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Abstract 2 Background and Other Approaches

This paper proposes a novel class of PCFG parameterizatioAsPCFG is a conditional probability functiop(RHS |
that support linguistically reasonable priors over PCFGs. TQHS).l For examplep(V NP PP| VP) gives the proba-

estimate the parameters is to discover a notion of relatedneﬁﬁity of the ruleVP — V NP PP With lexicalized non-
among context-free rules such that related rules tend to ha ’

e . .
related probabilities. The prior favors grammars in which thgermlnals, it has formp(Vour  NRsizza PP | VPt ).
relationships are simple to describe and have few major excep- Usually one makes an independence assumption and
tions. A basic version that bases relatedness on weighted ediéfines this as(Vpi: NP PP| VP, ) times factors that
distance yields superior smoothing of grammars learned froghoose dependent headwopisza andin according
the Penn Treebank (20% reduction of rule perplexity over thf:0 the selectional preferencesmft . This paper is about
best previous method). . ) -
estimating the first factop(Vpur NP PP| VPyy ).
1 A Sketch of the Concrete Problem _ In su_per_vised Iea_rning, it is simplegt to use a max-
imum likelihood estimate (perhaps with backoff from
This paper uses a new kind of statistical model to smoothut ). Charniak (1997) calls this a “Treebank grammar”
the probabilities of PCFG rules. It focuses on “flat” orand gambles that assigning 0 probability to rules unseen
“dependency-style” rules. These resemble subcategoriza-training data will not hurt parsing accuracy too much.
tion frames, but include adjuncts as well as arguments. However, there are four reasons not to use a Treebank
The verbput typically generates 3 dependents—eagrammar. First, ignoring unseen rules necessarily sacri-
subjectNPat left, and an objediiPand goalPP at right:  fices some accuracy. Second, we will show that it im-
e S— NP put NP PP: Jim put [the pizza] [in the oven] proves accuracy to flatten the parse trees and use flat,
: dependency-style rules likgNP put NP PP | Spy );
Butput may also take other dependents, in other rlJIes‘chis avoids overly strong independence assumptions, but
S— NP Adv put NP PP: Jim often put [a pizza] [in the oven]jt increases the number of unseen rules and so makes
S — NP put NP PP PP: Jim put soup [in an oven] [at home]Treehank grammars less tenable. Third, backing off from
g: mg SE: EE: hf;mﬁr‘:]t F[)Suct’“;; :;‘ELG;SO{IJSQ? stock] the word is a crude technique that does not distinguish
S — TO put NP PP: to put [the pizza] [in the oven] among w(_?rd'é_ Fourth, or?e. would eventually “ke. 0 .re_ .
S— NP put NP PP SBAR: Jim put it [to me] [that. ] QUce or eliminate supervision, and then generalization is
o important to constrain the search to reasonable grammars.
These other rules ariseiut can add, drop, reorder, 1o smooth the distributiop(RHS | LHS), one can de-
or retype its dependents. Theastit operationson rules  fine it in terms of a set of parameters and then estimate
are semantically motivated and quite common (Table 1ynqge parameters. Most researchers have useegaam
We wish to learn contextual probabilities for the edity,oqel (Eisner, 1996; Charniak, 2000) or more general
operations, based on an observed sample of flat rules. \farkov model (Alshawi, 1996) to model the sequence
English we should discover, for example, that it is quitgyf nonterminals in the RHS. The sequentg, NP PP
common to add or deleteP at the right edge of a rule. j, oyr example is then assumed to be emitted by some
These contextual edit probabilities will help us guess thgiarkov model ofVP,,: rules (again with backoff from
true probabilities of novel or I_it'gle-obser\_/ed rules. put ). Collins (1997, model 2) uses a more sophisticated
~ However, rules are often idiosyncratic. Our smoothmqdel in which allargumentsn this sequence are gener-
ing method should not keep us from noticing (giverted jointly, as in a Treebank grammar, and then a Markov
enough evidence) thgut takes aPP more often than nrocess is used to insert adjuncts among the arguments.
most verbs. Hence this paper's proposal is a Bayesian\ypile Treebank models overfit the training data,
smoothing method that allows idiosyncrasy in the gramyarkov models underfit. A simple compromise (novel to
mar while presuming regularity to be more lik@yriori.  nig paper) is a hybridreebank/Markov model, which
The model will assign a positive probability to eachpcks off from a Treebank model to a Markov. Like
of the infinitely many formally possible rules. The fol- iig paper’s main proposal, it can learn well-observed id-

lowing bizarre rule is not observed in training, and seeM@syncratic rules but generalizes when data are sparse.
very unlikely. But there is no formal reason to rule it out,li _ o _
and itmight help us parse an unlikely test sentence. So _Nonstandardly, this allows infinitely many rules wjib-0.

) : . .
the model will allow it some tinv probability: One might do better by backing off to word clusters, which
yp y Charniak (1997) did find provided a small benefit.

e S— NP Adv PP put PP PP PP NP AdjP S 3Carroll and Rooth (1998) used a similar hybrid technique



These models are beaten by our rather different model, Priors can help both unsupervised and supervised
transformational smoothing, which learns common learning. (In the semi-supervised experiments here, train-
rules and common edits to them. The comparison is iag data is not raw text but a sparse sample of flat rules.)
direct one, based on the perplexity or cross-entropy of Indeed a good deal of syntax induction work has been
the trained models on a test set®f- - - - rules? carried out in just this framework (Stolcke and Omohun-

A subtlety is that two annotation styles are possible. ldro, 1994; Chen, 1996; De Marcken, 1996;u@wald,
the Penn Treebankut is the head of three constituents1996; Osborne and Briscoe, 1997). However, all such
(V, VP, andS, where underlining denotes a head childwork to date has adopted rather simple prior distributions.
and joins with different dependents at different levels: Typically, it has defineg(@) to favor PCFGs whose rules

) ) ) are few, short, nearly equiprobable, and defined over a
o [s[nediml[ve[vput] [ nepizza][ peinthe oven]]] gy set of nonterminals. Such definitions are conve-

In the flattened or dependency version that we prefer,nient, especially when specifying an encoding for MDL,

each word joins with all of its dependents at once: but since they treat all rules alike, they may not be good
) ] _ descriptions of linguistic plausibility. For example, they
e [ s[npJdim] put[ np pizza][ pp in the oven]] will never penalize thebsencef a predictable rule.

A PCFG generating the flat structure must estimate A prior_distribl_Jtionl can, hgwever, be used to _enc_:ode
p(NP put NP PP | Spy). A non-flat PCFG adds various kinds oflinguistic notions. After all, a prior is

the dependents gfut in 3 independent steps, so in ef- really a soft form. of Universal Grammar: it gives the
fect it factors the flat rule’s probability into 3 suppos—leﬁmerfqoygh prior kfnﬁwlec_ige lofgrgmmar to ov;:rcome
edly independent “subrule probabilitiegi{NP VR, | CNOMsky's “poverty of the stimulus (i.e., sparse data).

Sput ) - P(Vput NP PP[ VPt ) - p(put | Vout ). o A preference for small or simple grammars, as above.
Our evaluation judges the estimates of flat-rule probs gypstantive preferences, such as a preference for verbs

abilities. Is it better to estimate these directly, or as g, take 2 nominal arguments, or to all&¥P adjuncts.
product of estimated subrule probabilities?ansforma- , peterences for systematicity, such as a preference for

tional smoothing is best applied to the former, so that thfﬁe rules to be consistently head-initial or head-final.
edit operations can freely rearrange all of a word’s depen-

dents. We will see that the Markov and Treebank/Markov This paper shows how to design a prior that favors a
models also work much better this way—a useful findingcertain kind of systematicity. Lexicalized grammars for
natural languages are very large—each word specifies a
3 The Abstract Problem: Designing Priors distribution over all possible dependency rules it could
head—»but they tend to have internal structure. The new
This section outlines the Bayesian approach to Iearnir'*g(iOr prefersgrammars in which a rule’s probability can
probabilistic grammars (for us, estimating a distributioye \ve|l-predicted from the probabilities of other rules;
over flat CFG rules). By choosing among the manynq jinguistic transformations such as edit operations.
grammars thatouldhave generated the training data, the gq, examplep(NP Adv w put NP PP | S,) cor-
learner is choosing how to generalize to novel sentencegates withp(NP w NP PP| S,). Both numbers are
To guide the learner’s choice, one can explicitly spechigh forw = put , medium forw = fund , and low for
ify a prior probability distributionp(6) over possible , — sleep . The slope of the regression line has to do
grammarsy, which themselves specify probability dis-yith the rate of preverbadv-insertion in English.
tributions over strings, rules, or trees. A learner should The correlation is not perfect (some verbs are espe-
seekd that maximizes(0) - p(D | ), whereD is the  cjally prone to adverbial modification), which is why we
set of strings, rules, or trees observed by the learner. Thg|| only model it with a prior. To just the extent that evi-
first factor favors regularity (“pick aa priori plausible  gence about is sparse, the prior will cause the learner to
grammar”), while the second favors fitting the idiosyn-smooth the two probabilities toward the regression line.
crasies of the data, especially the commonest tlata.

4 Patterns Worth Modeling

4All the methods evaluated here apply also to full PCFGsBefore spelling out our approach, et us do a sanity check.
but verb-headed ruleS — - - - present the most varied, inter- A frame is a flat rule whose headword is replaced with

esting cases. Many researchers have tried to learn verb subdatiori learning, since it is equivalent to maximizipg@ | D).
egorization, though usually not probabilistic subcategorizationt is also equivalent to Minimum Description Length (MDL)

®In testing the latter case, we sum owadirpossible internal learning, which minimizes the total number of bit®) + ¢(D |
bracketings of the rule. We do train this case on the true internéll) needed to encode grammar and data, because one can choose
bracketing, but it loses even with this unfair advantage. an encoding scheme whefer) = — log, p(z), or conversely,

®This approach is called semi-Bayesian or Maximum A Posdefine probability distributions by(z) = 274,

to evaluate rule distributions that they acquired from an
automatically-parsed treebank.



Mi « 8 MI « [E] MI o [E]

9.01 [NP— ADJP-PRD] [NP— RB ADJP-PRD] 4.76 [ro—¢9] [— 9] 5.54 [ro— NP PH [NP TO— NP]
8.65 [NP— ADJP-PRD] [NP— PP-LOC-PRD] 4.17 fro—¢9] [To—nNPPA 5.25 [ro— NP PAH [NP MD—NP.]
8.01 [NP— ADJP-PRD] [NP— NP-PRD] 2.77 fro—¢g] [TO—NF] 4.67 [ro—nNPPAH [NP MD — NP]
7.69 [NP— ADJP-PRD] [NP— ADJP-PRD.] 6.13 [ro—NF] [TO—— NP SBARTMP] 4.62 [ro—nNPPA [To—]

8.49 [NP— NP-PRO] [NP—NP-PRD ] 5.72 [ro—np] [To— NP PP PP 3.19 [ro—nNpP PH [TO—nNP]

7.91 [NP— NP-PRD] [NP— ADJP-PRD ] 5.36 [ro—np] [NP MD RB— NP] 2.05 [ro—nNpP PH [— NP

7.01 [NP— NP-PRD] [NP— ADJP-PRD] 5.16 [ro—np] [TO— NP PP PPTMP] 5.08 F—nF] [ADVP-TMP — NP|
8.45 [NP— ADJP-PRD ] [NP— PP-LOC-PRD] 5.11 [ro—nr] [To— NP ADVP] 4.86 F—nr] [ADVP — NP]
8.30 [NP— ADJP-PRD.] [NP— NP-PRD.] 4.85 fro—nr] [To— NP PRLOC] 453 F—nr] [— NP PRLOC]
8.04 [NP— ADJP-PRD.] [NP— NP-PRD] 4.84 fro—nr] [MD — NP] 3.50 F—nr] [—nNPPH

7.01 [NP— ADJP-PRD ] [NP—— ADJP-PRD] 4.49 fro—np] [NP TO— NF] 3.17 F—np] [—9]

7.01 [NP— SBAR] [NP—SBAR. T 4.36 fro—np] [NP MD—¢] 2.28 F—np] [NP—NP]
4.75 [NP— SBAR] [NP— SBAR.] 4.36 fro—nNp] [NP TO— NP PH 1.89 F—nP] [NP— NP ]

6.94 [NP— SBAR .] [ NP—SBAR ] 4.26 [ro—nNpP] [NP MD— NP PH 2.56 [NP— NF] [NP—NP ]

5.94 [NP— SBAR ] [NP—SBAR. "] 4.26 [ro—nNpP] [TO— NP PPTMP] 2.20 NP — NP] [— NP]

5.90 [NP— SBAR ] [s,NP—] 4.21 [ro—nNpP] [To— PRT NA 4.89 NP—nNP ] [NP ADVP-TMP — NP ]
5.82 [NP— SBAR ] [NP ADVP— SBAR.] 4.20 [ro—nNpP] [NP MD — NP] 4.57 [NP—nNP ] [NP ADVP— NP ]
4.68 [NP— SBAR ] [— sBAR] 3.99 [ro—nNpP] [To—nNPPA 4.51 [NP—nNP ] [NP— NP PPTMP]
4.50 [NP— SBAR ] [NP— SBAR] 3.69 [ro—nNpP] [NP MD—NP.] 3.35 NP—nNP ] [NP—5s]

3.23 [NP— SBAR ] [NP—s] 3.60 fro—npP] [To—] 2.99 INP—nNP ] [NP— NP]

2.07 [NP— SBAR ] [INP—1] 3.56 fro—nNp] [To—PA 2.96 NP—nNP ] [NP— NP PP.]
1.91 [NP— SBAR ] [NP—NP ] 2.56 [ro—nF] [NP— NP PH 2.25 [NP—nP.] [—NPPA

1.63 [NP— SBAR ] [NP—NP] 2.04 [ro—np] [NP—¢] 2.20 [NP—nNP ] [— NF]
452 NP—9] [NP—5s] 1.99 [ro—np] [NP—NP] 4.82 NpP—sS] [—]
4.27 Np—g] [—s] 1.69 [ro—nr] [NP—NP.] 4.58 Np—s.] [NP—9]

3.36 Np—g] [NP—1] 1.68 fro—nr] [NP— NP PP.] 3.30 Np—s.] [NP—]

2.66 Np—g] [NP—NP ] 1.03 fro—np] [—nP] 2.93 Np—s.] [NP—nNP ]

2.37 NP—¢g] [NP—NP] 475 [s.,NnP—] [NP—SBAR ] 2.28 Np—s] [NP—NP]

Table 1: The most predictive pairs of sentential frame& 4 o occurs in training data at least 5 times with a given headword in
the— position, therS — (3 also tends to appear at least once with that headword. MI measures the mutual information of these
two events, computed over all words. When Ml is large, as here, the edit distance betardf tends to be strikingly small (1

or 2), and certain linguistically plausible edits are extremely common.

the variable =" (corresponding tav above). Table 1il- DeleteY transformation recognizesthatif- X Y Z---
lustrates that in the Penn Treebank, if frequent rules withas been observed, then X Z-.. is plausible even if
frame o imply matching rules with frame3, there are the bigramX Zhas not previously been observed.
usually edit operations (section 1) to easily tarinto 5. Presumably, edit operations are common because they
How about rare rules, whose probabilities are most imodify a rule in semantically useful ways, allowing the
need of smoothing? Are the same edit transformatiorfiler of a semantic role to be expressed (Insert), sup-
that we can learn from frequent cases (Table 1) appropiiressed (Delete), retyped (Substitute), or heavy-shifted
ate for predicting the rare cases? The very rarity of theg&wap). Such “valency-affecting operations” have re-
rules makes it impossible to create a table like Table 1. peatedly been invoked by linguists; they are not confined
However, rare rules can be measured in the aggregate,English® So a learner of an unknown language can
and the result suggests that the same kinds of transfornmt@asonably expect priori that flat rules related by edit
tions are indeed useful—perhaps even more useful—wperations may have related probabilities.
predicting them. Let us consider the gef 2,809,545 However, which edit operations varies by language.
possible flat rules that stand at edit distance 1 from the sEach language defines its own weighted, contextual,
of S — .- rules observed in our English training data.asymmetric edit distance. So the learner will have to dis-
That is, a rule such &, — NP put NP isin Rifit  cover how likelyparticular edits are in particular con-
did not appear in training data itself, but could be derivedexts. For example, it must learn the rates of prever-
by a single edit from some rule that did appear. bal Adv-insertion and right-edgEP-insertion. Evidence
A bigram Markov model (section 2) was used to idenabout these rates comes mainly from the frequent rules.
tify 2,714,763 rare rules iR—those that were predicted
to occur with probability< 0.0001 given their head- 5 A Transformation Model
words. 79 of these rare rules actually appeared in a
development-data set of 1423 rules. The bigram moddhe form of our new model is shown in Figure 1. The
would have expected only 26.2 appearances, given thertices are flat context-free rules, and the arcs between
lexical headwords in the test data set. The difference them represent edit transformations. The set of arcs leav-

statistically significant{ < 0.001, bootstrap test). — . o ,

In other words, the bigram model underpredicts the Carpenter (1991_) wntesthatwh_eneverIlngw_sts ru_mntothe

oy . " roblem of systematic redundancy in the syntactic lexicon, they
edit-distance “neighbors” of observed rules by a faCtogesign a scheme in which lexical entries can be derived from
of 3. One can therefore hope to use the edit transformane another by just these operations. We are doing the same
tions to improve on the bigram model. For example, thénhing. The only twist that the lexical entries (in our case, flat
T PCFG rules) have probabilities that must also be derived, so we

’Similar results are obtained when we examine just one pawill assume that the speaker applies these operations (randomly
ticular kind of edit operation, or rules of one particular length. from the hearer’s viewpoint) at various rates to be learned.
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Figure 1: A fragment of a transformation model. Vertices are possible context-free rules (their left-han®sides,; and

Smerge — , are omitted to avoid visual clutter). Arc probabilities are determined log-linearly, as shown, from a real-value@ vector

of feature weights. Th& values are chosen so that the arcs leaving each vertex have total probability 1. Dashed arrows represent
arcs not shown here (there are hundreds from each vertex, mainly insertions). Also, not all features are shown (see Table 2).

ing any given vertex has total probability 1. The learner’s Given®, it is nontrivial to solve for the probability dis-
job is to discover the probabilities. tribution over grammar rules Let Iy (e) denote thélow

Fortunately, the learner does not have to learn a sef® vertexe. This is defined to be the total probability of
arate probability for each of the (infinitely) many arcs,all paths from SART to e. Equivalently, itis the expected
since many of the arcs represent identical or similar editeumber of times: would be visited by a random walk
As shown in Figure 1, an arc’s probability is determinedrom START. The following recurrence defingg (e):1°
from meaningful features of the arc, using a conditional

log-linear model ofp(arc | source vertex The learner Ig(e) = besmrr+ 2 olo(e) ple’ —¢€) (1)
only has to learn the finite vect@ of feature weights. po(e) = Ig(e) - p(e — HALT) )
Arcs that represent similar transformations have similar

features, so they tend to have similar probabilities. Since solving the large linear system (1) would be pro-

Thistransformation model is really a PCFG with un- hibitively expensive, in practice we use an approximate
usual parameterization. That is, for any valuefpfit  relaxation algorithm (Eisner, 2001) that propagates flow
defines a language-specific probability distribution ovethrough the graph until near-convergence. In general this
all possible context-free rules (graph vertices). To sanmmay underestimate the true probabilities somewhat.
ple from this distribution, take a random walk from the Now consider how the parameter vectbaffects the
special vertex $ART to the special vertex KL.T. The distribution over rulespg(e), in Figure 1:
rule at the last vertex reached beforaiH is the sample.

This sampling procedure models a process where theBy raising the initial weight 6;, one can
speaker chooses an initial rule and edits it repeatediyicrease the flow to Syng — To fund NP,
The random walk might reacByng — To fund NP Smerge — TO merge NP, and the like. By equa-
in two steps and simply halt there. This happension (2), this also increases the probability of these rules.
with probability 0.0011 - =2 91 - SR =pb  QOr, having But the effectalso feeds through the graph to increase
arrived atSgng — ToO fund NP it mlght transform the flow and probability at those ruledescendantin
it into Syyng — To fund PP NP and then further to the graph, such &8nerge — TO merge NP PP.

Sf“”‘;] — To fund NP PI: bsfore haltinga h So a single parametéh controls a whole complex of
Thus, pe(Suna — To fund NP PP) denotes the .o nronabilities (roughly speaking, the infinitival transi-

probability that the random walk somehow reaCheﬁves) The model thereby captures the fact that, although
Swnd — To fund NP PP and halts there. Condi-

tionalizing this probability gives(To — NP PP | that change the LHS or headword of a rule, so itis trivial to find

the divisorpe (Swuna ): in Figure 1 it is 0.0011. But in general,
Stna ), @s needed for the PCFG. LHS-changing transformations can be useful (Eisner, 2001).

°The experiments of this paper do not allow transformations '°Whered,,, = 1if z = y, elsed,,, = 0.



rules are mutually exclusive events whose probabilitiesay that the weight8;, 05, ... 0, are independent sam-
sum to 1, transformationally related rules have positivelples from the normal distribution with mean 0 and vari-
correlated probabilities that rise and fall together. ances? > 0 (Chen and Rosenfeld, 1999):

e The exception weightfy appears on all and only the
arcs toSmerge — TO merge NP PP. That rule has

even higher probability than predicted Bif-insertion as  or equivalently, thaf is drawn from a multivariate Gaus-
above (sincenerge, unlikefund , actually tends to sub- sjan with mear( and diagonal covariance matrix1,
categorize folPPyin ). To model its idiosyncratic prob- je @ ~ N(0, o?I).

ability, one can rais#@y. This “lists” the rule specially  This says that priori, the learner expects most fea-
in the grammar. Rules derived from it also increase ifyres in Figure 1 to have weights close to zero, i.e., to be
probability (€.9..Smerge — TO Adv merge NP PP), jrrelevant. Maximizingp(8) - p(D | 6) means finding
since again the effect feeds through the graph. a relatively small set of features that adequately describe
¢ Thegeneralization weightf; models the strength of the rules and exceptions of the grammar. Reducing the
the PP-insertion relationship. Equations (1) and (2) im-variances? strengthens this bias toward simplicity.

ply thatpe(Sruna — To fund NP PP)is modeled as  For example, if Sqng — To fund NP PP and

a linear combination of the probabilities of that rule’sSyeqe — To fund NP PP are both observed more
parents in the graph. 63 controls the coefficient of often than the currenty distribution predicts, then the
Po(Sund — To fund NP ) in this linear combination, learner can follow either (or both) of two strategies: raise
with the coefficient approaching zero&s— —oo. s anddy, or raiseds. The former strategy fits the training

e Narrower generalization weights such és and 05  data only; the latter affects many disparate arcs and leads
control where PP is likely to be inserted. To learn the to generalization. The latter strategy may harf® | 6)
feature weights is to learn which features of a transforbut is preferred by the prigs(6) because it uses one pa-
mation make it probable or improbable in the language.rameter instead of two. knorethan two words act like

merge andfund , the pressure to generalize is stronger.
Note that the vertex labels, graph topology, and arc

parameters are language independent. That is, Figurezl Perturbation Parameters
is supposed to represent Universal Grammar: it tells a

learner what kinds of generalizations to look for. Then experiments, we have found that a slight variation on
language-specific part & which specifies which gener- this model gets slightly better results. L&tdenote the

O ~ N(0,0%) x N(0,02) x --- x N(0,0%) (3)

alizations and exceptions help to model the data. exception weight (if any) that allows one to tune the prob-
ability of rulee. We eliminate). and introduce a different
6 The Prior parameterr,, called gperturbation, which is used in the

following replacements for equations (1) and (2):
The model has more parameters than data. Why? Beyond

the initial weights and generalization weights, in practice 1,(e) = Se.starT + Z Ig(€)) - expme - ple/ — e)(4)
we allow one exception weight (e.ds, 09) for each rule o

that appeared in training data. (This makes it possible to 4 (¢) = Iy (e) - exp 7. - p(e — HALT)/Z (5)
learn arbitrary exceptions, as in a Treebank grammatr.)

Parameter estimation is nonetheless possible, using\ere Z is a global normalizing factor chosen so that
prior to help choose among the many value® dfiat do  >_. Pe(e) = 1. The new prior onr. is the same as the
areasonable job of explaining the training data. The prig?!d prior onf..
constrains the degrees of freedom: while many parame- Increasing eithef,. or . will raise pe (€); the learner
ters are available in principle, the prior will ensure thafmay do this to account for observationseoin training
the data are described using as few of them as possibledata. The probabilities of other rules consequently de-

The point of reparameterizing a PCFG in termsfpf Crease so tha} pe(e) = 1. Whenm. is raised,all
as in Figure 1, is precisely that only one parameter iglles’ probabilities are scaled down slightly and equally
needed per linguistically salient property of the PCFG(becauseZ increases). Whe#, is raised¢ steals proba-
Making 05 > 0 creates a broadly targeted transformaDbility from its siblings?* but these are similar toso tend
tion. Makingd, # 0 or 6, # 0 lists an idiosyncratic rule, t0 appear in test data éis in training data. Raising.
or class of rules, together with other rules derived fronwithout disproportionately harmings siblings requires
them. But it takes more parameters to encode less syganipulation of many other parameters, which is discour-
tematic properties, such as narrowly targeted edit trangged by the prior and may also suffer from search error.
formations ¢, 95) or families of unrelated exceptions. We speculate that this is why. works better.

A natural prior for the parameter vectér € R* is YRaising the probability of an arc froed to e decreases the
therefore specified in terms of a varianege We simply probabilities of arcs frone’ to siblings ofe, as they sum to 1.



(Insert) (Insert, target) If the arc inserts Treebank/Markov
(Insert, left) (Insert, target, left) Adv afterTO basic Katz one-courit
(Insert, right) (Insert, target, right) inTO fund PP, flat  non-flaf flat flat  non-flat
(Insert, left, right) then (a) | Treebank ) 0o
(Insert, side) (Insert, side, target) target-Adv 1-gram 1774.9 86435.1| 340.9 160.0 193.2
(Insert, side, left) (Insert, side, target, left)| left=TO 2-gram 135.2 199.3 | 127.2 116.2 174.7
(Insert, side, right) (Insert, side, target, right) right=—— 3-gram 136.5 177.4| 132.7 1233 174.8
(Insert, side, left, right) side=left of head Collins® 363.0 494.5| 197.9
transformation| 108.6
Table 2: Each Insert arc has 14 features. The features of any averagefl 102.3
given arc are found by instantiating the tuples above, as shown.(b) %-gram 151325-5 9235%8(-58 1‘22% 113951-; 2(232361
; ; ; Ead -gram . . . . .
Each instantiated tuple has a weight specifie@.in 3-gram le19 211.0| 1568 1457 2081
Collins 414.5 589.4| 242.0
S — ... rules only train dev test transformation| 124.8
Treebank sections 0-15 16 17 averaged 118.0
sentences 15554 1343 866 S
rule tokens 18836 1588 973 #Back off from Treebank grammar with Katz vs. one-count
;:‘;‘:nteyf;;es o e aes|  backoff (Chen and Goodman, 1996) (Note: One-count was al-
headword types 3607 756 504 Wa%s used fo.r backoﬁn?hm thgn-gram and Collins models.)
novel rule tokens 51.6% 47.8% See section 2 for discussion
novel frame tokens 8.9% 6.3% Collins (1997, model 2)
novel headword tokens 10.4% 10.2% daverage of transformation model with best other model
novel rule types 61.4% 57.5%
novel frame types 24.6% 16.4% . .
novel headword types 20.9% 18.8% Table 4: Perplexity of the test set under various models. (a) Full
nonterminal types 78 training set. (b) Half training set (sections 0—7 only).
# transformations applicable tp 158n—1 158n—1 158n—1
rule with RHS length =

feature weights were substantial, and only a few thousand

Table 3: Properties of the experimental data. “Novel” mean¥/€r€ €ven far enough from zero to affect performance.
not observed in training. “Frame” was defined in section 4.  There was also a parameterfor each observed rule
Results are given in Table 4a, which compares the
8 Evaluation? transformation model to various competing models dis-
cussed in section 2. The best (smallest) perplexities ap-
To evaluate the quality of generalization, we used presear in boldface. The key results:
parsed training datd) and testing data” (Table 3). . _ i
Each dataset consisted of a collection of flat rules such &s 1 N€ transformation model was the winner, reducing
Spu — NP put NP PP extracted from the Penn Tree- perpllexny_ by 20% over the best model replicated from
bank (Marcus et al., 1993). Thus(D | @,7) and Préeviousliterature (a bigram model). _

p(E | 6, ) were each defined as a product of rule prob® Much of this improvement could be explained by
abilities of the formpg (NP put NP PP | Spy ). the '_[ransf(_)rmap_on model’g ability to mod_el exceptions.
The learner attempted to maximizg®, =) - p(D | Ad_dmg this ability more directly to the bigram mo_del,
6, ) by gradient ascent. This amounts to learning th&Sing the new Treebank/Markov approach of section 2,
generalizations and exceptions that related the trainiffSC reduced perplexity from the bigram model, by 6%
rules D. The evaluation measure was then the perplex2r 14% depending on whether Katz or one-count backoff

ity on test data,— log, p(E | 6,7)/|E| . To geta good Was used, versus the transformation model’s 20%.
(low) perplexity score, the model had to assign reasors- Averaging the transformation model with the best com-
able probabilities to the many novel rulesiin(Table 3).  peting model (Treebank/bigram) improved it by an addi-
For many of these rules, even the frame was novel. tional 6%. So using transformations yields a total per-
Note that although the training data was preparsed infgJexity reduction of 12% over Treebank/bigram, and 24%
rules, it was not annotated with the paths in Figure 1 th&ver the best previous model from the literature (bigram).
generated those rules, so estimatthgnd s was still an e What would be the cost of achieving such a perplexity
unsupervised learning problem. improvement by additional annotation? Training the av-
The transformation graph had about 14 features per agétaged model on only the first half of the training set, with
(Table 2). In the finite part of the transformation grapmo further tuning of any options (Table 4b), yielded a test
that was actually explored (including bad arcs that conset perplexity of 118.0. So by using transformations, we
pete with good ones), about 70000 distinct features weg&n achieve about the same perplexity as the best model
encountered, though after training, only a few hundrewithout transformations (Treebank/bigram, 116(3ing
T — ) _only half as much training data
See (Eisner, 2001) for full details of data preparation,

model structure, parameter initialization, backoff levels for the Furthermore, comparing Tables 4a and 4b shows that

comparison models, efficient techniques for computing the ohe transformation model had the most graceful perfor-
jective and its gradient, and more analysis of the results. mance degradation when the dataset was reduced in size.
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Figure 2: Probabilities of test set flat rules under the averaged model, plotted against the corresponding probabilities under the
best transformation-free model. Improvements fall above the main diagonal; dashed diagonals indicate a factor of two. The three
log-log plots (at different scales!) partition the rules by the number of training observations: 0 (left graph), 1 (mxdzi(e)ght).

This is an encouraging result for the use of the method Since the frames were novel, the model had to make
in less supervised contexts (although results arigy the choice according to whethgi or f, looked more
dataset would be more convincing in this regard). like the frames that had actually been observed with

e The competing models from the literature are best usead the past, and likewise,. What this means depends
to predict flat rules directly, rather than by summing ovepn the model. The bigram model takes two frames to
their possible non-flat internal structures, as has bednok alike if theycontain many bigrams in commonhe
done in the past. This result is significant in itself. Ex{transformation model takes two frames to look alike if
tending Johnson (1998), it shows the inappropriatenessibfey areconnected by a path of probable transformations.
the traditional independence assumptions that build up aThe test data contained 62 distinct rulgs, f) in
frame by several rule expansions (section 2). which f was a novel frame. This yielde®.1 = 1891

Figure 2 shows that averaging the transformatioRairs of rules, leading to 1811 task instances after obvi-
ous ties were discardéd.

model with the Treebank/bigram model improves the lat Baseli ‘ this difficult task is 50%
ter not merely on balance, but across the board. In other aseline periormance on this difficuft task s 6 (ran-

words, there is no evident class of phenomena for whic ?rﬂ gligslsl) The b|grarg8n;;)/del ;hose corre(;tly ‘|‘n 1595
incorporating transformations would be a bad idea. of the Instances (88.1%). Parameters for “memo-

rizing” specific frames do not help on this task, which in-

¢ Transformations particularly helped raise the estimatgg)|yes only novel frames, so the Treebank/bigram model
of the low-probability novel rules in test data, as hoped. haq the same performance. By contrast, the transforma-
e Transformations also helped on test rules that hagbn model got 1669 of 1811 correct (92.2%), for a more-
been observed once in training with relatively infrequenthan-349% reduction in error rate. (The development set
words. (In other words, the transformation model doegshowed similar results.) However, since the 1811 task
not discount singletons too much.) instances were derived non-independently from just 62
¢ Transformations hurt slightly on balance for rules obnovel rules, this result is based on a rather small sample.
served more than once in training, but the effect was tiny.

All these differences are slightly exaggerated if one com9 Discussion

pares the transformation model directly with the TreeTpis paper has presented a nontrivial way to reparameter-
bank/bigram model, without averaging. ize a PCFG in terms of “deep” parameters representing
The transformation model was designed to use edifansformations and exceptions. A linguistically sensible
operations in order to generalize appropriately from &yjor was natural to define over these deep parameters.
word’s observed frames to new frames that are likely t0 Famous examples of “deep reparameterization” are the
appear with that word in test data. To directly test thgqrier transform in speech recognition and the SVD
model's success at such generalization, we comparedyifnsform for Latent Semantic Analysis in IR. Like our
to the bigram model on a pseudo-disambiguation task. technique, they are intended to reveal significant structure
Each instance of the task consisted of a pair of rulegyough the leading parameters while relegating noise and
from test data, expressed as (word, frame) p@ifs f1)  exceptions to minor parameters. Such representations
and(ws, f2), such thatf; and f, are “novel” frames that ——
dldEr;c():tha&%%agl I\?v;rsalt?]lgr? gs&zéwggggoh\?ﬁﬂvﬁr?ﬁ d bothw, andw; were novel headwords. (The 62 rules included
: 11 with novel headwords.) In such cases, neither the bigram nor

f2 with wo, or vice-versa? In other words, which is big-the transformation model has any basis for making its decision:
ger,p(f1 | w1) - p(fa | wa) orp(fa | wi) - p(f1 | we)? the probabilities being compared will necessarily be equal.

13An obvious tie is an instance wheg = f», or where



make it easier to model the similarity or probability of theestimation (Eisner, 2002b). We are strongly interested in

objects at hand (waveforms, documents, or grammars).improving the speed of such methods and their ability to
Beyond the fact that it shows at least a good perplexavoid local maxima, which are currently the major diffi-

ity improvement (it has not yet been applied to a reatulty with our system, as they are for many unsupervised

task), an exciting “big idea” aspect of this work is itslearning techniques. We expect to further pursue trans-

flexibility in defining linguistically sensible priors over formation models (and simpler variants that are easier to

grammars. Our reparameterization is made with refeestimate) within this flexible finite-state framework.

ence to a user-designed transformation graph (Figure 1).the interested reader is encouraged to look at (Eisner,

The_graph need not_be confined to edit distance transfonOl) for a much more careful and wide-ranging discus-

mations, or to the simple features of Table 2 (used heigo, of transformation models, their algorithms, and their

for comparability with the Markov models), which con- g |ation to linguistic theory, statistics, and parsing. Chap-

dition a transformation’s probability docal context. ter 1 provides a good overview. For a brief article high-
In principle, the approach could be used to capturfgnting the connection to linguistics, see (Eisner, 2002a).

a great many linguistic phenomena. Figure 1 could be

extended with more ambitious transformations, such as

gapping, gap-threading, and passivization. The flat ruidseferences

could be annotated with internal structure (as in TAG) angiyan Alshawi. 1996. Head automata for speech translation.

thematic roles. Finally, the arcs could bear further fea- In Proceedings of ICSLRPhiladelphia, PA.

tures. For example, the probability of unaccusative move- Briscoe and A. Copestake. 1999. Lexical rule§ in constraint-

ment Gomeone sak he boat he boat sarfshould de- g GeSed SrAMMACompUtional Lnguistics(t)487. 526,

pend on whether the headword is a change-of-state verb. mars and head-driven phrase structure grammars with lexical

Indeed, Figure 1 can be converted to any lexicalized rules. Computational Linguisticsl7(3):301-313.

theory of grammar, such as categorial grammar, TAG(?lenn Carrpll a}nd Mats Rooth. 1998_. Valence induction with a
LFG, HPSG, or Minimalism. The vertices represent lexg, a0 excalized PCEG, IAroceedings of EMALP
’ ’ : p Eugene Charniak. 1997. Statistical parsing with a context-free

ical entries and the arcs represent probabilistic lexical re- grammar and word statistics. Broc. of AAA] 598—-603.
dundancy rules or metarules (see footnote 8). The transtgene Charniak. 2000. A maximum-entropy inspired parser.

; ; _ In Proceedings of NAACL
fprmatlon model apprpach is therefore a full StOCh.asStanley Chen and Joshua Goodman. 1996. An empirical study
tic treatment of lexicalized syntax— apparently the first ot smoothing techniques. Rroceedings of ACL
to treat lexical redundancy rules, although (Briscoe anfltanley F. Chen and Ronald Rosenfeld. 1999. A Gaussian prior
Copestake, 1999) give axd hocapproach. See (Eisner, for smoothing maximum entropy models. Technical Report

B ; ; CMU-CS-99-108, Carnegie Mellon University, February.
200]?’ Eisner, 2902"") for more dISCUSSIO,n', Stanley Chen. 199@uilding Probabilistic Models for Natural
It is worthwhile to compare the statistical approach | anguage Ph.D. thesis, Harvard University.

here with some other approaches: Michael J. Collins. 1997. Three generative, lexicalised models
for statistical parsing. IRProceedings of ACL/EACL16-23.
e Transformation models are similar to graphical mod<arl De Marcken. 1996Unsupervised Language Acquisition

. . . Ph.D. thesis, MIT.
gls. .they allow similar patter'ns of deductive and abqucjason Eisner. 1996. Three new probabilistic models for depen-
tive |nference from Observatlons. HOWEVEI’, the vertices dency parsing: An exp|0-ratiomroc_ Of COL|NG 340_345
of a transformation graph do not represent different ranlason Eisner. 2005moothing a Probabilistic Lexicon via Syn-
dom variables, but rather mutually exclusive values of thﬁatactlc TransformationsPh.D. thesis, Univ. of Pennsylvania.

d iabl h babiliti to1 son Eisner. 2002a. Discovering syntactic deep structure via
Same random variable, whose probabiliues sum 1o 1. Bayesian statisticCognitive Science26(3), May.

¢ Transformation models incorporate conditional log-Jason Eisner. 2002b. Parameter estimation for probabilistic
linear (maximum entropy) models. As an alternative finite-state transducers. Rroceedings of the 40th ACL

. . e . P. Giinwald. 1996. A minimum description length approach
one could directly build a conditional log-linear model grammar inference. In S. Wermter et al., e@mbolic,

of p(RHS | LHS). However, such a model would learn  Connectionist and Statistical Approaches to Learning for
probabilities, not relationships. A feature weight would NLP, no. 1040 in Lecture Notes in Al, pages 203-216.

not really model the strength of the relationship betweeliark Johnson. 1998. PCFG models of linguistic tree represen-
two framese, ¢’ that share that feature. It would only in- tations. Computational Linguistics24(4):613-632.
WO € . y Beth Levin. 1993.English Verb Classes and Alternations: A

fluence both frames’ probabilities. If the probabilityof  Preliminary InvestigationUniversity of Chicago Press.
were altered by somenrelatedfactor (e.g., an exception M. Marcus, B. Santorini, and M.A. Marcinkiewicz. 1993.

weight), then the probability af would not respond. Building a large annotqted corpus of English: The Penn Tree-
ght) P y P bank. Computational Linguistigsl9(2):313-330.

e A transformation model can be regarded as a probailes Osborne and Ted Briscoe. 1997. Learning stochastic cat-

bilistic FSA that consists mostly eftransitions. (Rules  egorial grammars. IRroceedings of CONLI80-87. ACL.

are only emitted on the arcs toAT.) This perspective A. Stolcke and S.M. Or_nohundro. 1994_1. Inducing probabilistic
. - grammars by Bayesian model merging.FAroc. of ICGL

allows use of generic methods for finite-state parameter



