expressed using only ex-
amples’ kernels. The algorithms that process
examples only via computing their kernels are
sometimes called dual learning algorithms.

The Support Vector Machine(SVM) (Cortes
and Vapnik, 1995) is a learning algorithm that
not only allows for a dual formulation, but also
provides a rigorous rationale for resisting over-
fitting (Vapnik, 1998). After discovery of the
kernel methods, several existing learning algo-
rithms were shown to have dual analogues. For
instance, the Perceptron learning algorithm can
be easily represented in the dual form (Cris-
tianini and Shawe-Taylor, 2000).
reducing improvement of Perceptron, Voted Per-
ceptron (Freund and Schapire, 1999), is a ro-
bust and efficient learning algorithm that is very
easy to implement. It has been shown to ex-
hibit performance comparable to that of SVM.
In section 6, we experimentally evaluate SVM
and Voted Perceptron for relation extraction.

A variance-

We next show how to formalize relation ex-
traction as a learning problem.

4 Problem Formalization

Let us consider the sentence, “John Smith is the
chief scientist of the Hardcom Corp.”. The shal-
low parsing system produces the representation
of the sentence shown in Figure 1.

We convert the shallow parse tree into one or
more examples for the person-affiliation re-
lation. This type of relation holds between a
person and an organization. There are three
nodes in the shallow parse tree in Figure 1 refer-
ring to people, namely, the “John Smith” node
with the type “Person”, and the “PNP” nodes?.
There is one “Organization” node in the tree
that refers to an organization. We create an
example for the person-affiliation relation
by taking a person node and an organization

2Note that after the tree is produced, we do not know
if the “Person” and the “PNP” nodes refer to the same
person.

Type = Person Type = Verb Type = PNP
Text=John Smith|-| Head=be || Head=scientist
I
I I]
Type = PNP Type = Prep Type = Entity
Head =scientist [| Text=of [—| Text=Hardcom Corp.
I
[[|
Type = Det Type = Adj Type =Noun
Text=the [| Text=chief [| Head=scientist

Figure 1: The shallow parse representation of the the
sentence “John Smith is the chief scientist of the Hard-
com Corp.”.The types “PNP”, “Det”, “Adj”, and “Prep”
denote “Personal Noun Phrase”, “Determiner”, “Adjec-
tive”, and “Preposition”, respectively.

node in the shallow parse tree and assigning at-
tributes to the nodes specifying the role that
a node plays in the person-affiliation rela-
tion. The person and organization under consid-
eration will receive the member and affiliation
roles, respectively. The rest of the nodes will re-
ceive none roles reflecting that they do not par-
ticipate in the relation. We then attach a label
to the example by asking the question whether
the node with the role of member and the node
with the role of affiliation are indeed (semanti-
cally) affiliated, according to the sentence. For
the above sentence, we will then generate three
positive examples, shown in Figure 2.

Note that in generating the examples between
the “PNP” and the “Organization” we elimi-
nated the nodes that did not belong to the least
common subtree of “Organization” and “PNP”,
thereby removing irrelevant subtrees.

To summarize, a relation example is shallow
parse, in which nodes are augmented with the
role attribute, and each node of the shallow
parse belongs to the least common subtree com-
prising the relation entities under consideration.

We now formalize the notion of relation ex-
ample. We first define the notion of the example
node.

Definition 1 A node p is a set of attributes
{a1,aq,...}. The attributes are named.

We use p.a to denote the value of attribute
with the name a in the node p, e.g., p.Type =
Person and p.Role = member.

Example #1 Label=+1
Type=Sentence
Role=none
Type=Person Type=Verb Type = PNP
Text=John Smith | | Head=be | | Head = scientist
Role=member Role=none Role=none
]
I I I
Type = PNP Type=Prep Type=Entity
Head =scientist | | Text=of [| Text=Hardcom Corp.
Role=none Role=none Role = affiliation
Example #2 Label=+1
Type = PNP
Head = scientist
Role=member
]
I I !
Type = PNP Type=Prep Type=Entity
Head = scientist Text=of Text=Hardcom Corp.
Role=none Role=none Role = affiliation
Example #3 Label=+1
Type = PNP
Head = scientist
Role=none
]
I I]
Type = PNP Type=Prep Type=Entity
Head = scientist Text=of Texi=Hardcom Corp.
Role=member || Role=none Role = affiliation

Figure 2: The three person-affiliation examples
generated from the shallow parse in Figure 1. The “La-
bel=+41" means that the examples do express the rela-
tion.

Definition 2 An (unlabeled) relation example
is defined inductively as follows:

e Let p be a node, then the pair P = (p,[])
is a relation example, where by [] we denote
an empty sequence.

e Let p be a node, and [Py, Py, ..., P] be a
sequence of relation examples. Then, the
pair P = (p,[P1, Ps,...,P]) is a relation
example.

We say that p is the parent of P, P, ..., P,
and P;’s are the children of p. We denote by
P.p the first element of the example pair, by P.c
the second element of the example pair, and use
the shorthand P.a to refer to P.p.a, and P[i] to
denote P;.

A labeled relation example is an unlabeled
relation example augmented with a label [€
{—=1,4+1}. An example is positive, if [= +1,
and negative, otherwise.

We now define kernels on relation examples
that represent similarity of two shallow parse
trees.

5 Kernels for Relation Extraction

Kernels on parse trees were previously defined
by (Collins and Duffy, 2001). The kernels enu-
merated (implicitly) all subtrees of two parse
trees, and used the number of common subtrees,
weighted appropriately, as the measure of simi-
larity between two parse trees. Since we are op-
erating with shallow parse trees, and the focus
of our problem is relation extraction rather than
parsing, we use a different definition of kernels.

We first define a matching function ¢(-,:) €
{0,1} and a similarity function k(-,-) on nodes.
The matching function defined on nodes de-
termines whether the nodes are matchable or
not. For example, the nodes may be matchable
only if their types and roles match. That is,
if two nodes have the same roles, and compati-
ble types?, then their node matching function is
equal to 1; otherwise, it is equal to 0. The sim-
ilarity function on nodes is computed in terms
of the nodes’ attributes.

Then, for two relation examples Py, P, we de-
fine the similarity function K (P, P») in terms of
similarity function of the parent nodes and the
similarity function K. of the children. Formally
(0.w. means “otherwise”),

0, if ¢(Py.p,P2,p)=0 (1)
k(Pl.p,PQ.p)—l—KC(Pl.C,PQ.C), 0.W.

K(Pl,Pg):{

Different definitions of the similarity function
K, on children give rise to different K’s. We now
give a general definition of K, in terms of simi-
larities of children subsequences. We first intro-
duce some helpful notation (similar to (Lodhi et
al., 2002)).

We denote by i a sequence i1 < 19 < ... < iy
of indices, and we say that ¢ € i, if ¢ is one
of the sequence indices. We also use d(i) for
in — i1 + 1, and [(i) for length of the sequence i.
For a relation example P, we denote by P[i] the
sequence of children [P[i1], ..., P[iy]].

3Some distinct types are compatible, for example,
“PNP” may be compatible with “Person”.

For a similarity function K,
we use K(Py[i], P»[j]) to denote
Yos=1,.() K (Pilis], P2[js]). Then, we de-

fine the similarity function K. as follows

Ke(Pre,Prc)= Y XOHOK(PLPETGS) (2)
1)=1G)

where

T(i,j):HS:LmJ(i) t(P1[is].p,P2[js].p)

The formula (2) enumerates all subsequences
of relation example children with matching par-
ents, accumulates the similarity for each subse-
quence by adding the corresponding child exam-
ples’ similarities, and decreases the similarity by
the factor of AW XD 0 < X < 1, reflecting how
spread out the subsequences within children se-
quences. Finally, the similarity of two children
sequences is the sum all matching subsequences
similarities.

The following theorem states that the for-
mulas (1) and (2) define a kernel, under mild
assumptions (the proof is omitted for lack of
space).

Theorem 1 Let k(-,-) and t(-,-) be kernels over
nodes. Then, K as defined by (1) and (2) is a
kernel over relation examples.

We first consider a special case of K., where
the subsequences i and j are assumed to be con-
tiguous and give a very efficient algorithm for
computing K.. In section 5.2, we address a more
general case, when the subsequences are allowed
to be sparse (non-contiguous).

5.1 Contiguous Subtree Kernels

For contiguous subtree kernels, the similarity
function K. enumerates only children contigu-
ous subsequences, that is, for a subsequence i in
(2), is41 = is + 1 and d(i) = [(i). Since then
d(i) = d(j) as well, we slightly abuse notation in
this section by making A stand for A\? in formula
(2). Hence, (2) becomes

Ke(PrePoo= » NOKPLPITG) (3)

i,j
LH)=1G)

The core of the kernel computation resides
in the formula (3). The formula enumerates
all contiguous subsequences of two children se-
quences. We now give a fast algorithm for com-
puting K. between P; and P», which, given ker-
nel values for children, runs in time O(mn),
where m and n is the number of children of P;
and P, respectively.

Let C(i,j) be the K. computed for suffixes
of children sequences of P; and P, where every
subsequence starts with indices ¢ and j, respec-
tively. That is,

Clf)= Y

ij,i1=1,j1=J
1(3)=l({)

NG K (P[], Po[i]T (3.5)

Let L(i,7) be the length of the longest sequence
matching states in the children of P, and P
starting with indices ¢ and j, respectively:

L(i,j):max{l:nszo H(P1[i+s].p,Pa[j+s].p)=1}

.....

Then, the following recurrences hold:

0, if i].p,Pa[i],p)=
L(i,j)= s 1 t(F.,l[1-p,P2[j],p)=0 . (4)
L(i+1,j+1)+1, otherwise
0, if £(P;[i].p,P2[j],p)=0
L L(i,j)+1 .) Lo
Clinj)=4 A=2LEDM pe p g Py 4aC(i+1,5+1) (5)

otherwise

The boundary conditions are:

L(m+1n+1)=0 and C(m+1,n+1)=0

The recurrence (5) follows from the observa-
tion that, if Pi[i] and P[j] match, then ev-
ery matching pair (c1,c) of sequences that
participated in computation of C(i + 1,7 +
1) will be extended to the matching pair
([P1[d], 1], [Pe[j]; c2])- Now we can easily com-
pute K.(P;.c, Py.c) from C(i,7).

Ko(Pre,Pa.c)=Y, - Cli) (6)

The time and space complexity of K. compu-
tation is O(mn), given kernel values for children.
Hence, for two relation examples the complex-
ity of computing K(P;, P») is the sum of com-
puting K, for the matching internal nodes (as-
suming that complexities of k(-,-) and #(-,-) are
constant).

5.2 Sparse Subtree Kernels

For sparse subtree kernels, we use the gen-
eral definition of similarity between children se-
quences as expressed by (2).

As in the previous section, we give an efficient
algorithm for computing K, between P; and Ps.
The algorithm runs in time O(mn?), given ker-
nel values for children, where m and n (m > n)
is the number of children of P; and Ps, respec-
tively.

Derivation of an efficient programming algo-
rithm for sparse subtree computation will be
presented in a full version of the paper, for lack
of space. Below we list the recurrences for com-
puting K..

Ke = Zq:l min(m,n) KC’Q(m’n)
KCaQ(iJ) =)‘KCaQ(ihj_l)—i—ZS:l _____ i [t(Pl [S]p7P2[]]p)
NCyq1(s=1,5=1,K (P1[s], Pa[j])]
CQ(i7.77) = va(i7j)+ZT:1 _____ q Cq,'r (17])
Cq(i,§) = ACq(i,j—1)+Cq (i)
Cy(irg) = UP[I]LP2[i))A? Cq—1(i—1,j—1)+ACq (i,j—1)
Cq,T(inj) = AC, r(d,J— 1)+Cq 'r(J)
ACq (15 =1)+
SN UPL[I), Pa[f])A? Cq 1,0 (i=1,5=1), if gz
Cor(ing) =
ACq (4,5 =1)+t(Pr [i], P2[5])-
)‘2 (Pl[l},Pz[])04*1(2_17.7_1)7 o.w

The boundary conditions are

Keq(ij) = 0, if g>min(i,j)

Cq(i,j) = 0, if g>min(i,j)

Co(iaj) = 1,

Ci(ij) = 0, if g>min(i,j)
Cq.r(i,j) = 0, if ¢>min(z,j) Or g<r
cl () = 0, if g>min(i,j) or g<r

As can be seen from the recurrences, the time
complexity of the algorithm is O(mn?) (assum-
ing m > n). The space complexity is O(mn?).

6 Experiments

In this
ods

section, we apply kernel meth-

to extracting two types of relations

from text: person-affiliation and
organization-location.

A person and an organization are part of
the person-affiliationrelation, if the person
is a member of or employed by organization.
A company founder, for example, is defined not
to be affiliated with the company (unless, it is
stated that (s)he also happens to be a company
employee).

An organization and a location are part
of the organization-location relation, if
the organization’s headquarters is at the
location. Hence, if a single division of a com-
pany is located in a particular city, the company
is not necessarily located in the city.

The nuances in the above relation definitions
make the extraction problem more difficult, but
they also allow to make fine-grained distinctions
between relationships that connect entities in
text.

6.1 Experimental Methodology

The (text) corpus for our experiments comprises
200 news articles from different news agencies
and publications (Associated Press, Wall Street
Journal, Washington Post, Los Angeles Times,
Philadelphia Inquirer).

We used the existing shallow parsing system
to generate the shallow parses for the news ar-
ticles. We generated relation examples from the
shallow parses for both relations, as described
in section 4. We retained only the examples,
for which the shallow parsing system did not
make major mistakes (90% of the generated ex-
amples). We then labeled the retained exam-
ples whether they expressed the relation of in-
terest, whereby we obtained 3524 (1262 posi-
tive) examples for the person-affiliation re-
lation and 1915 (506 positive) examples for the
org-location relation.

For each relation, we randomly split the set of
examples into a training set (60% of the exam-
ples) and a testing set (40% of the examples).
We obtained the models by running learning al-
gorithms (with kernels, where appropriate) on
the training set, testing the models on the test
set, and computing performance measures. In
order to get stable performance estimates, we

averaged performance results over 10 random
train/test splits.

We report the standard performance esti-
mates (precision, recall, and F-measure) for each
experiment.

We now describe the experimental setup of
the algorithms used in evaluation.

6.2 Kernel Methods Configuration

We evaluated two kernel learning algorithms:
Support Vector Machine (SVM) (Cortes and
Vapnik, 1995) and Voted Perceptron (Freund
and Schapire, 1999). For SVM, we used the
SV MF9ht (Joachims, 1998) implementation of
the algorithm, with custom kernels incorporated
therein. We implemented the Voted Perceptron
algorithm as described in (Freund and Schapire,
1999).

We implemented both contiguous and sparse
subtree kernels and incorporated them in the
kernel learning algorithms. For both kernels, A
was set to 0.5. The only domain specific in-
formation in the two kernels was encapsulated
by the following matching #(-,-) and similarity
k(-,-) functions on nodes.*

1, if Class(Py.Type)=Class(Py.Type)
t(Pl .p,PQ.p) = and P;.Role=Ps.Role

0, otherwise

K(PrpPrp) = { 1, if P1.Te.:ct=P2.Tezt
0, otherwise

We also normalized the computed kernels be-
fore their use within the algorithms. The nor-
malization corresponds to the standard unit
norm normalization of examples in the feature
space corresponding to the kernel space (Cris-
tianini and Shawe-Taylor, 2000):

K(P1,Py)

6.3 Linear Methods Configuration

We evaluated two feature-based algorithms for
learning linear discriminant functions: Naive-
Bayes (Duda and Hart, 1973) and Winnow (Lit-
tlestone, 1987).

K(Py,Py)=

“The function Class combines some types into a
single equivalence class: Class(PNP) = Person,
Class(ONP) = Organization, Class(LNP) =
Location, and Class(Type) = Type for other types.

We implemented the two algorithms in the
spirit of the SNOW system (Roth, 1999). The
algorithms learn models that, given an exam-
ple, produce a score for each label (+1 and -1),
the predict the label corresponding to the larger
score.

Since the algorithms are feature-based, we de-
signed features for the relation extraction prob-
lem. The features are conjunctions of conditions
involving “Text”, “Type”, “Role” attributes for
neighboring example nodes. We do not list fea-
tures herein for lack of space.

6.4 Experimental Results

The performance results for relation extraction
are shown in Table 1.

The results indicate that kernel methods do
exhibit excellent performance and fare better
than feature-based algorithms in relation extrac-
tion. The results also highlights importance of
kernels: algorithms with the sparse subtree ker-
nels are always significantly better than their
contiguous counterparts.

The show that performance of
the Voted Perceptron is much less accu-
rate, compared with other algorithms, for
the organization-location relation than for
the person-affiliation relation. This phe-
nomenon can be probably attributed to the fact
that the organization-location examples are
more noisy, with more boundary cases present.
For such a training set, regularization performed
by SVM is crucial; it is more noise-tolerant than
the Perceptron voting mechanism. Performance
of Naive Bayes for organization-location re-
lation is notable, since it performs as good as or
better than more elaborate algorithms.

results

7 Conclusions and Further Work

We presented an approach for using kernel-based
machine learning methods for extracting rela-
tions from natural language sources. We de-
fined kernels over shallow parse representations
of text and designed efficient dynamic program-
ming algorithms for computing the kernels. We
applied SVM and Voted Perceptron learning al-
gorithms with the kernels incorporated therein

person-affiliation org-location
Recall | Precision | F-measure | Recall | Precision | F-measure
Naive Bayes 75.59 91.88 82.93 71.94 90.40 80.04
Winnow 80.87 88.42 84.46 75.14 85.02 79.71
Voted Perceptron (contig.) | 79.58 89.74 84.34 64.43 92.85 76.02
SVM (contig.) 79.78 89.9 84.52 71.43 92.03 80.39
Voted Perceptron (sparse) | 81.62 90.05 85.61 71 91.9 80.05
SVM (sparse) 82.73 91.32 86.8 76.33 91.78 83.3

Table 1: Relation extraction performance (in percentage points)

to the tasks of relation extraction. We also com-
pared performance of the kernel-based methods
with that of the feature methods, and concluded
that kernels lead to superior performance.

In the future, we intend to apply the kernel
methodology to other sub-problems of informa-
tion extraction. For example, the shallow pars-
ing and entity extraction mechanism may also
be learned, and, perhaps, combined in a seam-
less fashion with the relation extraction formal-
ism presented herein. Furthermore, the real-
world use of extraction results requires discourse
resolution that collapses entities, noun phrases,
and pronouns into a set of equivalence classes.
We plan to apply kernel methods for discourse
processing as well.

8 Acknowledgements

Our work was supported through the DARPA
Evidence Extraction and Link Discovery Pro-
gram.

References

C. Aone and M. Ramos-Santacruz. 2000. REES: A large-
scale relation and event extraction system. In Proceed-
ings of ANLP-2000.

C. Aomne, L. Halverson, T. Hampton, and M. Ramos-
Santacruz. 1998. SRA: Description of the IE2 system
used for MUC-7. In Proceedings of MUC-7.

D. Bikel, R. Schwartz, and R. Weischedel. 1999. An algo-
rithm that learns what’s in a name. Machine Learning,
34(1-3):211-231.

M. Collins and N. Duffy. 2001. Convolution kernels for
natural language. In Proceedings of NIPS-2001.

C. Cortes and V. Vapnik. 1995. Support-vector net-
works. Machine Learning, 20(3):273-297.

N. Cristianini and J. Shawe-Taylor. 2000. An Introduc-

tion to Support Vector Machines (and Other Kernel-
Based Learning Methods). CUP

R. O. Duda and P. E. Hart. 1973. Pattern Classification
and Scene Analysis. John Wiley, New York.

Y. Freund and R. Schapire. 1999. Large margin clas-
sification using the perceptron algorithm. Machine
Learning, 37(3):277-296.

T. Furey, N. Cristianini, N. Duffy, D. Bednarski,
M. Schummer, and D. Haussler. 2000. Support vector
machine classification and validation of cancer tissue
samples using microarray expression. Bioinformatics,
16.

D. Haussler. 1999. Convolution kernels on discrete struc-
tures. UC Santa Cruz Technical Report UCS-99-10.
T. Joachims. 1998. Text categorization with support
vector machines: learning with many relevant features.

Proceedings of ECML-98.

T. Joachims. 2002. Learning Text Classifiers with Sup-
port Vector Machines. Kluwer Academic Publishers,
Dordrecht, NL.

J. Lafferty, A. McCallum, and F. Pereira. 2001. Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data. In Proceedings of
ICML-2001.

N. Littlestone. 1987. Learning quickly when irrelevant
attributes abound: A new linear-threshold algorithm.
Machine Learning, 2:285.

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini,
and C. Watkins. 2002. Text classification using string
kernels. Journal of Machine Learning Research.

A. McCallum, D. Freitag, and F. Pereira. 2000. Maxi-
mum entropy Markov models for information extrac-
tion and segmentation. In Proceedings of International
Conference on Machine Learning, 2000.

S. Miller, M. Crystal, H. Fox, L. Ramshaw, R. Schwartz,
R. Stone, and R. Weischedel. 1998. Algorithms that
learn to extract information - BBN: Description of the
SIFT system. In Proceedings of MUC-7.

M. Munoz, V. Punyakanok, D. Roth, and D. Zimak.
1999. A learning approach to shallow parsing. TR-
2087, University of Illinois at Urbana-Champaign.

D. Roth and W. Yih. 2001. Relational learning via
propositional algorithms: An information extraction
case study. In Proceedings of IJCAI-01.

D. Roth. 1999. Learning in natural language. In Pro-
ceedings of IJCAI-99.

V. Vapnik. 1998. Statistical Learning Theory. John Wi-
ley.

