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Abstract

In this paper we evaluate a vari-
ety of knowledge souces and super-
vised leaming algarithms for word seng
disambguaton on SENSEVAL-2 and
SENSEVAL-1 data  Our knowledge
sour@s include the part-of-speech of
neighooring words, singe words in the
surraunding context, local collocations,
and syntadic relatons. The learring al-
gorithms evaluatedinclude Suppat Vec-
tor Machines (SVM), Naive Bayes, Ad-

aBoost,anddedsion tree algorithms. We
presatempirical resuls shaving therela-
tive contribution of the comporentknowl-

edge sour@s and the different leaming
algoiithms. In paricular, using all of
theseknowledgesoucesand SVM (i.e.,
a single learring algarithm) acheves ac-
curagy highe thanthe bestofficial scores
onboth SENSEVAL-2 andSENSEVAL -1

testdata.

1 Introduction

Naturallanguageis inherenty ambiguous. A word
can have multiple meaning (or sengs). Given an
occurenceof aword w in a natual languagetext,
the task of word sensedisanbiguaton (WSD) is to
detemine the correct senseof w in that context.
WSD is a fundamentalproblem of naturd language
processing For example,effective WSD is crucid
for high qualty machhnetrandation.
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Onecoud ervisagehbuilding a WSD sydem us-
ing hardcrafied rules or knowledge obtained from
linguists. Suchan appoachwould be highly labor-
intensive, with questonabk scahbility. Anotherap-
proachinvolvesthe useof dictionaryor thesaurusto
perfom WSD.

In this pape, we focuson a corpus-base, super-
visedleaming apprach.In this apprach,to disam-
biguate a word w, we first collect training texts in
which instancesof w occu. Eachocaurrene of w
is manudly taggel with the correct sense.We then
train a WSD classifier based on thesesampletexts,
suchthat the trained classfier is able to assignthe
seng of w in anew context.

Two WSD evaluation exercises, SENSEVAL-1
(Kilgarriff and Palmer 2000) and SENSEVAL-2
(Edmondsand Cotton 2001), were conducted in
1998 and 2001, respectively. The lexical sampe
task in these two SENSEVALSs focuses on evalu-
ating WSD sydemsin disambguatirg a sub%t of
nours, verbs, and adjectives, for which manualy
seng-taggdtraining datahave beencolleded.

In this pape, we conducta systemat evaluaion
of the various knowledgesouces and supevised
learring algarithms on the English lexical sampé
datasetsof bothSENSEVALs.

2 Reated Work

Thereis alarge body of prior researchon WSD.Due
to spacecongraints, we will only highlight prior re-
seart efforts thathave investigatel (1) contribution
of various knowledge souces,or (2) relative peifor-
manceof differentlearring algorithms.

Early reseach efforts on comparing different



learring algorithms (Mooney, 1996 Pederse and
Bruce, 1997) tendto basetheir comparson on only
oneword or atmostadozenwords.Ng (1997) com-
paredtwo learning algarithms, k-nearestneighbor
andNaive Bayes,on the DSO corpus (191 words).
Escudeo etal. (2000) evaluaedk-neaestneighbor,
Naive Bayes,Winnow-based andLazyBoosing al-
gorithms on the DSO corpus. The recen work of
Pederse (2001a) andZavrel etal. (2000 evaluated
avariety of learnngalgarithmsonthe SENSE/AL-

1 dataset. However, all of thesreseach effortscon-
centrate only on evaluating different leaming algo-
rithms, without systematically consderingtheir in-
teradion with knowledgesource.

Ng andLee (1996 reportedtherelative contribu-
tion of differentknowledgesouces,but ononly one
word “interest”. Stevensam andWilks (2001]) inves
tigated theinteractionof knowledgesouraes,suchas
part-of-speach, dictionary definition, subject codes,
etc. on WSD. However, they do not evaluate their
methodon acommonbendimarkdataset,andthere
is no exploration on the interection of knowledge
sourceswith different learring algorithms.

Participaing systens at SEN$EVAL-1 and
SENSEVAL-2 tendto repat accuacy usinga par-
ticular set of knowledge sources and somepartic-
ular learnng algoithm, without investigatng the
effect of varying knowledge souraes and learring
algarithms. In SENSEVAL-2, the various Duluth
systens (Pedersm, 2001b) attemptel to invesigate
whethe featuresor learnng algarithmsaremoreim-
portant. However, relaive contibution of knowl-
edgesourceswas not repoted and only two main
types of algarithms (Naive Bayesanddecisbntreg
weretesed.

In cortrast,in this paper we systenatically vary
both knowledge source and learning algarithms,
and invedigate the interaction betweenthem. We
alsobas our evaludion on both SENSEVAL-2 and
SENSEVAL-1 official test datasets,and compae
with the official scoresof partiapating systens.

3 Knowledge Sources

To disambguatea word ocaurrene w, we consder
four knowledge sour@slisted below Eachtraining
(or test)contect of w geneatesonetraining (or tes)
featue vecta.

3.1 Part-of-Speech (POS) of Neighboring
Words

We use7 featuesto encock this knowledge souce:
P_3,P 5, P_1, Py, P, P, P;,whereP_; (F,) isthe
POSof theith tokento theleft (right) of w, and R
is the POSof w. A token canbe aword or a punc
tuation symbd, and eachof thes neighboring to-
kensmustbe in the sameserntenceasw. We usea
sentecesegmenation program (ReynarandRatna-
parkhi, 1997) anda POStagger (Ratngarkh, 1996
to segmert the tokers surraunding w into senteres
andassign POStags to these tokers.

For example, to disambiguae the word
bars in the POS-taggedsenteice “Reid/NNP
saw/VBD me/PRP looking/VBG at/IN the/DT
ironNN barsNNS ./”, the POS featue vecta is
<IN,DT,NN,NNS,.,e,e > where ¢ derptes
the POStag of anull token

3.2 Single Wordsin the Surrounding Context

For this knowledgesoure, we consder all single
words (unigrams)in the surrownding context of w,
andthesewordscanbe in a differentsentecefrom
w. For eachtraining or testexample,the SENSE-
VAL datasetsprovide up to a few senteicesasthe
surraunding context. In the resuts reportedin this
pape, we consder all wordsin the providedcontext.

Specificaly, all tokensin the surroundng context
of w are corvertedto lower caseand replaed by
their morphdogical root forms. Tokenspresntin
a list of stop words or tokens that do not contain
atleag analphabetcharater (suchasnumbes and
punduation symbolg areremoved. All remairing
tokensfrom all training contexts provided for w are
gatheed. Eachremainng token ¢ contibutes one
featue. In atraining (or test) example,the featue
correspondng to t is setto 1 iff the context of w in
thattraining (or tes) examplecontinst.

We attemptel a simple featue selection methal
to invedigateif alearring algoithm perfomsbette
with or without feature selection. Thefeatue selee
tion methal employed hasone paraneter: M. A
featue ¢ is seletedif ¢ occus in someseng of w
M or moretimesin thetraining data This param-
eteris alsousedby (Ng andLee, 199%). We have
tried My = 3 andM, = 0 (i.e., nofeatue selecion)
in theresuts repatedin this paper



For example, if w is the word bars and the set
of seleced unigramsis {chocolate, iron, beer}, the
featuevecta for thesertence’Reid sawmelooking
attheironbars” is <0,1,0>.

3.3 Local Collocations

A locd collocation C; ; refersto the orderal se-
guerce of tokens in the local, narrowconiext of w.

Offsetsi andj dende the stating andendng posk

tion (relative to w) of the sequence wherea neg-
ative (posdtive) offset refers to a token to its left
(right). For example let w be the word bars in

the sentere “Reid sawmelooking at the iron bars
7 ThenC_q _; is theiron and C_; o is iron_._e,

wheree derotesa null token Like POS,a colloca-
tion doesnot cross sentenceboundary. To represent
this knowledgesoure of local collocatins, we ex-
tracted 11 featuies comrespomling to the following
collocations: 0_17_1, 01,1, 0_2’_2, C2,2, 0_2,_1,

0_1,1, 01,2, 0_3,_1, 0_2,1, C_l,g, andCLg. This

setof 11 featuresis the union of the collocation fea-
turesusal in Ng andLee (199%) andNg (1997).

To extrad the feature values of the collocation
featue C; ;, we first collect all possible collocation
strings (corvertedinto lower case)correspondng to
C;,; in all training contexts of w. Unlike the casefor
surraunding words, we do not remove stop words,
numbes, or puncuation symbds. Eachcollocation
string is a possible feature value Featurevalue se-
lection using M,, anal@ousto that usedto seled
surraunding words, can be optionally applied. If a
training (or test)context of w hascollocation ¢, and
c is aseletedfeaturevalue, thenthe G ; feature of
w hasvaluec. Otherwiseit hasthe value(, denot
ing the null string.

Note that eachcollocatin C; ; is repregntedby
onefeaturethatcanhave mary possiblefeatureval-
ues(thelocal collocationstrings),wherea eachdis-
tinct surraunding word is repregntedby onefeature
that takes binary values (indicating preseme or ab-
sene of that word). For example,if w is the word
bars andsupmsethe setof seled¢ed collocatinsfor
C_2,_1 is {a_chocdate, thewing theiron}, then
the feature value for collocationC_, _; in the sen-
tence“Reid sawmelooking at theiron bars ” is
the.iron.

1(a)attertion (noun)
1(b) He turned his attenfon to the workbench.
1(c) <turned VBD, active, left>

2(a)turned (verb)
2(b) He turned his attenton to theworkbench.
2(c) <he,attertion, PRR NN, VBD, active>

3(a)green(ad))
3(b) Themoderntramis a green machine.
3(c) <maching NN>

Table 1: Examplesof syntactic relations (assiming
no featuie selecton)

3.4 Syntactic Relations

We first parse the senencecontaning w with a sta-
tistical parser(Charni&, 2000). Theconsttuenttree
struduregengatedby Charriak’s parseris thencon
vertedinto a dependercy treein which every word
points to a paret headvord. For example,in the
senteice “Reid sawmelooking at theiron bars 7,
the word Reid points to the paren headvord saw
Similarly, the word me also points to the parer
headvord saw

We usedifferent types of synfactic relations, de-
pendng on the POSof w. If w is a noun, we use
four featues: its parent headvord h, the POSof A,
thevoiceof h (active, passive or () if hisnotaverb),
andthe relative position of A from w (whetker h is
to the left or right of w). If w is a verb, we usesix
featues:theneaestword! to theleft of w suc that
w is the parent headword of [, the nearest word r to
theright of w suchtha w is the parent headvord of
r, the POSof [, the POSof r, the POSof w, and
thevoice of w. If w is anadjedive, we usetwo fea-
tures its parert headword ~» andthe POSof h. We
also investigaed the effect of featue seletion on
syniactic-relation featuesthatarewords(i.e., POS
voice, andrelative podtion areexcluded).

Someexamplesareshovn in Tablel. EachPOS
noun verb, or adjective is illustratedby one exam-
ple. For eachexampk, (a) shovs w andits POS;(b)
shaws the senencewherew occuss; and (c) shovs
the featue vector corresporling to syntadic rela
tions.



4 Learning Algorithms

We evaluaed four supevised learring algotithms:
Suppot Vector Machines (SVM), AdaBoostwith
decison stumps(AdB), Naive Bayes(NB), andde-
cision trees(DT). All the experimental resuts re-
ported in this pape are obtaned using the imple-
mentaton of thesealgorithmsin WEkA (Wittenand
Frank, 2000). All learnng parameers usethe de-
fault valuesin WEKA unles otherwise stated

4.1 Support Vector Machines

The SVM (Vapnik 1995 performs optimization to
find a hypergane with the largest mamgin that sep-
arates training examplkes into two classs. A test
exampleis classfied depanding on the side of the
hypeplaneit liesin. Input feaurescanbe mappe
into high dimensonal spacebefare performing the
optimization and classification. A kemel function
(linear by defaut) canbe usedto reducethe compu
tational costof training andtesing in high dimen
sioral space If the training examples are norsep-
arabk, a regularization parameg¢r C' (= 1 by de-
fault) can be usedto control the trade-off betweea
achievinga large magin and a low training error.
In WEKA’s implemeration of SVM, eachnomind
featue with n possble values is corvertedinto n
binary (0 or 1) featues. If anomind feature takes
the ith featue value thenthe ith binary featue is
setto 1 andall the other binaryfeaturesaresetto 0.
We tried highe orde polynomial kerrels, but they
gave poarer resuts. Our reporedresuts in this pa-
perusedthelinear kernd.

4.2 AdaBoost

AdaBoost(Freurd andSchapie, 1996 is a methal
of training an ensemke of weakleamerssuchthat
the performanceof the whole enembleis highe
thanits consttuents. The basicideaof booding is
to give more weights to misclasified training ex-
amples forcing the new classfier to coneentrat on
thesehardio-classify examples A testexampleis
classfied by a weighted vote of all trained classt
fiers. We usethe deckion stump(dedsion treewith

only therootnode)astheweakleamerin AdaBoost.

WEKA implemerns AdaBoostM1. We used100 it-
eratonsin AdaBoo4 asit giveshighe accuacy than
thedefaut numbe of iterationsin WEkA (10).

4.3 Naive Bayes

The Naive Bayesclassfier (Dudaand Hart, 1973
assunesthefeaturesareindependen giventheclass.
During classfication, it choosesthe classwith the
highest pogerior probaility. The default settirg
usesLaplace (*add on€’) smoothng.

4.4 Decision Trees

The dedsion tree algorithm (Quinlan, 1993 parti-
tionsthetraining examplesusingthefeatue with the
highestinformationgain. It repeatsthis processre-
cursiwely for eachpartition until all examplesin eat
partition belory to oneclass.A testexampleis clas
sifiedby traversingthelearnal dedsiontree WEKA
implemens Quinlaris C4.5decison treealgolithm,
with pruning by default.

5 Evaluation Data Sets

In the SENSB/AL-2 English lexical sampletask,
participating sysemsare requred to disambiguat
73 wordsthat have their POSpredderminead. There
are8,611training instancesand4,328testinstarces
tagged with WORDNET senss. Our evaluation is
basel on all the official training and test data of
SENEVAL-2.

For SENSEVAL-1, we used the 36 trainable
words for our evaluation Thereare 13,84 train-
ing instances$ for thes trainable words, and 7,446
testinstarces.For SENEVAL-1, 4 trainablewords
belongto theindeterminatecategory, i.e.,the POSis
not provided. For thes words we first useda POS
tagger (Ratnagrkhi, 1996 to deteminethe corred
POS.

For a word w that may occur in phrasl word
form (eg, the verb “turn” and the phrasal form
“turn down”), we train a sefarateclassfier for eath
phrasal word form. During tesing, if w appersin
a phrasal word form, the classifier for that phrasal
word form is used Otherwis, the classfier for w is
used

6 Empirical Results

We ran the different learring algorthmsusing var
ious knowledge souices. Table 2 (Table 3) shavs
Weincluded718traininginstancegrom the HECTOR dic-

tionaryusedin SENSB/AL-1, togethewith 13,127trainingin-
stancedgrom thetraining corpussupgied.



Algorithm POS | SurroundingVords | Collocations | SyntacticRelations Combined

0] (i) (iii) (iv) V) (vi) (vii) (viil) = (ix) =

M>=3 M>=0 M>=3 | M>=0 | M>=3 M>=0 iHi+iv+vi | iHii+vtvii

SVM
- 1-perclass| 54.7 | 51.6 57.7 52.8 60.5 49.1 54.5 61.5 65.4
AdB
- normal 53.0| 51.9 52.5 52.5 53.2 52.4 51.2 54.6 53.6
- 1-perclass| 55.9 | 53.9 55.4 55.7 59.3 53.5 52.4 62.4 62.8
NB
- normal 58.0 | 55.8 52.5 54.5 39.5 54.1 54.0 61.6 53.4
- 1-perclass| 57.6 | 56.2 515 55.8 37.9 54.0 54.2 62.7 52.7
DT
- normal 55.3 | 50.9 49.1 57.2 52.4 54.2 53.7 56.8 52.6
- 1-perclass| 54.9 | 49.7 48.1 54.3 51.3 52.7 51.5 52.2 50.0

Table2: Contritution of knowledge soure@son SENEVAL -2 dataset(micro-averagedrecal onall words

Algorithm POS | SurroundingNords | Collocations | SyntacticRelations Combined

0] (i) (i) (iv) v) (vi) (vii) (viil) = (ix) =

M>=3 M>=0 M>=3 | M>=0 | M>=3 M>=0 i+ii+i v+vi i+iii+Vv+vii

SVM
- 1-perclass| 70.3 | 65.5 70.3 69.5 74.0 65.1 69.8 76.3 79.2
AdB
- normal 67.2 | 63.5 64.4 64.2 65.2 65.7 65.6 68.2 68.4
- 1-perclass| 71.6 | 67.0 68.9 69.7 71.2 69.4 68.3 77.7 78.0
NB
- normal 715| 66.6 63.5 69.1 53.9 69.4 69.6 75.7 67.2
- 1-perclass| 71.6 | 67.3 64.1 70.3 53.0 69.8 70.4 76.3 68.2
DT
- normal 69.2 | 66.2 65.0 70.2 67.9 68.9 68.6 73.4 70.2
- 1-perclass| 68.7 | 66.6 65.4 67.0 64.4 67.6 64.8 71.4 67.8

Table3: Contritution of knowledge sour@son SEN

POS | SVM | AdB | NB DT S1 S2 S3
noun| 68.8 | 69.2 | 66.4| 60.0| 68.2| 69.5| 66.8
verb | 61.1 | 56.1 | 56.6| 51.8] 56.6| 56.3| 57.6
adj | 68.0 | 64.3| 68.4| 63.8| 73.2| 68.8| 66.8
[(al | 654 [ 62.8] 62.7] 57.2]] 64.2] 63.8] 62.9]
(a) SENSEML-2 dataset
POS| SVM | AdB | NB DT sl s2 s3
noun| 85.2 | 849 82.3] 81.3| 84.9| 80.6| 80.8
verb | 77.0 | 744 | 73.3| 69.5| 70.5| 70.9| 68.7
adj 758 | 7146 | 745 | 709 76.1| 74.3| 735
indet| 76.9 | 76.8 | 74.3| 70.2| 77.6| 76.9| 76.6
[al | 792 78.0] 76.3] 73.4]] 77.1] 755] 74.6]

(b) SENSEML-1 dataset

Table 4. Bestmicro-averaged recdl accuaciesfor
eachalgorithm evaluatd and official scoresof the
top 3 partiapating sysems of SENSEVAL-2 and
SENSEVAL-1

FEVAL -1 dataset(micro-averagedrecal onall words

the accuacy figuresfor the different combirations
of knowledge sources and learning algarithms for
the SENEVAL-2 (SENEVAL-1) dataset. The
nine columns correpond to: (i) using only POS
of neighboring words (ii) using only single words
in the surunding context with feature seledion
(M2 = 3) (iii) sameas (ii) but without featue se-
lection (M3 = 0) (iv) using only locd collocatiorns
with featue selection (M, = 3) (v) sameas(iv) but
without feature seledion (M, = 0) (vi) usingonly
syniactic relations with featue selecion on words
(Mo = 3) (vii) sameas(vi) but without feature se-
lection (M, = 0) (viii) combining all four knowl-
edgesourceswith featue seledion (ix) combiring
all four knowledge sources without feature selee
tion.

SVM is only camble of hardling binary clas
probdems. The usuwal pradice to deal with multi-
classproblemsis to build one binary classfier per
output class(dended “1-perclass”). The original
AdaBoost Naive Bayes, and decison tree algo-



POS SVM AdB NB DT
S1[S2[S3[S1[S2[S3|S1[S2[S3|S1[S2]S3
noun| ~ | ~ | > |~ | ~| >~ ||~ | K| K|
velb [ > [ > [ >~~~ ~~]~ K[ K]K
ad] [ €[~ ~ [« <~ K] ~]~]KC][K] K<
(Al [>[> > [~ [~ [< [~ [~ [<[<[<]
(a) SENSEMAL -2 dataset(usingmicro-averagedecall)
POS SVM AdB NB DT
sl | s2] s3[sl|s2] s3|sl]|s2] s3|sl]|s2]s3
noun| ~ [ > [ > |~ |~ [ > [ <|~|>| < | ~]|~
verb [ > [ > [ > [ >~ > [ >~ >~~~
adj |~ |~~~ ~|~|<]|~|~]|~]|~]~
indet| ~ [~ [~ ][~ ~]~]~[~]~]~]~]~
Lal [>[>[>[~[>[>[~[~[>[L][~[~]

(b) SENSEML-1 dataset(usingmacro-&eragel recall)

Table5: Pairedt-test on SENFEVAL-2 and SENSEVAL -1 datasets “~", (“>" and“<”), and(“>" and
“«”") comespoml to the p-value > 0.05, (0.01,0.05], and < 0.01 respetively. “>" or “>>" meansour

algarithm is significantly bette.

rithms canalrealy hande multi-classproblems,and
we dende runs using theoriginal AdB, NB, andDT
algarithmsas“normal” in Table2 andTable3.

Accurag for eachword taskw canbe measurd
by recall(r) or predsion (p), definedby:

__no. of testinstancescorrectly labeled
~no. of testinstancesin word taskw

__no. of testinstancescorrectly labeled
P= o, of testinstancesoutput in word taskw

Recallis very close(but not alwaysidenical) to pre-
cision for thetop SENSE/AL paricipating sysems.
In this pape, our repated resuts are basa on the
official fine-graned scorng methal.

To comput an average recdl figure over a setof
words,we caneither adgt micro-averagng (mi) or
macro-aeragng (ma),definedby:

- total no. of testinstancescorrectly labded
~ total no. of testinstarcesin all word tasks

N=|word tasks

b))

ie word tasks

ma= — recdl for word tasks

Thatis, micro-averagng treats eachtestinstance
equdly, sothataword taskwith mary testinstarces
will dominde the micro-aeragel recall. On the
othe hand macro-aeragng treatseachword task
equadly.

As shavn in Table2 andTable3, thebeg micro-
averaged recal for SENSEVAL-2 (SENSBE/AL-1)
is 65.4%(79.2%),0btanedby combiring all knowl-
edgesource (without feature selection) and using
SVM asthelearring algorithm.

In Table 4, we talulate the bestmicro-averagel
recal for eachlearring algorithm, broken down ac-
cordng to nours, verbs, adjectives, indeerminate
(for SENSEVAL-1), and all words. We also talu-
late anabgous figuresfor the top threepatticipating
systans for both SENSBE/ALs. The top threesys-
temsfor SENSEVAL-2 are: JHU (S1) (Yarowsky
etal.,2001), SMUIs (S2) (MihalceaandMoldovan,
2001, and KUNLP (S3) (Seoet al., 2001) The
top three systens for SENSEVAL-1 are: hopkins
(s1) (Yarowsky, 2000, ets-pu (s2) (Chodoow et
al., 2000) andtilburg (s3) (Veensta et al., 2000).
As shavn in Table4, SVM with all four knowledge
souicesachievesaccuagy higher thanthe bestoffi-
cial scores of both SENSEVAL s.

We also conducted paired t testto seeif one
systan is sigrificantly better than anotrer. The
t statigic of the difference betwea eachpair of
recal figures (betweeneachtestinstarce pair for
micro-aweragng and betweeneachword task pair
for macro-aeragng) is computel, giving riseto a
p value. A large p valueindicatestha the two sys-
temsarenot signficantly differentfrom eachother.
The comparson betweenour leaming algarithms



and the top three partidpating sysemsis given in
Table 5. Note that we can only compae macro-
averaged recal for SENSB/AL-1 systams, since
the seng of ead individual testinstanceoutpu by
the SENSEVAL -1 partcipating systemss not avail-
able. The comparsonindicatesthat our SVM sys-
temis beterthanthebestofficial SENSEVAL-2 and
SENSEVAL-1 systens at the level of significance
0.05.

Notethatwe areableto obtan stateef-the-artre-
sultsusing asinge learring algotithm (SVM), with-
out resating to combining multiple leaming algo-
rithms. Severaltop SENSEVAL -2 participating sys-
temshave attemped the combhnation of classifiers
using different learring algointhms.

In SENEVAL-2, JHU useda combnation of
various leaming algarithms (dedsion lists, cosne-
basel vecta models, and Bayesan model9 with
various knowledge souces such as surrownding
words, locd collocations, syntactic relations, and
morphdogical informaton. SMUIs usedak-neaest
neighbor algoiithm with featuessuchaskeywords,
collocations, POS,andnameentities. KUNLP usel
Classificdion InformationModel, an entrqy-based
learring algorithm, with local, topical, and bigram
coniexts andtheir POS

In SENSEVAL-1, hopkins usedhierarchical de-
cision lists with features similar to those usad by
JHU in SENSEVAL-2. ets-pu useda Naive Bayes
classfier with topicalandloca wordsandtheir POS
tilburg usedak-nearestineighboralgarithm with fea-
turessimilar to thoseusedby (Ng andLee, 199).
tilburg also useddictionary examplesasaddtional
training data.

7 Discussions

Basedon our expelimental resuls, there appearsto
beno sinde, universally bestknowledge soure. In-
stead knowledgesoures and leaming algarithms
interact and influence ead other. For example,lo-
cal collocatians contiibute the mostfor SVM, while
partsof-speech(POS) contibute the mostfor NB.
NB evenoutperformsSVM if only POSis used In
addtion, different learnng algorithms berefit dif-
ferertly from feature seledion. SVM performsbest
without feature selection, whereas\B performsbest
with somefeatue selecion (M, = 3). We will in-

vesticatethe effect of more elatloratefeature selee
tion schaneson the perfoomanceof differentlearn
ing algonithmsfor WSD in future work.

Also, using the combimation of four knowledge
souices gives bette performancethan using ary
sinde individual knowledge source for most al-
gorithms. On the SENSEVAL-2 test set, SVM
achiewes 65.4% (all 4 knowledge soures), 64.8%
(remove syntactic relations),61.8% (further remove
POS),and60.5% (only collocatins) asknowledge
sourcesareremosedoneatatime.

Beforeconcluding, we notethatthe SENSE/AL-
2 partcipating sygem UMD-SST (Cabezast al.,
200)) alsousedSVM, with surroundng wordsand
local collocatiors as featues. However, they re-
ported recall of only 56.8%. In contrast, our im-
plemenation of SVM using the two knowledge
sourcesof surraunding wordsandlocal collocations
achiewesrecdl of 61.8%. Following the desciption
in (Cabezagtal.,2001), ourown re-implementtion
of UMD-SST givesarecall of 58.6%,closeto their
repated figure of 56.8%. The perfomancedrop
from 61.8%maybedueto thedifferentcollocations
usedin thetwo systems.
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