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Abstract (Kilgarriff and Palmer, 2000; Edmonds and Cotton,
This paper demonstrates the substantial empirical001) with comparative tests in English, Spanish,
success of classifier combination for the word sens8wedish and Basque lexical-sample sense tagging
disambiguation task. It investigates more than 1@ver a combined sample of 37730 instances of 234
classifier combination methods, including secondolysemous words.
order classifier stacking, over 6 major structurally This paper offers a detailed comparative evalu-
different base classifiers (enhanced Naive Bayestion and description of the problem of classifier
cosine, Bayes Ratio, decision lists, transformationcombination over a structurally and procedurally
based learning and maximum variance boosted mixdiverse set of six both well established and orig-
ture models). The paper also includes in-depth petnal classifiers: extended Naive Bayes, BayesRa-
formance analysis sensitive to properties of the fedaio, Cosine, non-hierarchical Decision Lists, Trans-
ture space and component classifiers. When evalermation Based Learning (TBL), and the MMVC
uated on the standargENSEVALL and 2 data sets classifiers, briefly described in Section 4. These
on 4 languages (English, Spanish, Basque, anglystems have different space-searching strategies,
Swedish), classifier combination performance exfanging from discriminant functions (BayesRatio)
ceeds the best published results on these data sdtsdata likelihood (Bayes, Cosine) to decision rules
) (TBL, Decision Lists), and therefore are amenable
1 Introduction to combination.
Classifier combination has been extensively studs preayious Work
ied in the last decade, and has been shown to be k . o
successful in improving the performance of diversdrelated work in classifier combination is discussed
NLP applications, including POS tagging (Brill and throughout this article. For the specific task of
Wu, 1998: van Halteren et al., 2001), base nounvord sense dlsamb_lguat!on, the flrstemplrlcal study
phrase chunking (Sang et al., 2000), parsing (Hen¥aS presented in Kilgarriff and Rosenzweig (2000),
derson and Brill, 1999) and word sense disambiguahere the authors combined the output of the par-
tion (Kilgarriff and Rosenzweig, 2000; StevensontiCipating SENSEVALL systems via simple (non-
and Wilks, 2001). There are several reasons Whgelghted) voting, using either Absolute Majority,
classifier combination is useful. First, by consultingRelative Majority, or Unanimous voting. Steven-
the output of multiple classifiers, the system will im-S0n and Wilks (2001) presented a classifier com-
prove its robustness. Second, it is possible that tHination framework where 3 disambiguation meth-
problem can be decomposed into orthogonal featur@ds (simulated annealing, subject codes and selec-
spaces (e.g. linguistic constraints and word occurional restrictions) were combined using the TiIMBL
rence statistics) and it is often better to train dif-meémory-based approach (Daelemans et al., 1999).
ferent classifiers in each of the feature spaces arfg€dersen (2000) presents experiments with an en-
then combine their output, instead of designing $eMble of Naive Bayes classifiers, which outper-
complex system that handles the multimodal inforform all previous published results on two ambigu-
mation. Third, it has been shown by Perrone an®Us wordsl{ne andinterest).
Cooper (1993) that it is possible to reduce the clas;
sification error by a factor of, (V is the number of 3 TheWSD Feature Space
classifiers) by combination, if the classifiers’ errorsThe feature space is a critical factor in classifier de-
are uncorrelated and unbiased. sign, given the need to fuel the diverse strengths of
The target task studied here is word sense disanthe component classifiers. Thus its quality is of-
biguation in theseENSEVAL evaluation framework ten highly correlated with performance. For this



Ain ancient stonenurch stands amid the fields, subject-verb or noun-noun relationships iden-
Fear Type o d"' oS — tified for the target word;
ConToxt anclent N e . _adJe_ctlves: the head noun modified by the ad-
Context stone NN stone/N jective.
Context church NNP church/N ; ; ;
Sontex andS VEZ IV 'I_'he extraction é)rocesls was perfc_)rmed usmﬂ heuris
Context amid N amidli tic patterns and regular expressions over the parts-
Context fields NN field/N of-speech surrounding the target word
Context
Syntactic (predicate-argument) features 4 Classifier Modelsfor Word Sense
SubjectTo| stands_Sbj| VBZ stand_Shj/V Disambi guat ion
Modifier stone_mod JJ ancient_mod/J . . . . -
Ngram collocational features This section briefly introduces the 6 classifier mod-
-Thigram | stone_L AN ancient_L/J els used in this study. Among these models, the
+1bigram| stands_ R | VBZ stand_R/NV Naive Bayes variants (NB henceforth) (Pedersen,
+1 trigram | stonee standg J»VBZ | stone/éstands/V 1998; Manning and Schiitze, 1999) and Cosine dif-
fer slightly from off-the-shelf versions, and only the

Figure 1: Example sentence and extracted features frorgﬁferences will be described.

the SENSEVALZ wordchurch 4.1 Vector-based Models: Enhanced Naive
Bayes and Cosine Models

reason, we used a rich feature space based on rawany of the systems used in this research share
words, lemmas and part-of-speech (POS) tags in & common vector representation, which captures
variety of positional and syntactical relationships toraditional bag-of-words, extended ngram and

the target word. These positions inClUde.traditiOﬂaC.t)redicate-argument features in a single data struc-
;Jnordered”bagt-_of-worddcontexti |OC?| t:_lgrarr tf?ln ure. In these models, a vector is cr|ez|;\ted for each
rigram collocations and several syntactic relation- - o A\IF _
ships based on predicate-argument structure. The(ilrocument in the collectiond = (d;);_, , d; =

use is illustrated on a sample English sentence for Vs> Wherec; is the number of times the feature

the target worcthurch in Figure 1. While an exten- /j @PPears in documed IV is the number of words

sive evaluation of feature type to WSD performancd” ¢ andW; is a weight associated with the feature
is beyond the scope of this paper, Section 6 sketcheg®. Confusion between the same word participat-
an analysis of the individual feature contribution toing in multiple feature roles is avoided by append-

each of the classifier types. ing the feature values with their positional type (e.g.
stands_Sbj, ancient_L are distinct fromstands and
3.1 Part-of-Speech Tagging and ancient in unmarked bag-of-words context).
L emmatization The notable difference between the extended

Part-of-speech tagger availability varied across thg10dels and others described in the literature, aside
languages that are studied here. An electronicall{fom the use of more sophisticated features than
available transformation-based POS tagger (Ngdhe traditional bag-of-words, is the variable weight-
and Florian, 2001) was trained on standard labeletd of feature types noted above. These differences
data for English (Penn Treebank), Swedish (SucYield a boost in the NB performance (relative to ba-
1 corpus), and Basque. For Spanish, an minimallpic Naive Bayes) of between 3.5% (Basque) and
supervised tagger (Cucerzan and Yarowsky, 200040% (Spanish), with an average improvement of
was used. Lemmatization was performed using ar-25% over the four languages.

existing trie-_bas_ed supervise_d models for Engli_sh4_2 The BayesRatio M odel

and a combination of supervised and unsuperwserfi
methods (Yarowsky and Wicentowski, 2000) for all
the other languages.

he BayesRatio model (BR henceforth) is a vector-
based model using the likelihood ratio framework
described in Gale et al. (1992):

3.2 Syntactic Features The fee_ltun_a ext_ra_ction on the in English datz_a was per-
The syntactic features extracted for a target wordprmed by first identifying text chunks, and then using heuris-

depend on the word’s part of speech: tics on the chunks to extract the syntactic information.
P P P 2The weightWW; depends on the type of the featyfe for

e verbs: the head noun of the verb’s object, par1he bag-of-word features, this weight is inversely proportional

. - L e to the distance between the target word and the feature, while
ticle/preposition and prepositional object; for predicate-argument and extended ngram features itis a em-

e nouns: the headword of any verb-object,pirically estimated weight (on a per language basis).




DecisionL.ists

TBL
5 P (s|d) P(s) P(fls) B i
§ = argmax ———— = arg max ayesRatio
s P(=s|d) s P(-s) ]11 P (f|=s) Bayes
. Cosine
wheres is the selected sensé denotes documents MMVC

and f denotes features. By utilizing the binary ra-
tio for k-way modeling of feature probabilities, this
approach performs well on tasks where the data is Figure 2: Empirically-derived classifier similarity

sparse. strongly correlated, they will have a very high inter-
43 TheMMVC Modd agreement rate and there is little to be gained from
) i i ) . the joint output. On the other extreme, Perrone and
The Mixture Maximum Variance Correction classi- Cooper (1993) show that, if the errors made by the
fier (MMVC henceforth)(Cucerzan and Yarowsky,  c|assifiers are uncorrelated and unbiased, then by

2002) is a two step classifier. First, the sense probagzonsjdering a classifier that selects the class that

0.0 0.2 0.4 0.6 0.8 1.0

bility is computed as a linear mixture maximizes the posterior class problslbility average
1
P(sld) = ZP(s|f, d)P(f|d) = ZP(s|f)P(f|d) ¢ = argm?xP (c) = arg max — Zpk (¢ D)
fed fed k=1

- i i the error is reduced by a factor gi; This case
where the probabilityP (s|w) is estimated from s mostly of theoretical interest, since in practice
data and” (w|d) is computed as a weighted normal- 5 the classifiers will tend to make errors on the
ized similarity between the word and the target «parger” samples.
word z (also taking into account the distance in the ' rigyre 3(a) shows the classifier inter-agreement

document betweem andz). In a second pass, the 5mong the six classifiers presented in Section 4, on
sense whose variance exceeds a theoretically Mofje English data. Only two of them, BayesRatio and
vated threshold is selected as the final sense labgysine "have an agreement rate of over Bavhile

(for details, see Cucerzan and Yarowsky (2002)). ihe agreement rate can be as low as 63% (BayesRa-
44 TheDiscriminative Models tio and TBL). The average agreement is 71.7%. The

Two discriminati del din th fact that the classifiers’ output are not strongly cor-
Two discriminative models are used In the experie|ataq suggests that the differences in performance
iments presented in Section 5 - a transformation

- ~"among them can be systematically exploited to im-
based learning system (TBL henceforth) (Brill, 5oe the overall classification. All individual clas-
1995; Ngai and Florian, 2001) and a NON-gjfiers have high stand-alone performance; each is
hierarchical decision lists system (DL henceforth)individually competitive with the best singleen-

(Yarowsky, 1996). For prediction, these systems;ey s > systems and are fortuitously diverse in rel-

utilize local n-grams around the target word (up tOgtjye performance, as shown in Table 3(b). A den-

3 words/lemma/POS to the left/right), bag-of-wordsyogram of the similarity between the classifiers is
and lemma/collocation#20 words around the tar- ¢ponin Figure 2, derived using maximum linkage

get word, grouped by different window sizes) andygrarchical agglomerative clustering.
the syntactic features listed in Section 3.2.

The TBL system was modified to include redun-5.1 Major Types of Classifier Combination
dant rules that do not improve absolute accuracy ofhere are three major types of classifier combina-
training data in the traditional greedy training al-tion (Xu et al., 1992). The most general type is the
gorithm, but are nonetheless positively correlate¢ase where the classifiers output a posterior class
with a particular sense. The benefit of this approacrobability distribution for each sample (which can
is that predictive but redundant features in trainingoe interpolated). In the second case, systems only
context may appear by themselves in new test corsutput a set of labels, together with a ordering of
texts, improving coverage and increasing TBL bas@reference (likelihood). In the third and most re-

model performance by 1-2%. strictive case, the classifications consist of just a sin-
. o gle label, without rank or probability. Combining
5 Modelsfor Classifier Combination classifiers in each one of these cases has different

One necessary property for success in Combiningroperties; the !‘emainder of th|S -Section examines
classifiers is that the errors produced by the comdodels appropriate to each situation.

ponent classifiers should not be positively corre-  The performance is measured using 5-fold cross validation
lated. On one extreme, if the classifier outputs aren training data.




g

5 it | System | SENSEVALL] SENSEVAL2 |
e o | [ EN [ENJESJTEUJ SV
g o [Baseline] 63.2 |483[459]62.7]46.2]
o o NB 80.4 65.7]| 67.9] 712 | 66.7

8 oss BR 79.8 65.3] 69.0 | 69.6 | 68.0

5 .. Cosine 74.0 62.2| 65.9]66.0] 66.4

2 DL 799 [ 632651 70.7 615

g TBL 80.7 64.4] 64.7]69.4]62.7

os ISR die MMVC 81l.1 66.7 | 66.7 ] 69.7] 61.9

(b) Individual classifier performance; best performers are

(a) Classifier inter-agreement OSENSEVAL2 shown in bold

English data
Figure 3: Individual Classifier Properties (cross-validatiorseNnSEVAL training data)

5.2 Combining the Posterior Sense Probability — C'(z,d) (s) = 0 (s, sz,4) » 52,4 Deing the goldstan-

Distributions dard sense af in d andé the Kronecker function:
One of the simplest ways to combine the poste- 5 [0 ifz#y
rior probability distributions is via direct averaging @Y =11 ifz = y

(Equation (1)). Surprisingly, this method obtainSag shown in Fuhr (1989), Perrone and Cooper
reasonably good results, despite its simplicity and1993), the solution to the optimization problem (3)
the fact that is not theoretlcally_mo_tlvated under g an pe obtained by solving a linear set of equations.
Bayes framework. Its success is highly dependentpe resulting classifier will have a lower square er-
on the condition that the classifiers’ errors are Unyg; than the average classifier (since the average
correlated (Tumer and Gosh, 1995). classifier is a particular case of weighted mixture).

'I_'he aver_aging method is a particular case of Another common method to compute thepa-
weighted mixture"

N rameters is' by using the Expectation-Maximization

P (s|lz,d) = Zp(kmd).pk (s|lz,d) = (EM) algorithm (Dempster et al., 1977). One
1 can estimate the coefficients such as to max-
N imize the log-likelihood of the data,l. =

e (z,d) - Py (s]z, d) (2) 224z l08P (ssalz,d). In this particular opti-
1 mization problem, the search space is convex, and
therefore a solution exists and is unique, and it can
be obtained by the usual EM algorithm (see Berger
(1996) for a detailed description).
An alternative method for estimating the parame-
The mixture  interpolation coefficients can be!€'S* IS t0 approximate them with the performance
computed at different levels of granularity. For©f thek™ classifier (gperformance-based combiner)
instance, one can make the assumption tha@’an Halteren et al., 1998; Sang et al., 2000)
P (k|lz,d) = P (k|z) and then the coefficients will A (z,d) = P (Cy_is_corredtz, d) (4)
be computed at word level; P (k|x,d) = P (k)
then the coefficients will be estimated on the entirgherefore giving more weight to classifiers that have
data. a smaller classification error (the method will be re-
One way to estimate these parameters is by linederred to as PB). The probabilities in Equation (4)

regression (Fuhr, 1989): estimate the coefficientgre estimated directly from data, using the maxi-
that minimize the mean square error (MSE) mum likelihood principle.

minz Z 5.3 Combination based on Order Statistics
z d (3 In cases where there are reasons to believe that the
where C (z,d) is the target vector of the cor- posterior probability distribution output by a clas-

rect classification of wordz in document d: Sifier is poorly estimatéd but that the relative or-
dering of senses matches the truth, a combination

k=
where \; (d, d) is the weight assigned to the clas-
sifier £ in the mixture andy (s|z,d) is the poste-
rior probability distribution output by classifig;
for A (z,d) = + we obtain Equation (1).

N
C(z,d) =Y M (x,d) - p(|z,d)
k=1

“Note that we are computing a probability conditioned both
on the target wordc and the document, because the docu- SFor instance, in sparse classification spaces, the Naive
ments are associated with a particular target warthis for- Bayes classifier will assign a probability very close to 1 to the
malization works mainly for the lexical choice task. most likely sense, and close to 0 for the other ones.




strategy based on the relative ranking of sense pOgsheress; ; (z,d) = argmax; P (¢|3; (z,d) , 3; (z, d)).
terior probabilities is more appropriate. The sensgach classifier votes for its classification and every

posterior probability can be computed as pair of classifiers votes for the sense that is most
S Ak (2, k) ranky, (s|z, d) likely given the joint classification. In the experi-
k ments presented in van Halteren et al. (1998), this

P (slz,d) = Y3 Ak (z, k) ranky, (s'|z, d) (5) method was the best performer among the presented

s’k methods. Van Halteren et al. (2001) extend this
where the rank of a sensas inversely proportional method to arbitrarily long conditioning sequences,
to the number of senses that are (strictly) more probebtaining the best published POS tagging results on
able than sense four corpora.

rank (sl d) = (|{&'|Ps ('l d) > Pe (sl )} +1) " Empirical Evaluation

This method will tend to prefer senses that appe ‘e - )
closer to the top of the likelihood list for most of theaignﬁglpilglctﬂlelypﬁiﬁ (;[Sg scgégghna\}\llgnrargeésggﬁrﬁéits
classifiers, therefore being more robust both in CaSES theSENSEVALL English data’and data from four
where one classifier makes a large error and in Cases \ ccval2 lexical sample tasks: English(EN)
where some classifiers consistently overestimate t banish(ES), Basque(EU) and SWedish(SV) Un-
posterior sense probability of the most likely SENS€egs explicitly stated otherwise, all the results in the
5.4 TheClassifier Republic: Voting following section were obtained by performing 5-

Some classification methods frequently used ifold cross-validatioh To avoid the potential for

NLP directly minimize the classification error and OVer-optimization, a single final evaluation system
do not usually provide a probability distribution was run once on the otherwise untouched test data,

over classes/senses (e.g. TBL and decision lists}S Presented in Section 6.3. _ _
There are also situations where the user does not | N€ data consists of contexts associated W'_th a
have access to the probability distribution, such aSPeCific word to be sense tagged (target word); the

when the available classifier is a black-box that oniyFONtext size varies from 1 sentence (Spanish) to

outputs the best classification. A very commonp Sentences (English, Swedish). Table 1 presents

technique for combination in such a case is by votSOMe statistics collected on the training data for the
ing (Brill and Wu, 1998; van Halteren et al., 1998;five data sets. Some of the tasks are quite challeng-

Sang et al., 2000). In the simplest model, each clad"d (€-9- SENSEVAL2 English task) — as illustrated
sifier votes for its classification and the sense thaty the mean participating systems’ accuracies in Ta-

receives the most number of votes wins. The behaR'€ S.

ior is identical to selecting the sense with the highest ©Outlining the claim that feature selection is im-
posterior probability, computed as portant for WSD, Table 2 presents the marginal loss

] in performance of eitheonly using one of the po-
P (sl d) % Ak (2,d) -0 (s, 3¢ (2, d)) siti%nal feature classes ekgluding one of the Bo-
S|T,0) = z sitional feature classes relative to the algorithm’s
; % M (@,d) - 8 (8, 3 (2,d)) (6)  full performance using all available featuregclasses.
where/ is the Kronecker function ang, (z,d) is It is interesting to note that the feature-attractive
the classification of thé!" classifier. The\, co- Methods (NB,BR,Cosine) depend heavily on the
efficients can be either equal (in a perfect classifiePagOfordsfeatures, while discriminative methods
democracy), or they can be estimated with any ofifé most dependent drocal Context features. For
the techniques presented in Section 5.2. Sectiof! extensive evalua_tlon o_f factors mfluencmg the
6 presents an empirical evaluation of these tech!VSD performance (including representational fea-
niques. tures), we refer the readers to Yarowsky and Florian
Van Halteren et al. (1998) introduce a modified(2002)
version o_f_votlng calleq TagPair. Under this model,s_l Combination Performance
the conditional probability that the word sensesis
given that classifief outputss; and classifief out-
putssy, P (s]3; (z,d) = s1, 8 (x,d) = s2), is com-
puted on development data, and the posterior prob- éwnen parameters needed to be estimated, a 3-1-1 split was

ability is estimated as used: the systems were trained on three parts, parameters esti-
mated on the fourth (in a round-robin fashion) and performance

N
P (s|z,d) Z(S (s, 3k (z,d)) + Z(s (5,34, (z,d)) tested on the fifth; special care was taken such that no “test”
1 ) data was used in training classifiers or parameter estimation.

Table 3 shows thé&ne-grained sense accuracy (per-
cent of exact correct senses) results of running the

Jj<i



SEL SENSEVAL2 SE1 SENSEVAL2
EN [ENJ ESTEUJ[ SV Method EN EN | ES | EU | Y
#words 42 73 | 39 | 40 | 40 Individual Classifiers
#samples 12479 8611| 4480| 3444| 8716 Mean Acc| 795]1 65.0] 66.6| 70.4] 65.9
avg #senses/word 11.3 | 10.7] 49| 48] 11.1 BestAcc | 81.11 66.71 68.8| 71.2 | 68.0
avg #samples/sens®6.21] 9.96| 23.4| 17.9] 19.5 Probability | nterpolation
Table 1: Training set characteristics Avlt\e/lrg%mg gg; gg(l) ggg ;ig 6689126
| Performance drop relative to full system (%) | EM 82.71 6841696 72.1| 69.1
NB [Cosne| BR | TBL | DL PB 8281 68.0| 69.4| 72.2| 68.7
BoW Ftrs Only -6.4 -4.8 -4.8 -6.0 -3.2 Rank-basad Combination

Local FtrsOnly | -184 | -115| -6.1| -15 | -3.3
Syntactic FirsOnly -28.1 | -149| -54| -54 | -4.8

No BoW Ftrs -147| -81 | -53 | -0.5° | -2.0

rank  [83.1[686]71.0]721] 70.3 |
Count-based Combination (\Voting)

NoLocalFis |35 | 08 [ 22 29 | 45 Simple Vote| 82.8 68.1] 70.9 | 72.1 | 70.0
No Syntactic Firs[ -1.1 | -0.8° | -1.3 | -1.0 | 2.3 TagPair | 82.9] 68.3] 70.9 | 72.1 | 70.0
EM 83.0|68.4| 70.5] 71.7| 70.0
Table 2: Individual feature type contribution to perfor- PB 83.1|68.5] 70.8] 72.0| 70.3
mance. Fields marked withindicate that the difference Stacking (M eta-Combination)
in performance was not statistically significant dt.al | Prob. Interp| 83.2 [ 68.6 [ 71.0 [ 723 | 704 ]

level (paired McNemar test).

- o - Table 3: Classifier combination accuracy over 5 base
classifier combination methods for 5 classifiers, NB,  sgifiers: NB, BR, TBL, DL, MMVC. Best perform-

(Naive Bayes), BR (BayesRatio), TBL, DL and jng methods are shown in bold.

MMVC, including the average classifier accuracy

and the best classification accuracy. Before examin-[Estimation Leve] word | POS [ ALL [ Interp |
ing the results, it is worth mentioning that the meth- Accuracy 68.1 | 68.2 | 68.0 | 684
ods which estimate parameters are doing so on g CrossEntropy | 1.623 | 1.635| 1.646 | 1.632
smaller training size (3/5, to be precise), and this . . 3
can have an effect on how well the parameters argable 4: Accuracy for different EM-weighted probability
estimated. After the parameters are estimated, hoWltérpolation models fOsENSEVALZ

ever, the interpolation is done between probabilityPB_Vo,[e methods’ output. The difference in perfor-

distributions that are computed on 4/5 of the trainy, o0 hetween the stacked classifier and the best
ing data, similarly to the methods that do not esti

‘classifier is statistically significant for all data sets
mate any parameters.

. . ... at a significance level of at leash—>, as measured
The unweighted averaging model of probabllltyby a paired McNemar test
interpolation (Equation (1)) performs well, obtain- :

; 0 One interesting observation is that for all meth-
ing over 1% mean absolute performance over thgyg of)_narameter estimation (EM, PB and uniform
best classifigr the difference in performance is

statistically significant in all cases except Swedis weighting) the count-based and rank-based strate-
) o =~ ies that ignore relative pr ility magni -
and Spanish. Of the classifier combination tech: es that ignore relative probability magnitudes out

, 2T erform their equivalent combination models using
niques, rank-based combination and performanc

. . yrobability interpolation. This is especially the case
based voting perform best. Their mean 2% absolutgno the hase classifier scores have substantially
improvement over the single best classifier is S'gn'f'di

icantinalll Also. thei : fferent ranges or variances; using relative ranks
Icantin all languages. AISo, their accuracy Improve-a e ctively normalizes for such differences in model
ment relative to uniform-weight probability interpo-

S - A . behavior.
lation is statistically significant in aggregate and for For the three methods that estimate the interpo-

all languages except Basque (where there is 9enqGiion weights — MSE, EM and PB — three vari-

all¥a small difrf]erencebamofr_]gfall clahssifier?). ants were investigated. These were distinguished by
__To ensure that we benefit from the performancey,q qranylarity at which the weights are estimated:
improvement of each of the stronger combination,; \uord |evel & (z,d) = A (z)), at POS level

methods and also to increase robustness, a final ; ;
. . X ' xz,d) = A\ (pos (x))) and over the entire train-
eraging method is applied to the output of the besiﬁg get Q?k (z, ffl)(p: A(,g)?)'l)'able 4 displays the results

performing combiners (creating stacked classi- : Lo :
fier). The last line in Table 3 shows the results ob-ébtamed by estimating the parameters using EM at

; ; ifferent sample granularities for thEENSEVAL2
tained by averaging the rank-based, EM-vote angpqjish data. The number in the last column is ob-

"The best individual classifier differs with language, ast@ined by interpolating the first three systems. Also
shown in Figure 3(b). displayed iscross-entropy, a measure of how well
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Figure 4: Individual basic classifiers’ contribution to the final classifier combination performance.

the combination classifier estimates the sense prolmused and unexamined during experimentation to

abilities,CE = — ¥, 4 P (54.4) log P (s|z, d). avoid any possibility of indirect optimization on this
’ data. But to provide results more readily compara-
6.2 Individual Systems Contribution to ble to the official benchmarks, a single consensus
Combination system was created for each language using linear

An interesting issue pertaining to classifier combi-2verage stacking on the top three classifier combi-
nation is what is the marginal contribution to final Nation methods in Table 3 for conservative robust-
combined performance of the individual classifierN€Ss. The final frozen consensus system for each
A suitable measure of this contribution is the dif-language was applied once to tBENSEVAL test
ference in performance between a combination sy$€ts. The fine-grained results are shown in Table
tem’s behavior with and without the particular clas-2- For each language, the single new stacked com-

sifier. The more negative the accuracy difference oRination system outperforms the best previously re-
omission, the more valuable the classifier is to th&OrtedSENSEVAL results on the identical test data

ensemble system. As far as we know, they represent the best published

Figure 4(a) displays the drop in performance oplesults for any of these fiveENSEVAL tasks.
tained by eliminqting in turn each classifier from the7 Conclusion
6-way combination, across four languages, whil lusi h ted i
Figure 4(b) shows the contribution of each classifiet”’ conciusion, we have preseniéd a comparative
on theSENSEVAL2 English data for different train- €valuation study of combining six structurally and
ing sizes (10%-80%8) Note that the classifiers with Procedurally different classifiers utilizing a rich
the greatest marginal contribution to the combinec‘fo?."nOn ftehatgre_sp;su(:j(_e. Var|0Lthb clasdsmer kc?)mb"d
system performance are not always the best singl'éadIon mbe b'?'ts’bmmél Ing Cg.untT ased, raan - "?‘sed
performing classifiers (Table 3(b)), but those with®" § prol at' 'dy'Tise com '”at'O”S are describe
the most effectiveriginal exploitation of the com- &Nd evaluated. 1he eExperments encompass super-
mon feature space. On average, the classifier th¥}S€d I€xical sample tasks in four diverse languages:
contributes the most to the combined system's pef="91ish. Spanish, Swedish, and Basque.
formance is the TBL classifier, with an average im- o7 evaluate systems on the full disambiguation task, it is

provement 0f0.66% across the 4 languages. Also, appropriate to compare them on their accuracy at 100% test-
note that TBL and DL offer the greatest marginaldata coverage, which is equivalent to systexall in the offi-

contribution on smaller training sizes (Figure 4(b)) cial SENSEVAL scores. However, it can also be useful to con-
“sider performance on only the subset of data for which a sys-
tem is confident enough to answer, measured by the secondary
6.3 Performance on Test Data measureprecision. One useful byproduct of the CBV method
At all points in this article, experiments have beenis the confidence it assigns to each sample, which we measured
based strictly on the origin@ENSEVALL andSEN- by the number of classifiers that voted for the sample. If one

- . L restricts system output to only those test instances where all
SEVALZ training sets via cross-validation. The of- participating classifiers agree, consensus system performance

ficial SENSEVALL and SENSEVAL2 test sets were s 83.4% precision at a recall of 43%, for an F-measure of 56.7
on theseNSEVAL2 English lexical sample task. This outper-
8The latter graph is obtained by sampling repeatedly aforms the two supervisedENSEVAL2 systems that only had
prespecified ratio of training samples from 3 of the 5 cross-partial coverage, which exhibited 82.9% precision at a recall of
validation splits, and testing on the other 2. 28% (F=41.9) and 66.5% precision at 34.4% recall (F=47.9).




SENSEVALL SENSEVAL2 Sense Classification Accuracy
English English | Spanish | Swedish | Basque

Mean OfficialSENSEVAL Systems Accuracy | 73.1+2.9 | 55.7£5.3 | 59.6+5.0 | 58.4+6.6 | 74.4+1.8
Best Previously PublishesENSEVAL Accuracy 77.1% 64.2% 71.2% 70.1% 75.7%
Best Individual Classifier Accuracy 77.1% 62.5% 69.6% 68.6% 75.6%
New (Stacking) Accuracy 79.7% 66.5% 72.4% 71.9% 76.7%

Table 5: Final Performance (Frozen SystemsyaRNSEVAL Lexical Sample WSD Test Data

The experiments show substantial variation 1 Henderson and E. Brill. 1999. Exploiting diversity in natural
single classifier performance across different lan-language processing: Combining parsersProceedings on
guages and data sizes. They also show that thi$MNLP99, pages 187-194. _ _
variation can be successfully exploited by 10 diffef* Kilgarriff and M-aza'me;- 20%0t.h ":jmd“c.‘t'.o” t,o?4t(r1“)3 fFi%C'a'

g . . . ISSue on sensevalL.omputer an e Humanities, 1-15.
ent classifier combination methods (and their metg- .~ .

i h of which (t f b %Kllgarnﬁ and J. Rosenzweig. 2000. Framework and re-
voting consensus), each of which outperforms bothgyts for English SensevaiComputers and the Humanities,
the single best classifier system and standard classiz4(1):15-48.
fier combination models on each of the 4 focus lag-D. Manning and H. Schiitze. 199Boundations of Satistical
guages. Furthermore, when the stacking consensubatural Language Processing. MIT Press.
systems were frozen and applied once to the otherNgai and R. Florian. 2001. Transformation-based learning in
wise untouched test sets, they substantially outper{he fastlane. IProceedings of NAACL' 01, pages 40-47.

; _ T.Pedersen. 1998. Naive Bayes as a satisficing mod®ork-
formed all previously kKnowrsENSEVALL andsSEN ing Notes of the AAAI Symposium on Satisficing Models,

SEE)/'IA.Lﬁ [jesultsl on 4 Ir?ngurages, obtaining the be‘ﬁtPedersen. 2000. A simple approach to building ensembles of
published results on these data sets. naive bayesian classifiers for word sense disambiguation. In
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