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Abstract
This paper demonstrates the substantial empirical
success of classifier combination for the word sense
disambiguation task. It investigates more than 10
classifier combination methods, including second
order classifier stacking, over 6 major structurally
different base classifiers (enhanced Naïve Bayes,
cosine, Bayes Ratio, decision lists, transformation-
based learning and maximum variance boosted mix-
ture models). The paper also includes in-depth per-
formance analysis sensitive to properties of the fea-
ture space and component classifiers. When eval-
uated on the standardSENSEVAL1 and 2 data sets
on 4 languages (English, Spanish, Basque, and
Swedish), classifier combination performance ex-
ceeds the best published results on these data sets.

1 Introduction
Classifier combination has been extensively stud-
ied in the last decade, and has been shown to be
successful in improving the performance of diverse
NLP applications, including POS tagging (Brill and
Wu, 1998; van Halteren et al., 2001), base noun
phrase chunking (Sang et al., 2000), parsing (Hen-
derson and Brill, 1999) and word sense disambigua-
tion (Kilgarriff and Rosenzweig, 2000; Stevenson
and Wilks, 2001). There are several reasons why
classifier combination is useful. First, by consulting
the output of multiple classifiers, the system will im-
prove its robustness. Second, it is possible that the
problem can be decomposed into orthogonal feature
spaces (e.g. linguistic constraints and word occur-
rence statistics) and it is often better to train dif-
ferent classifiers in each of the feature spaces and
then combine their output, instead of designing a
complex system that handles the multimodal infor-
mation. Third, it has been shown by Perrone and
Cooper (1993) that it is possible to reduce the clas-
sification error by a factor of�

�
(� is the number of

classifiers) by combination, if the classifiers’ errors
are uncorrelated and unbiased.

The target task studied here is word sense disam-
biguation in theSENSEVAL evaluation framework

(Kilgarriff and Palmer, 2000; Edmonds and Cotton,
2001) with comparative tests in English, Spanish,
Swedish and Basque lexical-sample sense tagging
over a combined sample of 37730 instances of 234
polysemous words.

This paper offers a detailed comparative evalu-
ation and description of the problem of classifier
combination over a structurally and procedurally
diverse set of six both well established and orig-
inal classifiers: extended Naïve Bayes, BayesRa-
tio, Cosine, non-hierarchical Decision Lists, Trans-
formation Based Learning (TBL), and the MMVC
classifiers, briefly described in Section 4. These
systems have different space-searching strategies,
ranging from discriminant functions (BayesRatio)
to data likelihood (Bayes, Cosine) to decision rules
(TBL, Decision Lists), and therefore are amenable
to combination.

2 Previous Work
Related work in classifier combination is discussed
throughout this article. For the specific task of
word sense disambiguation, the first empirical study
was presented in Kilgarriff and Rosenzweig (2000),
where the authors combined the output of the par-
ticipating SENSEVAL1 systems via simple (non-
weighted) voting, using either Absolute Majority,
Relative Majority, or Unanimous voting. Steven-
son and Wilks (2001) presented a classifier com-
bination framework where 3 disambiguation meth-
ods (simulated annealing, subject codes and selec-
tional restrictions) were combined using the TiMBL
memory-based approach (Daelemans et al., 1999).
Pedersen (2000) presents experiments with an en-
semble of Naïve Bayes classifiers, which outper-
form all previous published results on two ambigu-
ous words (line andinterest).

3 The WSD Feature Space
The feature space is a critical factor in classifier de-
sign, given the need to fuel the diverse strengths of
the component classifiers. Thus its quality is of-
ten highly correlated with performance. For this

                                            Association for Computational Linguistics.
                      Language Processing (EMNLP), Philadelphia, July 2002, pp. 25-32.
                         Proceedings of the Conference on Empirical Methods in Natural



An ancient stonechurch stands amid the fields,
the sound of bells ...
Feat. Type Word POS Lemma
Context ancient JJ ancient/J
Context stone NN stone/N
Context church NNP church/N
Context stands VBZ stand/V
Context amid IN amid/I
Context fields NN field/N
Context ... ... ...

Syntactic (predicate-argument) features
SubjectTo stands_Sbj VBZ stand_Sbj/V
Modifier stone_mod JJ ancient_mod/J

Ngram collocational features
-1 bigram stone_L JJ ancient_L/J
+1 bigram stands_R VBZ stand_R/V
�1 trigram stone� stands JJ�VBZ stone/J�stands/V

... ... ... ...

Figure 1: Example sentence and extracted features from
theSENSEVAL2 wordchurch

reason, we used a rich feature space based on raw
words, lemmas and part-of-speech (POS) tags in a
variety of positional and syntactical relationships to
the target word. These positions include traditional
unordered bag-of-word context, local bigram and
trigram collocations and several syntactic relation-
ships based on predicate-argument structure. Their
use is illustrated on a sample English sentence for
the target wordchurch in Figure 1. While an exten-
sive evaluation of feature type to WSD performance
is beyond the scope of this paper, Section 6 sketches
an analysis of the individual feature contribution to
each of the classifier types.

3.1 Part-of-Speech Tagging and
Lemmatization

Part-of-speech tagger availability varied across the
languages that are studied here. An electronically
available transformation-based POS tagger (Ngai
and Florian, 2001) was trained on standard labeled
data for English (Penn Treebank), Swedish (SUC-
1 corpus), and Basque. For Spanish, an minimally
supervised tagger (Cucerzan and Yarowsky, 2000)
was used. Lemmatization was performed using an
existing trie-based supervised models for English,
and a combination of supervised and unsupervised
methods (Yarowsky and Wicentowski, 2000) for all
the other languages.

3.2 Syntactic Features

The syntactic features extracted for a target word
depend on the word’s part of speech:

� verbs: the head noun of the verb’s object, par-
ticle/preposition and prepositional object;

� nouns: the headword of any verb-object,

subject-verb or noun-noun relationships iden-
tified for the target word;

� adjectives: the head noun modified by the ad-
jective.

The extraction process was performed using heuris-
tic patterns and regular expressions over the parts-
of-speech surrounding the target word1.

4 Classifier Models for Word Sense
Disambiguation

This section briefly introduces the 6 classifier mod-
els used in this study. Among these models, the
Naïve Bayes variants (NB henceforth) (Pedersen,
1998; Manning and Schütze, 1999) and Cosine dif-
fer slightly from off-the-shelf versions, and only the
differences will be described.

4.1 Vector-based Models: Enhanced Naïve
Bayes and Cosine Models

Many of the systems used in this research share
a common vector representation, which captures
traditional bag-of-words, extended ngram and
predicate-argument features in a single data struc-
ture. In these models, a vector is created for each
document in the collection:� � ����

�� �
��� � �� �

��
�
��, where�� is the number of times the feature

�� appears in document�,� is the number of words
in � and�� is a weight associated with the feature
��

2. Confusion between the same word participat-
ing in multiple feature roles is avoided by append-
ing the feature values with their positional type (e.g.
stands_Sbj, ancient_L are distinct fromstands and
ancient in unmarked bag-of-words context).

The notable difference between the extended
models and others described in the literature, aside
from the use of more sophisticated features than
the traditional bag-of-words, is the variable weight-
ing of feature types noted above. These differences
yield a boost in the NB performance (relative to ba-
sic Naïve Bayes) of between 3.5% (Basque) and
10% (Spanish), with an average improvement of
7.25% over the four languages.

4.2 The BayesRatio Model
TheBayesRatio model (BR henceforth) is a vector-
based model using the likelihood ratio framework
described in Gale et al. (1992):

1The feature extraction on the in English data was per-
formed by first identifying text chunks, and then using heuris-
tics on the chunks to extract the syntactic information.

2The weight�� depends on the type of the feature�� : for
the bag-of-word features, this weight is inversely proportional
to the distance between the target word and the feature, while
for predicate-argument and extended ngram features it is a em-
pirically estimated weight (on a per language basis).
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�
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� ���	
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where�� is the selected sense,� denotes documents
and� denotes features. By utilizing the binary ra-
tio for k-way modeling of feature probabilities, this
approach performs well on tasks where the data is
sparse.

4.3 The MMVC Model
The Mixture Maximum Variance Correction classi-
fier (MMVC henceforth)(Cucerzan and Yarowsky,
2002) is a two step classifier. First, the sense proba-
bility is computed as a linear mixture

� ����� �
�
���

� ����� ��� �� ��� ��
�
���

� ������ �� ���

where the probability� ���	� is estimated from
data and� �	��� is computed as a weighted normal-
ized similarity between the word	 and the target
word
 (also taking into account the distance in the
document between	 and
). In a second pass, the
sense whose variance exceeds a theoretically moti-
vated threshold is selected as the final sense label
(for details, see Cucerzan and Yarowsky (2002)).

4.4 The Discriminative Models
Two discriminative models are used in the exper-
iments presented in Section 5 - a transformation-
based learning system (TBL henceforth) (Brill,
1995; Ngai and Florian, 2001) and a non-
hierarchical decision lists system (DL henceforth)
(Yarowsky, 1996). For prediction, these systems
utilize local n-grams around the target word (up to
3 words/lemma/POS to the left/right), bag-of-words
and lemma/collocation (�20 words around the tar-
get word, grouped by different window sizes) and
the syntactic features listed in Section 3.2.

The TBL system was modified to include redun-
dant rules that do not improve absolute accuracy on
training data in the traditional greedy training al-
gorithm, but are nonetheless positively correlated
with a particular sense. The benefit of this approach
is that predictive but redundant features in training
context may appear by themselves in new test con-
texts, improving coverage and increasing TBL base
model performance by 1-2%.

5 Models for Classifier Combination
One necessary property for success in combining
classifiers is that the errors produced by the com-
ponent classifiers should not be positively corre-
lated. On one extreme, if the classifier outputs are

0.0 0.2 0.4 0.6 0.8 1.0

 MMVC

 Cosine

 Bayes

 BayesRatio

 TBL

 DecisionLists

Figure 2: Empirically-derived classifier similarity

strongly correlated, they will have a very high inter-
agreement rate and there is little to be gained from
the joint output. On the other extreme, Perrone and
Cooper (1993) show that, if the errors made by the
classifiers are uncorrelated and unbiased, then by
considering a classifier that selects the class that
maximizes the posterior class probability average

�� � �����	
�

� ��� � �����	
�




�

��
���

�� ��� (1)

the error is reduced by a factor of�
�

. This case
is mostly of theoretical interest, since in practice
all the classifiers will tend to make errors on the
“harder” samples.

Figure 3(a) shows the classifier inter-agreement
among the six classifiers presented in Section 4, on
the English data. Only two of them, BayesRatio and
cosine, have an agreement rate of over 80%3, while
the agreement rate can be as low as 63% (BayesRa-
tio and TBL). The average agreement is 71.7%. The
fact that the classifiers’ output are not strongly cor-
related suggests that the differences in performance
among them can be systematically exploited to im-
prove the overall classification. All individual clas-
sifiers have high stand-alone performance; each is
individually competitive with the best singleSEN-
SEVAL2 systems and are fortuitously diverse in rel-
ative performance, as shown in Table 3(b). A den-
dogram of the similarity between the classifiers is
shown in Figure 2, derived using maximum linkage
hierarchical agglomerative clustering.

5.1 Major Types of Classifier Combination
There are three major types of classifier combina-
tion (Xu et al., 1992). The most general type is the
case where the classifiers output a posterior class
probability distribution for each sample (which can
be interpolated). In the second case, systems only
output a set of labels, together with a ordering of
preference (likelihood). In the third and most re-
strictive case, the classifications consist of just a sin-
gle label, without rank or probability. Combining
classifiers in each one of these cases has different
properties; the remainder of this section examines
models appropriate to each situation.

3The performance is measured using 5-fold cross validation
on training data.
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(a) Classifier inter-agreement onSENSEVAL2
English data

System SENSEVAL1 SENSEVAL2
EN EN ES EU SV

Baseline 63.2 48.3 45.9 62.7 46.2
NB 80.4 65.7 67.9 71.2 66.7
BR 79.8 65.3 69.0 69.6 68.0

Cosine 74.0 62.2 65.9 66.0 66.4
DL 79.9 63.2 65.1 70.7 61.5
TBL 80.7 64.4 64.7 69.4 62.7

MMVC 81.1 66.7 66.7 69.7 61.9

(b) Individual classifier performance; best performers are
shown in bold

Figure 3: Individual Classifier Properties (cross-validation onSENSEVAL training data)

5.2 Combining the Posterior Sense Probability
Distributions

One of the simplest ways to combine the poste-
rior probability distributions is via direct averaging
(Equation (1)). Surprisingly, this method obtains
reasonably good results, despite its simplicity and
the fact that is not theoretically motivated under a
Bayes framework. Its success is highly dependent
on the condition that the classifiers’ errors are un-
correlated (Tumer and Gosh, 1995).

The averaging method is a particular case of
weighted mixture:4

� ���	� �� �

��
���

� �
�	� �� � �� ���	� �� �

��
���

�� �	� �� � �� ���	� �� (2)

where�� ��� �� is the weight assigned to the clas-
sifier � in the mixture and
� ���
� �� is the poste-
rior probability distribution output by classifier�;
for �� �
� �� � �

�
we obtain Equation (1).

The mixture interpolation coefficients can be
computed at different levels of granularity. For
instance, one can make the assumption that
� ���
� �� � � ���
� and then the coefficients will
be computed at word level; if� ���
� �� � � ���
then the coefficients will be estimated on the entire
data.

One way to estimate these parameters is by linear
regression (Fuhr, 1989): estimate the coefficients
that minimize the mean square error (MSE)

���
�
�

�
�

������ �	� ���
��
���

�� �	� �� � � ���	� ��

�����
�

(3)

where � �
� �� is the target vector of the cor-
rect classification of word
 in document d:

4Note that we are computing a probability conditioned both
on the target word� and the document�, because the docu-
ments are associated with a particular target word�; this for-
malization works mainly for the lexical choice task.

� �
� �� ��� � Æ ��� ����� , ���� being the goldstan-
dard sense of
 in � andÆ the Kronecker function:

Æ �
� �� �

�
� if 
 �� �
� if 
 � �

As shown in Fuhr (1989), Perrone and Cooper
(1993), the solution to the optimization problem (3)
can be obtained by solving a linear set of equations.
The resulting classifier will have a lower square er-
ror than the average classifier (since the average
classifier is a particular case of weighted mixture).

Another common method to compute the� pa-
rameters is by using the Expectation-Maximization
(EM) algorithm (Dempster et al., 1977). One
can estimate the coefficients such as to max-
imize the log-likelihood of the data,
 ��

�

�
��� 
��� ������	� ��. In this particular opti-

mization problem, the search space is convex, and
therefore a solution exists and is unique, and it can
be obtained by the usual EM algorithm (see Berger
(1996) for a detailed description).

An alternative method for estimating the parame-
ters�� is to approximate them with the performance
of the�th classifier (aperformance-based combiner)
(van Halteren et al., 1998; Sang et al., 2000)

�� �
� �� � � ���_is_correct�
� �� (4)

therefore giving more weight to classifiers that have
a smaller classification error (the method will be re-
ferred to as PB). The probabilities in Equation (4)
are estimated directly from data, using the maxi-
mum likelihood principle.

5.3 Combination based on Order Statistics
In cases where there are reasons to believe that the
posterior probability distribution output by a clas-
sifier is poorly estimated5, but that the relative or-
dering of senses matches the truth, a combination

5For instance, in sparse classification spaces, the Naïve
Bayes classifier will assign a probability very close to 1 to the
most likely sense, and close to 0 for the other ones.



strategy based on the relative ranking of sense pos-
terior probabilities is more appropriate. The sense
posterior probability can be computed as

� ���
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�
�

�� �
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�
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where the rank of a sense� is inversely proportional
to the number of senses that are (strictly) more prob-
able than sense�:
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This method will tend to prefer senses that appear
closer to the top of the likelihood list for most of the
classifiers, therefore being more robust both in cases
where one classifier makes a large error and in cases
where some classifiers consistently overestimate the
posterior sense probability of the most likely sense.

5.4 The Classifier Republic: Voting
Some classification methods frequently used in
NLP directly minimize the classification error and
do not usually provide a probability distribution
over classes/senses (e.g. TBL and decision lists).
There are also situations where the user does not
have access to the probability distribution, such as
when the available classifier is a black-box that only
outputs the best classification. A very common
technique for combination in such a case is by vot-
ing (Brill and Wu, 1998; van Halteren et al., 1998;
Sang et al., 2000). In the simplest model, each clas-
sifier votes for its classification and the sense that
receives the most number of votes wins. The behav-
ior is identical to selecting the sense with the highest
posterior probability, computed as

� ���
� �� �

�
�

�� �
� �� � Æ ��� ��� �
� ���
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� �� � Æ ��� ��� �
� ��� (6)

whereÆ is the Kronecker function and��� �
� �� is
the classification of the�th classifier. The�� co-
efficients can be either equal (in a perfect classifier
democracy), or they can be estimated with any of
the techniques presented in Section 5.2. Section
6 presents an empirical evaluation of these tech-
niques.

Van Halteren et al. (1998) introduce a modified
version of voting called TagPair. Under this model,
the conditional probability that the word sense is�
given that classifier� outputs�� and classifier� out-
puts��,� ������ �
� �� � ��� ��� �
� �� � ���, is com-
puted on development data, and the posterior prob-
ability is estimated as

� ����� �	 �
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���

Æ ��� ��� ��� �		 

�
���

Æ ��� ���	� ��� �		
(7)

where����	 �	� �� � �����	
 � ������ �	� �� � ��	 �	� ���.
Each classifier votes for its classification and every
pair of classifiers votes for the sense that is most
likely given the joint classification. In the experi-
ments presented in van Halteren et al. (1998), this
method was the best performer among the presented
methods. Van Halteren et al. (2001) extend this
method to arbitrarily long conditioning sequences,
obtaining the best published POS tagging results on
four corpora.

6 Empirical Evaluation
To empirically test the combination methods pre-
sented in the previous section, we ran experiments
on theSENSEVAL1 English data and data from four
SENSEVAL2 lexical sample tasks: English(EN),
Spanish(ES), Basque(EU) and Swedish(SV). Un-
less explicitly stated otherwise, all the results in the
following section were obtained by performing 5-
fold cross-validation6. To avoid the potential for
over-optimization, a single final evaluation system
was run once on the otherwise untouched test data,
as presented in Section 6.3.

The data consists of contexts associated with a
specific word to be sense tagged (target word); the
context size varies from 1 sentence (Spanish) to
5 sentences (English, Swedish). Table 1 presents
some statistics collected on the training data for the
five data sets. Some of the tasks are quite challeng-
ing (e.g. SENSEVAL2 English task) – as illustrated
by the mean participating systems’ accuracies in Ta-
ble 5.

Outlining the claim that feature selection is im-
portant for WSD, Table 2 presents the marginal loss
in performance of eitheronly using one of the po-
sitional feature classes orexcluding one of the po-
sitional feature classes relative to the algorithm’s
full performance using all available feature classes.
It is interesting to note that the feature-attractive
methods (NB,BR,Cosine) depend heavily on the
BagOfWords features, while discriminative methods
are most dependent onLocalContext features. For
an extensive evaluation of factors influencing the
WSD performance (including representational fea-
tures), we refer the readers to Yarowsky and Florian
(2002).

6.1 Combination Performance
Table 3 shows thefine-grained sense accuracy (per-
cent of exact correct senses) results of running the

6When parameters needed to be estimated, a 3-1-1 split was
used: the systems were trained on three parts, parameters esti-
mated on the fourth (in a round-robin fashion) and performance
tested on the fifth; special care was taken such that no “test”
data was used in training classifiers or parameter estimation.



SE1 SENSEVAL2
EN EN ES EU SV

#words 42 73 39 40 40
#samples 12479 8611 4480 3444 8716

avg #senses/word 11.3 10.7 4.9 4.8 11.1
avg #samples/sense26.21 9.96 23.4 17.9 19.5

Table 1: Training set characteristics
Performance drop relative to full system (%)

NB Cosine BR TBL DL
BoW Ftrs Only -6.4 -4.8 -4.8 -6.0 -3.2
Local Ftrs Only -18.4 -11.5 -6.1 -1.5 -3.3

Syntactic Ftrs Only -28.1 -14.9 -5.4 -5.4 -4.8

No BoW Ftrs -14.7 -8.1 -5.3 -0.5� -2.0
No Local Ftrs -3.5 -0.8� -2.2 -2.9 -4.5

No Syntactic Ftrs -1.1 -0.8� -1.3 -1.0 -2.3

Table 2: Individual feature type contribution to perfor-
mance. Fields marked with� indicate that the difference
in performance was not statistically significant at a���

level (paired McNemar test).

classifier combination methods for 5 classifiers, NB
(Naïve Bayes), BR (BayesRatio), TBL, DL and
MMVC, including the average classifier accuracy
and the best classification accuracy. Before examin-
ing the results, it is worth mentioning that the meth-
ods which estimate parameters are doing so on a
smaller training size (3/5, to be precise), and this
can have an effect on how well the parameters are
estimated. After the parameters are estimated, how-
ever, the interpolation is done between probability
distributions that are computed on 4/5 of the train-
ing data, similarly to the methods that do not esti-
mate any parameters.

The unweighted averaging model of probability
interpolation (Equation (1)) performs well, obtain-
ing over 1% mean absolute performance over the
best classifier7, the difference in performance is
statistically significant in all cases except Swedish
and Spanish. Of the classifier combination tech-
niques, rank-based combination and performance-
based voting perform best. Their mean 2% absolute
improvement over the single best classifier is signif-
icant in all languages. Also, their accuracy improve-
ment relative to uniform-weight probability interpo-
lation is statistically significant in aggregate and for
all languages except Basque (where there is gener-
ally a small difference among all classifiers).

To ensure that we benefit from the performance
improvement of each of the stronger combination
methods and also to increase robustness, a final av-
eraging method is applied to the output of the best
performing combiners (creating astacked classi-
fier). The last line in Table 3 shows the results ob-
tained by averaging the rank-based, EM-vote and

7The best individual classifier differs with language, as
shown in Figure 3(b).

SE1 SENSEVAL2
Method EN EN ES EU SV

Individual Classifiers
Mean Acc 79.5 65.0 66.6 70.4 65.9
Best Acc 81.1 66.7 68.8 71.2 68.0

Probability Interpolation
Averaging 82.7 68.0 69.3 72.2 68.16

MSE 82.8 68.1 69.7 71.0 69.2
EM 82.7 68.4 69.6 72.1 69.1
PB 82.8 68.0 69.4 72.2 68.7

Rank-based Combination
rank 83.1 68.6 71.0 72.1 70.3

Count-based Combination (Voting)
Simple Vote 82.8 68.1 70.9 72.1 70.0

TagPair 82.9 68.3 70.9 72.1 70.0
EM 83.0 68.4 70.5 71.7 70.0
PB 83.1 68.5 70.8 72.0 70.3

Stacking (Meta-Combination)
Prob. Interp. 83.2 68.6 71.0 72.3 70.4

Table 3: Classifier combination accuracy over 5 base
classifiers: NB, BR, TBL, DL, MMVC. Best perform-
ing methods are shown in bold.

Estimation Level word POS ALL Interp
Accuracy 68.1 68.2 68.0 68.4

CrossEntropy 1.623 1.635 1.646 1.632

Table 4: Accuracy for different EM-weighted probability
interpolation models forSENSEVAL2

PB-vote methods’ output. The difference in perfor-
mance between the stacked classifier and the best
classifier is statistically significant for all data sets
at a significance level of at least����, as measured
by a paired McNemar test.

One interesting observation is that for all meth-
ods of�-parameter estimation (EM, PB and uniform
weighting) the count-based and rank-based strate-
gies that ignore relative probability magnitudes out-
perform their equivalent combination models using
probability interpolation. This is especially the case
when the base classifier scores have substantially
different ranges or variances; using relative ranks
effectively normalizes for such differences in model
behavior.

For the three methods that estimate the interpo-
lation weights – MSE, EM and PB – three vari-
ants were investigated. These were distinguished by
the granularity at which the weights are estimated:
at word level (�� �
� �� � �� �
�), at POS level
(�� �
� �� � �� �
�� �
��) and over the entire train-
ing set (�� �
� �� � ��). Table 4 displays the results
obtained by estimating the parameters using EM at
different sample granularities for theSENSEVAL2
English data. The number in the last column is ob-
tained by interpolating the first three systems. Also
displayed iscross-entropy, a measure of how well
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Figure 4: Individual basic classifiers’ contribution to the final classifier combination performance.

the combination classifier estimates the sense prob-
abilities,�� � �

�
��� � ������ ��	 �� ���
� ��.

6.2 Individual Systems Contribution to
Combination

An interesting issue pertaining to classifier combi-
nation is what is the marginal contribution to final
combined performance of the individual classifier.
A suitable measure of this contribution is the dif-
ference in performance between a combination sys-
tem’s behavior with and without the particular clas-
sifier. The more negative the accuracy difference on
omission, the more valuable the classifier is to the
ensemble system.

Figure 4(a) displays the drop in performance ob-
tained by eliminating in turn each classifier from the
6-way combination, across four languages, while
Figure 4(b) shows the contribution of each classifier
on theSENSEVAL2 English data for different train-
ing sizes (10%-80%)8. Note that the classifiers with
the greatest marginal contribution to the combined
system performance are not always the best single
performing classifiers (Table 3(b)), but those with
the most effectiveoriginal exploitation of the com-
mon feature space. On average, the classifier that
contributes the most to the combined system’s per-
formance is the TBL classifier, with an average im-
provement of��

� across the 4 languages. Also,
note that TBL and DL offer the greatest marginal
contribution on smaller training sizes (Figure 4(b)).

6.3 Performance on Test Data

At all points in this article, experiments have been
based strictly on the originalSENSEVAL1 andSEN-
SEVAL2 training sets via cross-validation. The of-
ficial SENSEVAL1 and SENSEVAL2 test sets were

8The latter graph is obtained by sampling repeatedly a
prespecified ratio of training samples from 3 of the 5 cross-
validation splits, and testing on the other 2.

unused and unexamined during experimentation to
avoid any possibility of indirect optimization on this
data. But to provide results more readily compara-
ble to the official benchmarks, a single consensus
system was created for each language using linear
average stacking on the top three classifier combi-
nation methods in Table 3 for conservative robust-
ness. The final frozen consensus system for each
language was applied once to theSENSEVAL test
sets. The fine-grained results are shown in Table
5. For each language, the single new stacked com-
bination system outperforms the best previously re-
portedSENSEVAL results on the identical test data9.
As far as we know, they represent the best published
results for any of these fiveSENSEVAL tasks.

7 Conclusion
In conclusion, we have presented a comparative
evaluation study of combining six structurally and
procedurally different classifiers utilizing a rich
common feature space. Various classifier combi-
nation methods, including count-based, rank-based
and probability-based combinations are described
and evaluated. The experiments encompass super-
vised lexical sample tasks in four diverse languages:
English, Spanish, Swedish, and Basque.

9To evaluate systems on the full disambiguation task, it is
appropriate to compare them on their accuracy at 100% test-
data coverage, which is equivalent to systemrecall in the offi-
cial SENSEVAL scores. However, it can also be useful to con-
sider performance on only the subset of data for which a sys-
tem is confident enough to answer, measured by the secondary
measureprecision. One useful byproduct of the CBV method
is the confidence it assigns to each sample, which we measured
by the number of classifiers that voted for the sample. If one
restricts system output to only those test instances where all
participating classifiers agree, consensus system performance
is 83.4% precision at a recall of 43%, for an F-measure of 56.7
on theSENSEVAL2 English lexical sample task. This outper-
forms the two supervisedSENSEVAL2 systems that only had
partial coverage, which exhibited 82.9% precision at a recall of
28% (F=41.9) and 66.5% precision at 34.4% recall (F=47.9).



SENSEVAL1 SENSEVAL2 Sense Classification Accuracy
English English Spanish Swedish Basque

Mean OfficialSENSEVAL Systems Accuracy 73.1�2.9 55.7�5.3 59.6�5.0 58.4�6.6 74.4�1.8
Best Previously PublishedSENSEVAL Accuracy 77.1% 64.2% 71.2% 70.1% 75.7%

Best Individual Classifier Accuracy 77.1% 62.5% 69.6% 68.6% 75.6%
New (Stacking) Accuracy 79.7% 66.5% 72.4% 71.9% 76.7%

Table 5: Final Performance (Frozen Systems) onSENSEVAL Lexical Sample WSD Test Data

The experiments show substantial variation in
single classifier performance across different lan-
guages and data sizes. They also show that this
variation can be successfully exploited by 10 differ-
ent classifier combination methods (and their meta-
voting consensus), each of which outperforms both
the single best classifier system and standard classi-
fier combination models on each of the 4 focus lan-
guages. Furthermore, when the stacking consensus
systems were frozen and applied once to the other-
wise untouched test sets, they substantially outper-
formed all previously knownSENSEVAL1 andSEN-
SEVAL2 results on 4 languages, obtaining the best
published results on these data sets.
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