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Abstract

Most machinelearningsolutionsto noun
phrasecoreferenceresolution recast the
problemas a classificationtask. We ex-
aminethreepotentialproblemswith this
reformulation,namely, skewed classdis-
tributions,theinclusionof “hard” training
instances,and the loss of transitivity in-
herentin theoriginal coreferencerelation.
We show how theseproblemscanbehan-
dled via intelligent sampleselectionand
error-drivenpruningof classificationrule-
sets.Theresultingsystemachievesan F-
measureof 69.5 and 63.4 on the MUC-
6 andMUC-7 coreferenceresolutiondata
sets, respectively, surpassingthe perfor-
manceof the best MUC-6 and MUC-7
coreferencesystems. In particular, the
systemoutperformsthe best-performing
learning-basedcoreferencesystemtodate.

1 Intr oduction

Noun phrasecoreferenceresolution refers to the
problemof determiningwhich nounphrases(NPs)
refer to eachreal-worldentity mentionedin a doc-
ument. Machinelearningapproachesto this prob-
lem have beenreasonablysuccessful,operatingpri-
marily by recastingthe problemasa classification
task (e.g.Aone andBennett(1995),McCarthyand
Lehnert(1995),Soonet al. (2001)).Specifically, an
inductivelearningalgorithmis usedto trainaclassi-
fier thatdecideswhetheror not two NPsin a docu-

mentarecoreferent.Trainingdataaretypically cre-
atedby relyingoncoreferencechainsfrom thetrain-
ing documents:training instancesaregeneratedby
pairingeachNP with eachof its precedingNPs;in-
stancesarelabeledaspositiveif the two NPsarein
thesamecoreferencechain,andlabeledasnegative
otherwise.1

A separateclusteringmechanismthencoordinates
thepossiblycontradictorypairwisecoreferenceclas-
sificationdecisionsandconstructsa partitionon the
setof NPswith oneclusterfor eachsetof corefer-
entNPs.Although,in principle,any clusteringalgo-
rithm canbeused,mostpreviouswork usesasingle-
link clusteringalgorithmto imposecoreferencepar-
titions.2 An implicit assumptionin thechoiceof the
single-link clusteringalgorithm is that coreference
resolutionis viewedasanaphoraresolution,i.e. the
goal during clusteringis to find an antecedentfor
eachanaphoricNP in a document.3

Three intrinsic propertiesof coreference4, how-
ever, make the formulation of the problem as a
classification-basedsingle-link clustering task po-
tentiallyundesirable:

Coreference is a rar e relation. That is, most
NP pairs in a documentare not coreferent. Con-

1Two NPsarein the samecoreferencechainif andonly if
they arecoreferent.

2One exceptionis Kehler’s work on probabilisticcorefer-
ence(Kehler, 1997), in which he appliesDempster’s Rule of
Combination(Dempster, 1968)to combineall pairwiseproba-
bilities of coreferenceto form a partition.

3In this paper, we consideranNP anaphoricif it is partof a
coreferencechainbut is not theheadof thechain.

4Here,we usethetermcoreferencelooselyto referto either
theproblemor thebinaryrelationdefinedon a setof NPs.The
particularchoiceshouldbeclearfrom thecontext.
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sequently, generatingtraining instancesby pairing
each NP with each of its precedingNPs creates
highly skewedclassdistributions,in which thenum-
ber of positive instancesis overwhelmedby the
numberof negativeinstances.For example,thestan-
dardMUC-6 andMUC-7 (1995;1998)coreference
datasetscontainonly 2% positive instances.Un-
fortunately, learningin thepresenceof suchskewed
classdistributionsremainsanopenareaof research
in themachinelearningcommunity(e.g.Pazzaniet
al. (1994),Fawcett(1996),CardieandHowe(1997),
KubatandMatwin (1997)).

Coreferenceisa discourse-levelproblemwith dif-
ferent solutions for different types of NPs. The
interpretationof apronoun,for example,maybede-
pendentonly onits closestantecedentandnotonthe
restof the membersof thesamecoreferencechain.
Propernameresolution,on the otherhand,may be
betterserved by ignoring locality constraintsalto-
getherand relying on string-matchingor more so-
phisticatedaliasingtechniques.Consequently, gen-
eratingpositiveinstancesfrom all pairsof NPsfrom
thesamecoreferencechaincanpotentiallymakethe
learningtaskharder:all but a few coreferencelinks
derived from any chain might be hard to identify
basedon theavailablecontextual cues.

Coreferenceis an equivalencerelation. Recast-
ing theproblemasaclassificationtaskprecludesen-
forcementof the transitivity constraint.After train-
ing, for example,theclassifiermight determinethat
A is coreferentwith B, andB with C, but thatA and
C arenot coreferent.Hence,the clusteringmecha-
nism is neededto coordinatethesepossiblycontra-
dictorypairwiseclassifications.In addition,because
thecoreferenceclassifiersaretrainedindependentof
theclusteringalgorithmto beused,improvementsin
classificationaccuracy donotguaranteecorrespond-
ing improvementsin clustering-level accuracy, i.e.
overall performanceon the coreferenceresolution
taskmightnot improve.

This paperexamineseachof the above issues.
First, to addressthe problemof skewed classdis-
tributions, we apply a techniquefor negative in-
stanceselectionsimilar to thatproposedin Soonet
al. (2001).In contrastto resultsreportedthere,how-
ever, we show empirically that systemperformance
increasesnoticeablyin responsetonegativeexample

selection,with increasesin F-measureof 3-5%.
Second,in an attemptto avoid the inclusion of

“hard” traininginstances,wepresentacorpus-based
methodfor implicit selectionof positive instances.
Theapproachis a fully automatedvariantof theex-
ampleselectionalgorithmintroducedin Harabagiu
et al. (2001). With positive exampleselection,sys-
tem performance(F-measure)again increases,by
12-14%.

Finally, to moretightly tie theclassification-and
clustering-level coreferencedecisions,we propose
an error-driven rule pruning algorithm that opti-
mizesthecoreferenceclassifierrulesetwith respect
to theclustering-level coreferencescoringfunction.
Overall, the use of pruning boostssystemperfor-
mancefrom anF-measureof 69.3to 69.5,andfrom
57.2 to 63.4 for the MUC-6 andMUC-7 datasets,
respectively, enablingthesystemto achieve perfor-
mancethatsurpassesthatof thebestMUC corefer-
encesystemsby 4.6% and1.6%. In particular, the
systemoutperformsthe best-performinglearning-
basedcoreferencesystem(Soon et al., 2001) by
6.9%and3.0%.

The remainderof the paperis organizedas fol-
lows. In sections2 and3, we presentthe machine
learningframework underlyingthebaselinecorefer-
encesystemandexaminetheeffectof negativesam-
ple selection. Section4 presentsour corpus-based
algorithmfor selectionof positiveinstances.Section
5 describesand evaluatesthe error-driven pruning
algorithm.We concludewith futurework in section
6.

2 The Machine Learning Framework for
CoreferenceResolution

Our machinelearning framework for coreference
resolutionis astandardcombinationof classification
andclustering,asdescribedabove.

Creatingan instance. An instancein ourmachine
learningframework is a descriptionof two NPsin a
document.More formally, let NP��� bethe � th NP in
document� . An instanceformedfrom NP� � andNP� �
is denotedby 	�

��������� ��������� . A valid instanceis an
instance	 

��� ��� � ��� ��� � suchthat NP� � precedesNP� � .5

Following previouswork (AoneandBennett(1995),
5By definition, exactly � � valid instancescan be created

from � NPsin a givendocument.



Soonetal. (2001)),weassumethroughoutthepaper
thatonly valid instanceswill begeneratedandused
for trainingandtesting.Eachinstanceconsistsof 25
features,which aredescribedin Table1.6 Theclas-
sificationassociatedwith a training instanceis one
of COREFERENT or NOT COREFERENT depending
on whethertheNPsco-referin theassociatedtrain-
ing text.7

Building an NP coreference classifier. We use
RIPPER(Cohen,1995),an informationgain-based
propositionalrule learningsystem,to train a classi-
fier that, given a test instance	�

��� ����� ��������� , decides
whetheror not NP� � andNP� � arecoreferent.Specifi-
cally, RIPPERsequentiallycoversthepositivetrain-
ing instancesandinducesa rulesetthat determines
when two NPs are coreferent. When noneof the
rulesin therulesetis applicableto agivenNPpair, a
defaultrule that classifiesthepair asnot coreferent
is automaticallyinvoked.Theoutputof theclassifier
is eitherCOREFERENT or NOT COREFERENT along
with a numberbetween0 and 1 that indicatesthe
confidenceof theclassification.

Applying the classifier to create coreference
chains. After training,theresultingrulesetis used
by a best-firstclusteringalgorithmto imposea par-
titioning on all NPs in the test texts, creatingone
cluster for eachset of coreferentNPs. Texts are
processedfrom left to right. EachNP encountered,
NP� � , is comparedin turnto eachprecedingNP, NP� � ,
from right to left. For eachpair, a test instanceis
createdas during training and is presentedto the
coreferenceclassifier. TheNPwith thehighestcon-
fidencevalueamongtheprecedingNPsthatareclas-
sifiedasbeingcoreferentwith NP� � is selectedasthe
antecedentof NP� � ; otherwise,no antecedentis se-
lectedfor NP� � .

3 NegativeSampleSelection

As noted above, skewed class distributions arise
whengeneratingall valid instancesfrom the train-
ing texts. A numberof methodsfor handlingskewed
distributions have been proposedin the machine
learningliterature,mostof which modify thelearn-

6SeeNg andCardie(2002) for a detaileddescriptionof the
features.

7In all of the work presentedhere,NPsareidentified,and
featurevaluescomputedentirelyautomatically.

Algorithm NEG-SELECT(NEG:setof all possible
negative instances)

for 	!
"���#�$��� ���%�����'& NEG do
if NP� � is anaphoricthen

if NP� � precedes( (NP� � ) then
NEG := NEG )#*�	!
"���%����� ���%�����,+

else
NEG:= NEG )#*!	�

��� �$��� ���%������+

return NEG

Figure1: TheNEG-SELECTalgorithm

ing algorithmto incorporatea lossfunction with a
muchlargerpenaltyfor minorityclasserrorsthanfor
instancesfrom themajorityclasses(e.g.Gordonand
Perlis(1989),Pazzaniet al. (1994)).We investigate
herea differentapproachto handlingskewed class
distributions— negative sampleselection,i.e. the
selectionof a smallersubsetof negative instances
from the setof availablenegative instances.In the
caseof NP coreference,we hypothesizethat reduc-
ing the numberof negative instanceswill improve
recall but potentially reduceprecision: intuitively,
theexistenceof fewer negative instancesshouldal-
low RIPPERto moreliberally inducepositiverules.
We proposea methodfor negative sampleselection
that,for eachanaphoricNP, NP� � , retainsonly those
negative instancesfor non-coreferentNPs that lie
betweenNP� � andits farthest precedingantecedent,
( (NP� � ). The algorithmfor negative sampleselec-
tion, NEG-SELECT, is shown in Figure 1. NEG-
SELECTtakesasinput the setof all possibleneg-
ative instancesin the training texts, i.e. the set of
valid instances	!
"���#�$��� ���%����� suchthat NP� � andNP� �
arenot in thesamecoreferencechain.

Theintuition behindthisapproachis verysimple.
Let - (NP� � ) be the setof precedingantecedentsof
NP� � , and . (NP� � ,NP� � ) be thesetconsistingof NPs
NP� � , NP
 �0/21 � � ,3%343 , NP� � . Recall that the goal dur-
ing clusteringis to compute,for eachNP NP� � , the
set - (NP� � ) from which the elementwith the high-
estconfidenceis selectedastheantecedentof NP� � .
Since(1) - (NP� � ) isasubsetof . ( ( (NP� � ),NP� � )8 and

8We define 5 ( 6 (NP��� ),NP��� ) to be the emptyset if 6 (NP��� )
doesnotexist (i.e. NP��� is notanaphoric).



FeatureType Feature Description
Lexical PRO STR C if bothNPsarepronominalandarethesamestring;elseI.

PN STR C if bothNPsarepropernamesandarethesamestring;elseI.
SOON STR NONPRO C if bothNPsarenon-pronominalandthestringof NP��� matchesthatof NP��� ;

elseI.
Grammatical PRONOUN 1 Y if NP��� is a pronoun;elseN.

PRONOUN 2 Y if NP��� is a pronoun;elseN.
DEMONSTRATIVE 2 Y if NP��� startswith a demonstrative suchas“this,” “that,” “these,” or “those;”

elseN.
BOTH PROPER NOUNS C if bothNPsarepropernames;NA if exactly oneNP is a propername;elseI.

NUMBER C if theNP pair agreein number;I if they disagree;NA if numberinformation
for oneor bothNPscannotbedetermined.

GENDER C if theNP pair agreein gender;I if they disagree;NA if genderinformation
for oneor bothNPscannotbedetermined.

ANIMACY C if theNPsmatchin animacy; elseI.
APPOSITIVE C if theNPsarein anappositiverelationship;elseI.
PREDNOM C if theNPsform apredicatenominalconstruction;elseI.
BINDING I if theNPsviolateconditionsB or C of theBindingTheory;elseC.

CONTRAINDICES I if the NPs cannotbe co-indexed basedon simple heuristics; else C. For
instance,two non-pronominalNPs separatedby a prepositioncannotbe co-
indexed.

SPAN I if oneNPspanstheother;elseC.
MAXIMALNP I if bothNPshavethesamemaximalNPprojection;elseC.

SYNTAX I if theNPshaveincompatiblevaluesfor theBINDING,CONTRAINDICES, SPAN
or MAXIMALNPconstraints;elseC.

INDEFINITE I if NP��� is anindefiniteandnotappositive;elseC.
PRONOUN I if NP��� is a pronounandNP��� is not; elseC.

EMBEDDED 1 Y if NP��� is anembeddednoun;elseN.
TITLE I if oneor bothof theNPsis a title; elseC.

Semantic WNCLASS C if theNPshave thesameWordNetsemanticclass;I if they don’t; NA if the
semanticclassinformationfor oneor bothNPscannotbedetermined.

ALIAS C if oneNP is analiasof theother;elseI.
Positional SENTNUM DistancebetweentheNPsin termsof thenumberof sentences.

Others PRO RESOLVE C if NP��� is a pronounandNP�$� is its antecedentaccordingto a naive pronoun
resolutionalgorithm;elseI.

Table1: FeatureSetfor theCoreferenceSystem.Thefeaturesetcontainsrelationalandnon-relationalfeatures.Non-

relationalfeaturestestsomepropertyP of oneof the NPsunderconsiderationandtakeon a valueof YES or NO dependingon

whetherP holds.RelationalfeaturestestwhethersomepropertyP holdsfor theNP pair underconsiderationandindicatewhether

theNPsareCOMPATIBLE or I NCOMPATIBLE w.r.t. P; a valueof NOT APPLICABLE is usedwhenpropertyPdoesnotapply.

(2) NP� � is comparedto eachprecedingNP from
right to left by the clusteringalgorithm, it follows
that the set of negative instanceswhoseclassifica-
tions the classifierneedsto determinein order to
compute- (NP� � ) is asupersetof thesetof instances7
(NP� � ) formedby pairingNP� � with eachof its non-

coreferentprecedingNPsin . ( ( (NP� � ),NP� � ). Con-
sequently, � � � 7

(NP� � ) is theminimal setof (nega-
tive) instanceswhoseclassificationswill berequired
duringclustering.In principle,to performtheclassi-
ficationsaccurately, theclassifierneedsto betrained
on thecorrespondingsetof negative instancesfrom
the training set,which is � � � 7

(NP� � ), whereNP� �
is now the 8 th NP in training document� . NEG-
SELECTis designedessentiallyto computethisset.
Next, we examinetheeffectsof this minimalistap-
proachto negativesampleselection.

Evaluation. We evaluatethe coreferencesystem
with negative sampleselectionon the MUC-6 and
MUC-7 coreferencedata sets in eachcase,train-
ing the coreferenceclassifieron the 30 “dry run”
texts, andapplyingthecoreferenceresolutionalgo-
rithm on the 20–30“formal evaluation” texts. Re-
sults areshown in rows 1 and2 of Table 2 where
performanceis reportedin termsof recall,precision,
andF-measureusingthemodel-theoreticMUC scor-
ing program(Vilain et al., 1995).TheBaselinesys-
tem employsno sampleselection,i.e. all available
training examplesareused. Row 2 shows the per-
formanceof the Baselineafter incorporatingNEG-
SELECT. With negative sampleselection,the per-
centageof positive instancesrisesfrom 2% to 8%
for theMUC-6 datasetandfrom 2% to 7% for the
MUC-7 dataset. For both datasets,we seestatis-
tically significantincreasesin recallandstatistically



significant,but muchlargerdropsin precision.9 The
resultingF-measurescores,however, increasenon-
trivially from 52.4 to 55.2 (for MUC-6), and from
41.3to 46.0(for MUC-7).10

4 PositiveSampleSelection

Since not all of the coreferencerelationshipsde-
rived from coreferencechainsare equally easyto
identify, trainingaclassifierusingall possiblecoref-
erencerelationshipscan potentially lead to the in-
duction of inaccuraterules. Given the observa-
tion that one antecedentis sufficient to resolve an
anaphor, it maybedesirableto learnonly from easy
positive instances. Similar observationsare made
by Harabagiuet al. (2001),who point out that in-
telligent selectionof positive instancescan poten-
tially minimize the amountof knowledgerequired
to performcoreferenceresolutionaccurately. They
assumethat the easiesttypes of coreferencerela-
tionshipsto resolve are thosethat occur with high
frequenciesin the data. Consequently, they mine
by hand three sets of coreferencerules for cov-
ering positive instancesfrom the training data by
finding the coreferenceknowledgesatisfiedby the
largestnumberof anaphor-antecedentpairs. While
the Harabagiuet al. algorithm attemptsto mine
easycoreferencerules from the databy hand,nei-
ther the rule creationprocessnor stoppingcondi-
tions are preciselydefined. In addition, a lot of
humanintervention is requiredto derive the rules.
In this section,we describean automaticpositive
sampleselectionalgorithmthatcoarselymimicsthe
Harabagiuetal. algorithmby findingaconfidentan-
tecedentfor eachanaphor. Overall, our goal is to
avoid theinclusionof hardtraininginstancesby au-
tomating the processof deriving easycoreference
rulesfrom thedata.

The Algorithm. Thepositivesampleselectional-
gorithm,POS-SELECT, is shown in Figure2. It as-
sumesthe existenceof a rule learner, L, that pro-
ducesanorderedsetof positiverules.POS-SELECT

9Chi-square statistical significance tests are applied to
changesin recall and precisionthroughoutthe paper. Unless
otherwisenoted, reporteddifferencesare at the 0.05 level or
higher. Thechi-squaretestis notapplicableto F-measure.

10The F-measurescorecomputedby the MUC scoringpro-
gramis theharmonicmeanof recallandprecision.

Algorithm POS-SELECT(L:positiverule learner,
T: setof traininginstances)

FinalRuleSet:= 9 ;
AnaphorSet:= 9 ;
BestRule:= NIL;
repeat

BestRule:= bestruleamongtherankedset
of positiverulesinducedon T usingL

FinalRuleSet:= FinalRuleSet: BestRule
// collectanaphorsfrominstancesthat
// are correctlycoveredbyBestRule
for 	�

��� ����� ���%�����;& T do

if 	!
"��� ���<� ��������� is coveredby BestRuleand
class(	!
"���#�$��� ��� ����� ) = COREFERENTthen

AnaphorSet:= AnaphorSet:>* NP� � +
// removeinstancesassociatedwith the
// anaphorscoveredbyBestRule
for 	 

��� ��� � ��� ��� � & T do

if NP� �?& AnaphorSetthen
T @A= T )B*C	 
"��������� ���%���<� +

until L cannotinduceany rule for thepositives.
return FinalRuleSet

Figure2: ThePOS-SELECTalgorithm

first usesL to inducea ruleseton the training in-
stancesandpicksthefirst rule from theruleset.For
any traininginstance	 
"��� �$� � ��� ��� � correctlycovered
by this rule, an antecedentNP� � has been identi-
fied for the anaphorNP� � . As a result,all (positive
and negative) training instancesformed with NP� �
as the anaphorare no longer neededand are sub-
sequentlyremoved from the training data.11 The
processis repeateduntil L cannotinducea rule to
cover the remainingpositive instances.The output
of POS-SELECTis a setof positive rules selected
duringeachiterationof thealgorithm.Hence,posi-
tivesampleselectionin POS-SELECTis implicit in
thesensethat it is embeddedwithin the rule induc-
tion process.

Evaluation. Resultsareshown in rows 3 and4 of
Table 2. As in the previous experiments,the rule
learneris RIPPER.We run the systemtwice, first

11We speculatethat retaining the negative instanceswould
hurt performance,but this remainsto beverified.



Experiments Algorithmsused MUC-6 MUC-7
R P F R P F

Baseline — 40.7 73.5 52.4 27.2 86.3 41.3
Neg-Only NEG-SELECT 46.5 67.8 55.2 37.4 59.7 46.0
Pos-Only POS-SELECT 53.1 80.8 64.1 41.1 78.0 53.8
Combined NEG-SELECT+POS-SELECT 63.4 76.3 69.3 59.5 55.1 57.2
Pruning NEG-SELECT+POS-SELECT+RULE-SELECT 63.3 76.9 69.5 54.2 76.3 63.4
MoreTraining NEG-SELECT+POS-SELECT 64.8 70.6 67.6 60.0 55.7 57.8

Table2: Effectsof sampleselectionanderror-drivenpruning.

with POS-SELECTonly and thenwith both POS-
SELECT and NEG-SELECT. With POS-SELECT
only, the systemachieves an F-measureof 64.1
(for MUC-6) and 53.8 (for MUC-7). When POS-
SELECTandNEG-SELECTareusedin combina-
tion, however, thesystemachievesanF-measureof
69.3(for MUC-6) and57.2(for MUC-7).

Discussion. The experimentalresultsare largely
consistentwith ourhypothesis.Systemperformance
improves dramaticallywith positive sampleselec-
tion using POS-SELECTboth in the absenceand
presenceof negativesampleselection.Withoutneg-
ative sampleselection,F-measureincreasesfrom
52.4to 64.1(for MUC-6), andfrom 41.3to 53.8(for
MUC-7). Similarly, with negativesampleselection,
F-measureincreasesfrom 55.2to 69.3(for MUC-6),
andfrom 46.0to 57.2(for MUC-7). In addition,our
resultsindicatethatapplyingbothnegativeandpos-
itive sampleselectionleadsto betterperformance
than applying positive sampleselectionalone: F-
measureincreasesfrom 64.1to 69.3,andfrom 53.8
to 57.2for theMUC-6 andMUC-7 datasets,respec-
tively. Nevertheless,reducingthe numberof neg-
ative instances(via negative sampleselection)im-
proves recall but damagesprecision: we seesta-
tistically significantgainsin recall andstatistically
significantdropsin precisionfor both datasets. In
particular, precisiondropsprecipitouslyfrom 78.0
to 55.1 for the MUC-7 dataset. We hypothesize
thatPOS-SELECTdoesnotguaranteethathardpos-
itive instanceswill be avoided and that the inclu-
sion of thesehard instancesis responsiblefor the
poorerprecisionof thesystem.Anaphorsthatdonot
have easyantecedentscannever be removed auto-
maticallyvia theinductionof new rulesusingPOS-
SELECT. In fact,RIPPERwill possiblyinducerules
tohandlethesehardinstancesaslongassuchkind of
anaphorsoccursufficiently frequentlyin thedataset

relative to the numberof negative instances.12 Al-
thoughit might be beneficialto acquiretheserules
at the classificationlevel (accordingto the learning
algorithm), they can be detrimentalto systemper-
formanceat the clustering level, especiallyif the
rules cover a large numberof exampleswith a lot
of exceptions.Consequently, it is necessaryto know
which rulesareworthy of keepingat the clustering
level andnot theclassificationlevel. Wewill address
this issuein thenext section.

5 Pruning the CoreferenceRuleset

As notedin the introduction,machinelearningap-
proachesto coreferenceresolutionthat rely only on
pairwiseNP coreferenceclassifierswill not neces-
sarily enforcethe transitivity constraintinherentin
the coreferencerelation. Although approachesto
coreferenceresolutionthat rely only on clustering
could easily enforcetransitivity (as in Cardieand
Wagstaff (1999)), they have not performedaswell
asstate-of-the-artapproachesto coreference.In this
section,weproposeamethodfor resolvingthiscon-
flict: we introducean error-driven rule pruningal-
gorithm that considersrules inducedby the coref-
erenceclassifierand discardsthosethat causethe
rulesetto performpoorly with respectto theglobal,
clustering-level coreferencescoringfunction.

The Algorithm. The error-driven pruning algo-
rithm is inspired by the backwardelimination al-
gorithm commonlyusedfor featureselection(see
Blum andLangley (1997))and is shown in Figure
3. Thealgorithm,RULE-SELECT, takesasinput a
rulesetlearnedfrom a training corpusfor perform-
ing coreferenceresolution,a pruning corpus(dis-
joint fromthetrainingcorpus),andaclustering-level

12More precisely, RIPPERwill inducea new rule if the rule
is morethan50%accurateandtheresultingdescriptionlength
is fewer than64 bits larger thanthesmallestdescriptionlength
obtainedsofar.



Algorithm RULE-SELECT(R:ruleset,
P:pruningcorpus,
S:scoringfunction)

BestScore@D= scoreof thecoreferencesystem
usingR on P w.r.t. S;

r @D= NIL;
repeat

r := therule in R whoseremoval yieldsa
rulesetwith which thecoreferencesystem
achievesthebestscoreb onP w.r.t. S.

if b E BestScorethen
BestScore@A= b;
R @A= R )B* r +

elsebreak
while true
return R

Figure3: TheRULE-SELECTalgorithm

coreferencescoringfunction that is thesameasthe
onebeingusedfor evaluatingthefinal outputof the
system.13 At eachiteration,RULE-SELECTgreed-
ily discardsthe rule whoseremoval yields a rule-
setwith which thecoreferencesystemperformsthe
best(with respectto the coreferencescoringfunc-
tion) on thepruningcorpus.As a hill-climbing pro-
cedure,the algorithm terminateswhen removal of
any of the rulesin the rulesetfails to improve per-
formance.In contrastto mostexistingalgorithmsfor
coreferenceresolution,RULE-SELECTestablishes
a tighterconnectionbetweentheclassification-and
clustering-level decisionsfor coreferenceresolution
and ensuresthat systemperformanceis optimized
with respectto thecoreferencescoringfunction.We
hypothesizethatthisoptimizationof thecoreference
classifierwill improve performanceof the resulting
coreferencesystem,in particularby increasingits
precision.

Evaluation and Discussion. Resultsareshown in
row 5 of Table 2. In the Pruningexperiment,the
MUC-7 formalevaluationcorpusis thepruningcor-
pus for the MUC-6 run; the MUC-6 formal evalu-
ation corpusis the pruning corpusfor the MUC-7

13Importantly, RULE-SELECTassumesnoknowledgeof the
innerworkingsof thescoringfunction.

run. In addition, the quantity that RULE-SELECT
optimizesfor a given rulesetis the F-measurere-
turnedby theMUC scoringfunction.14 In compar-
ison to the Combinedresults,we seean improve-
mentof 0.2%(for MUC-6) and6.2%(for MUC-7)
in F-measure.In particular, we seestatisticallysig-
nificant gainsin precision(from 55.1 to 73.6) and
statisticallysignificant,but muchsmaller, dropsin
recall (from 59.5 to 54.2) for the MUC-7 dataset.
In general,our resultssupportthe hypothesisthat
rule pruningcanbeusedto improve systemperfor-
mance;moreover, the techniqueis especiallyeffec-
tive at enhancingtheprecisionof thesystem.How-
ever, performancegains may be negligible when
pruning is usedin systemswith high precision,as
canbeseenfrom theresultsfor theMUC-6 dataset.

To determinewhetherperformanceimprovements
are insteadattributable to the availability of addi-
tional “training” dataprovided by the pruningcor-
pus,we train a classifier(usingthe samesettingas
theCombinedexperiments)onboththetrainingand
thepruningcorpora.Theperformanceof thesystem
usingthis unprunedrulesetis shown in thelast row
of Table2. In comparisonto theCombinedresults,
F-measuredrops from 69.3 to 67.6 (for MUC-6),
andrisesfrom57.2and57.8(for MUC-7). Thesere-
sultsindicatethattheRULE-SELECTalgorithmhas
madeamoreeffectiveuseof theadditionaldatathan
the learningalgorithmwithout rule pruningby ex-
ploiting thefeedbackprovidedby thescoringfunc-
tion.

6 Conclusions

We have examinedthree problemswith recasting
noun phrasecoreferenceresolutionas a classifica-
tion task. To handletheseproblems,we presented
a minimalistnegative sampleselectionalgorithmto
reducethe skewnessof the classdistributions,and
anautomaticpositivesampleselectionalgorithmto
selecteasypositive instances.In addition,our ex-
perimentsindicatethatthepositivesampleselection
algorithmdoesnotguaranteethathardinstancescan
be entirely excluded. As a result,we proposedan
error-driven rule pruning algorithm that can effec-
tively enhancethe precisionof the systemby dis-

14RULE-SELECTcanbeusedin conjunctionwith anycoref-
erencescoringfunction. TheMUC scoreris chosenhereto fa-
cilitatecomparisonwith previousresults.



cardingrulesthatcausetherulesetto performpoorly
with respectto the coreferencescoring function.
The resultingsystemoutperformedthe bestMUC-
6 and MUC-7 coreferencesystemsas well as the
best-performinglearning-basedsystemon the cor-
respondingMUC datasets. Nevertheless,thereis
substantialroom for improvement. For example,it
is importantto know how sensitive systemperfor-
manceis with respectto thesizeof thepruningcor-
pus.In addition,althoughweuseRIPPERastheun-
derlying learningalgorithmin our coreferencesys-
tem,we expectthatthe techniquesdescribedin this
papercanbe usedin conjunctionwith other learn-
ing algorithms. We plan to explore this possibility
in futurework.
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