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Abstract

In this paper, we evaluate the results of
the Antwerp University word sense dis-
ambiguation system in the English all
words task of SENSEVAL -2. In this ap-
proach, specialized memory-basedword-
experts weretrained per word-POScom-
bination. Through optimization by cross-
validation of the individual component
classifiersandthevoting schemefor com-
bining them,thebest possible word-expert
wasdetermined. In the competition, this
word-expert architecture resulted in accu-
raciesof 63.6%(fine-grained) and64.5%
(coarse-grained) on the SENSEVAL -2 test
data.

In order to better understand these re-
sults, we investigatedwhether classifiers
trained on different information sources
performed differently on the different
part-of-speech categories. Furthermore,
the results wereevaluated in termsof the
available number of training items, the
numberof senses,andthe sensedistribu-
tions in the data set. We conclude that
there is no information source which is
optimal over all word-experts. Selecting
the optimal classifier/voter for eachsin-
gle word-expert, however, leads to major
accuracy improvements. We furthermore
show that accuracies do not so muchde-
pendon the available number of training
items,but largely on polysemy andsense
distributions.

1 Intr oduction

The task of word sensedisambiguation (WSD) is
to assign a sense label to a word in context. Both
knowledge-basedandstatistical methodshave been
applied to theproblem. See(Ide andVéronis,1998)
for an introduction to the area. Recently (both
SENSEVAL competitions), various machinelearn-
ing (ML) approaches have been demonstrated to
produce relatively successful WSD systems, e.g.
memory-basedlearning (Ng and Lee, 1996; Veen-
stra et al., 2000), decision lists (Yarowsky, 2000),
boosting (Escudero et al., 2000).

In thispaper, weevaluatetheresults of amemory-
based learning approachto WSD.We askourselves
whether we canlearnlessons from the errors made
in theSENSEVAL -2 competition. More particularly,
we are interestedwhether there arewords or cate-
gories of wordswhich aremoredifficult to predict
than other words. If so, do these words have cer-
tain characteristic features?We furthermoreinvesti-
gatethe interaction between the useof different in-
formation sourcesandthepart-of-speechcategories
of the ambiguous words. We also study the rela-
tion betweenthe accuracy of the word-expertsand
theirnumber of training items,numberof sensesand
sense distribution. For theseexperiments, we per-
formedall SENSEVAL -2 experimentsall over again.

In the following Section, we briefly outline the
WSD architecture usedin theexperiments,anddis-
cusstheword-expertapproachandtheoptimization
procedure.Furthermore,abrief overview is givenof
theresults of thedifferentcomponentsof theword-
expertsonthetrainsetandtheSENSEVAL -2 testma-
terial. In Section 3,weevaluatetheresults of thedif-
ferent classifiersperpart-of-speechcategory. In the
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sameSection, theseresults are further analysedin
relation to thenumber of training items,thenumber
of sensesandthesensedistribution. Section 4 gives
a detailed analysisof theresults of our approachon
the SENSEVAL -2 testmaterial. We endwith some
concluding remarksin Section5.

2 Memory-basedword-experts

Our approachin the SENSEVAL -2 experimentswas
to train so-called word-expertsper word-POScom-
bination. These word-experts consist of several
learning modules, eachof themtaking different in-
formationasinput, whicharefurthermorecombined
in a voting scheme.

In the experiments, the Semcorcorpus included
in WordNet1.61 was usedas train set. In the cor-
pus, every word is linked to its appropriate sense
in the WordNet lexicon. This training corpus con-
sistsof 409,990word forms, of which 190,481 are
sense-tagged. Thetestdatain theSENSEVAL -2 En-
glishall wordstaskconsist of threearticlesondiffer-
ent topics, with at total of 2,473wordsto besense-
tagged. WordNet1.7wasusedfor theannotation of
thesetestdata. No mapping wasperformedbetween
both versions of WordNet. For both the training
andthe testcorpus,only the word forms wereused
and tokenization, lemmatization and POS-tagging
were done with our own software. For the part
of speech tagging, the memory-basedtaggerMBT
(Daelemans et al., 1996), trained on theWall Street
Journalcorpus2, wasused. Onthebasisof wordand
POSinformation, lemmatization (van den Bosch
andDaelemans,1999) wasdone.

After this preprocessing stage,all word-experts
werebuilt. Thisprocesswasguidedby WordNet1.7:
for every combination of a word form and a POS,
WordNet1.7 was consulted to determine whether
this combination had one or more possible senses.
In caseof only one possible sense(about 20% of
the testwords),theappropriate sensewasassigned.
In caseof morepossible senses,a minimal thresh-
old of ten occurrences in the Semcortraining data
wasdetermined,since10-fold cross-validation was
usedfor testing in all experiments. This threshold

1Availablefrom http://www.cogsci.princeton.edu/˜wn/. Fur-
therinformationon WordNetcanbefoundin Fellbaum(1998).

2ACL Data Collection Initiative CD-Rom 1, September
1991
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Figure 1: Accuracy of the different classifiers and
voting techniquesin relation to a threshold varying
between10 and100. This accuracy is calculatedon
the wordswith morethanonesense which qualify
for theconstruction of a word-expert.

wasthenvariedbetween10 and100 training items
in orderto determinetheoptimalnumberof training
instances.For all wordsof which thefrequency was
lower thanthethreshold (alsoabout 20%of thetest
words), themostfrequentsenseaccording to Word-
Net1.7waspredicted.Thecross-validation results in
Figure2 clearly show thataccuracy dropswhenthe
contribution of thebaseline classifier increases. The
application of theWordNetbaselineclassifier yields
a61.7%accuracy. The“best” graph displaystheac-
curacy whenapplying theoptimal classifier for each
single word-expert: with a threshold of 10, a 73.8%
classification accuracy is obtained. On the basisof
theseresults, we setthe threshold for the construc-
tion of a word-expert to 10 training items. For all
wordsbelowthis threshold, themostfrequentsense
according to WordNet1.7 wasassignedassense-tag.
For the other words in the test set (1,404 out of
2,473), word-expertswerebuilt for eachword form-
POScombination, leading to 596 word-experts for
theSENSEVAL -2 testdata.



Theword-expertsconsistof differenttrainedsub-
components which make use of different knowl-
edge: (i) a classifier trained on the local context
of the ambiguousfocus word, (ii) a learner trained
on keywords, (iii) a classifier trained on both of
the previous information sources, (iv) a baseline
classifier alwaysproviding the most frequent sense
in the senselexicon and (v) four voting strategies
which vote on the outputs of the previously men-
tioned classifiers. For theexperimentswith thesin-
gle classifiers,we usedthe MBL algorithmsimple-
mentedin TIMBL3. In this memory-basedlearning
approachto WSD, all instancesarestoredin mem-
ory during training and during testing (i.e. sense-
tagging), the instance most similar (Hammingdis-
tance) to that of the focus word and its local con-
text and/or keyword informationis selectedandthe
associated class is returned as sense-tag. For an
overview of thealgorithmsandmetrics,we refer to
Daelemans et al. (2001).� Thefirst classifier in a word-expert takesasin-

put a vector representing the local context of
the focus word in a window of three words
to the left and threeto the right. For the fo-
cus word, both the lemmaand POSare pro-
vided. For thecontext words,POSinformation
is given. E.g., the following is a training in-
stance: American JJ history NN and CC most
most JJS American JJ literature NN is VBZ
most%3:00:01::.� Thesecondclassifierin aword-expertis trained
with information about possibledisambiguat-
ing contentkeywords in acontext of threesen-
tences (focussentenceandonesentenceto the
left andto the right). The methodusedto ex-
tract these keywords for eachsenseis based
on thework of Ng andLee(1996). In addition
to the keyword informationextractedfrom the
local context of the focus word, possible dis-
ambiguatingcontentwordswerealsoextracted
from theexamples in thesensedefinitionsfor a
givenfocusword in WordNet.� Thethird subcomponent is a learnercombining
bothof thepreviousinformationsources.

In order to improvethepredictionsof thedifferent
learning algorithms, algorithm parameter optimiza-

3Available from http://ilk.kub.nl

tion was performedwherepossible. Furthermore,
the possible gain in accuracy of different voting
strategieswasexplored.Ontheoutput of thesethree
(optimized) classifiers and the WordNet1.7. most
frequent sense, both majority voting and weighted
voting wasperformed. In caseof majority voting,
eachsense-tagger is givenonevote andthetagwith
mostvotes is selected. In weighted voting, the ac-
curaciesof thetaggerson thevalidationsetareused
asweightsandmoreweight is given to the taggers
with a higher accuracy. In caseof ties when vot-
ing over theoutput of 4 classifiers, thefirst decision
(TIMBL) wastakenasoutput class. Voting wasalso
performedontheoutput of thethreeclassifierswith-
out taking into account theWordNetclass.

For a more complete description of this word-
expert approach,wereferto (Hosteet al., 2001) and
(Hosteet al., 2002).

3 Evaluation of the results

For theevaluation of ourwordsensedisambiguation
system, we concentrated on the words for which a
word-expert was built. We first evaluatedour ap-
proach usingcross-validation on the training data,
giving us the possiblity to evaluate over a large set
(2,401) of word-experts. Theresults on the test set
(596word-experts) arediscussedin Section4.

3.1 Parts-of-speechvs. information sources

In a first evaluation step, we investigated the in-
teraction betweenthe useof different information
sourcesandthe part-of-speechcategory of the am-
biguous words. Table 1 shows the results of the
different component classifiers and voting mecha-
nismsperpart-of-speechcategory. This table shows
thesametendenciesamongall classifiersandvoters:
the bestscores areobtained for the adverbs, nouns
andadjectives. Their average scoresrange between
64.2%(scoreof thebaselineclassifier on thenouns)
and 76.6% (score of the context classifier on the
adverbs). For the verbs,accuraciesdrop by nearly
10% andrangebetween 56.9%(baseline classifier)
and64.6%(weightedvoters). A similar observation
was madeby Kilgarrif f andRosenzweig (2000) in
the SENSEVAL -1 competition in which a restricted
set of words had to be disambiguated. They also
showed that in English the verbswere the hardest



Pos Baseline local con-
text

keywords local con-
text +
keywords

majority
voting

majority
voting (no
baseline)

weighted
voting

weighted
voting (no
baseline)

NN 64.19 71.36 74.20 69.34 69.31 72.69 73.39 73.75
VB 56.87 64.33 63.82 60.09 60.84 63.55 64.56 64.55
JJ 66.26 72.16 73.80 70.39 70.37 72.79 73.34 73.61
RB 69.95 76.64 74.51 73.05 72.48 74.90 75.51 75.42
ALL 61.73 70.06 69.96 66.89 66.49 69.91 69.91 70.28

Table1: Results on thetrain setof thecomponentclassifiersandvoters perpart-of-speech category

category to predict.

Eachrow in Table1 shows results of the differ-
entword-expertcomponentsperpart-of-speechcat-
egory. This comparisonrevealsthatthereis no opti-
mal classifier/voter per part-of-speech, nor anover-
all optimal classifier. However, makinguseof dif-
ferent classifiers/voterswhich take asinput different
information sourcesdoesmake sense, if the selec-
tion of the classifier/voter is doneat the word level.
Wealready showedthisgainin accuracy in Figure2:
selecting theoptimalclassifier/voter for each single
word-expert leadsto an overall accuracy of 73.8%
on the train set, whereasthe second best method
(weighted voting without taking into account the
baseline classfier) yieldsa 70.3%accuracy.

3.2 Number of training items

We also investigatedwhether the words with the
same part-of-speech have certain characteristics
which make themharder/easier to disambiguate. In
other words, why areverbsharder to disambiguate
thanadverbs? For this evaluation, the results of the
context classifier weretakenasatestcaseandevalu-
atedin termsof (i) thenumber of training items,(ii)
thenumber of sensesin thetraining corpusand(iii)
thesensedistribution within theword-experts.

With respect to the numberof training items,we
observed that their frequency distribution is Zipf-
like (Zipf, 1935): many training instancesonly oc-
cur a limited numberof times, whereas few train-
ing itemsoccur frequently. In order to analyze the
effect of the numberof training itemson accuracy,
all word-expertsweresortedaccording to their per-
formanceandthendivided into equally-sizedgroups
of 50. Figure2 displays the accuracy of the word-
experts in relation to the averagesof thesebagsof
50. TheFigureshows that theaccuracy fluctuations
for thesebagsarehigher for theexpertswith a lim-
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Figure2: Numberof training itemsover all word-
experts in relation to the accuracy of the context
classifier (logscale).

ited numberof training itemsandthat these fluctu-
ations decreaseasthe number of training items in-
creases. The average accuracy level of 70% canbe
situatedsomewhere in themiddleof this fluctuating
line.

This tendency of performancebeingindependent
of the number of training items is also confirmed
when averaging over the number of training items
perpart-of-speechcategory. Theadjectiveshave on
average 49.0 training items and the nouns have an
averageof 52.9training items. Thehighestaverage
numberof training itemsis for theverbs(86.7) and
adverbs(82.1). Whencomparing thesefigureswith
the scoresin Table1, in which it is shownthat the
verbsare hardest to predict, whereas the accuracy
levels on the adverbs, nouns, adjectives are close,
we can conclude that the merenumberof training
itemsis not anaccuratepredictor of accuracy. This
againconfirmsthe usefulnessof training classifiers
evenonverysmalldatasets,alsoshown in Figure1.

3.3 Polysemyand sensedistrib ution

For theEnglish lexical sampletaskin SENSEVAL-1,
Kilgarrif f andRosenzweig(2000) investigated the
effect of polysemy and entropy on accuracy. Pol-



Figure 3: Scatterplot displaying the number of
sensesandthe exponential trendline per POSin re-
lation to theaccuracy of thecontext classifier.

ysemy can be described as the number of senses
of a word-POScombination; entropy is an estima-
tion of the informationchaos in the frequency dis-
tribution of the senses. If the corpus instancesare
evenly spread acrossthe lexicon senses, entropy
will be high. The sensedistribution of ambiguous
wordscanalsobehighly skewed,giving rise to low
entropy scores. Kilgarriff andRosenzweig(2000)
found that the nouns on averagehad higher poly-
semythan the verbs and the verbshad higher en-
tropy. Sinceverbswereharderto predict thannouns,
they cameto theconclusion thatentropy wasa bet-
ter measureof taskdifficulty than polysemy. Since
we wereinterestedwhether the samecould becon-
cluded for the English all-words task, we investi-
gatedthis effect of polysemyandentropy in relation
to theaccuracy of oneclassifier in our word-expert,
namelythecontext classifier.

Figure3 showsthenumberof senses (polysemy)
over all word experts with the samepart-of-speech
in relation to the scores from the context classi-
fier, whereasFigure 4 displays the sensedistribu-
tions (entropy) over all word-expertswith the same
part-of-speech. Although it is not very clear from
the scatter plot in Figure 3, the exponential trend-
linesshowthataccuracy increasesasthenumberof
senses decreases. For the sensedistributions, the
sametendency, but muchstronger, canbeobserved:
low entropy valuesmostlycoincidewith high accu-
racies, whereashigh entropiesleadto low accuracy

Figure4: Scatterplot displaying the entropy of the
sense distributionsandtheexponential trendline per
POSin relation to the accuracy of the context clas-
sifier.

scores. This tendency is also confirmed when av-
eraging thesescoresover all word-expertswith the
samepart-of-speech(seeTable2): theverbs,which
arehardest to predict, aremostpolysemicandalso
show the highest entropy. The adverbs,which are
easiest to predict, have on average the lowestnum-
ber of sensesandthe lowestentropy. We cancon-
clude that both polysemy and in particular entropy
aregoodmeasuresfor determining taskdifficulty.

Theseresults indicate it would be interesting to
work towards a morecoarse-grainedgranularity of
the distinction between word senses. We believe
that this would increaseperformanceof the WSD
systems and make them a possible candidate for
integration in practical applications such as ma-
chine translation systems. This is also shown by
Stevenson andWilks (2001), who used the Long-
man Dictionary of Contemporary English (LDOCE)
assenseinventory. In LDOCE, the sensesfor each
word type aregrouped into setsof senses with re-
latedmeanings (homographs). Senseswhich arefar
enoughapartaregroupedinto separatehomographs.
The vast majority of homographs in LDOCE are
markedwith asinglepart-of-speech.Thismakesthe
task of WSD partly a part-of-speech tagging task,
which is generally held to be an easier task than
word sense disambiguation: on a corpus of 5 arti-
clesin theWall Street Journal, their systemalready
correctly classifies 87.4%of the words when only
using POSinformation(baseline: 78%).



POS Averagepolysemy Averageentropy
RB 3.26� 1.55 1.11� 0.52
JJ 4.11� 1.63 1.35� 0.67
NN 4.75� 2.64 1.52� 0.72
VB 6.36� 4.51 1.74� 0.87

Table2: Average polysemyandentropy perpart-of-
speech category.

As illustratedin Figure 4, the context classifier
performsbeston word-POScombinations with low
entropy values. However, sincelow entropy scores
arecausedby at the oneend,many instanceshav-
ing the samesenseand at the other, a very few
instanceshaving different senses, this implies that
simply choosingthe majority class for all instances
already leadsto high accuracies. In order to deter-
mine performanceon those low entropy words, we
selected 100 wordswith the lowestentropy values.
Thelocal context classifier hasanaverageaccuracy
of 96.8%on thesewords,whereas thebaseline clas-
sifier which always predicts the majority class has
an averageaccuracy of 90.2%. Thesescoresshow
that even in the caseof highly skewedsense dis-
tributions, wherethe large majority of the training
instancesreceives a majority sense, our memory-
based learning approachperformswell.

4 Resultson the Senseval testdata

In order to evaluate our word-expert approach on
the SENSEVAL -2 testdata,we divided thedatainto
three groups as illustrated in Table 3. The one-
sense group (90.5% accuracy) contains the words
with one sense according to WordNet1.7. Besides
theerrorsmadefor the“U” words,theerrors in this
group wereall due to incorrect POStagsand lem-
mata. The more-sense � threshold group (63.3%
accuracy) contains the wordswith moresenses but
for which no word-expert wasbuilt dueto an insuf-
ficient number(lessthan10) of training instances.
Thesewordsall receivethemajority senseaccording
to WordNet1.7.Themore-sense � threshold group
(55.3% accuracy) contains the words for which a
word-expert is built. In all threegroups, top per-
formanceis for thenounsandadverbs;theverbsare
hardest to classify. The last row of Table3 shows
theaccuracy of our systemon theEnglishall words
testset. Sinceall 2,473word forms werecovered,
no distinction is madebetweenprecision andrecall.

On the completetest set, an accuracy of 64.4%is
obtainedaccording to thefine-grainedSENSEVAL -2
scoring.

This result is slightly different from the score
obtained during the competition (63.6%),sincefor
thesenew experimentscompleteoptimization was
performedover all parametersettings. Moreover, in
thecompetition experiments,Ripper (Cohen, 1995)
was usedas the keyword classifier, whereas in the
new experiments TIMBL was usedfor training all
classifiers. Justasin the SENSEVAL-1 taskfor En-
glish (Kilgarrif f andRosenzweig,2000), overall top
performanceis for the nouns andadverbs. For the
verbs, the overall accuracy is lowest: 48.6%. This
wasalsothe casein the train set(seeTable1). All
86“unknown” word forms,for which theannotators
decided that no WordNet1.7sense-tag wasapplica-
ble,weremis-classified.

Although our WSD system performed second
beston theSENSEVAL -2 testdata, this 64.4%accu-
racy is ratherlow. Whenonly takinginto accountthe
wordsfor whichaword-expertis built, a55.3%clas-
sification accuracy is obtained. This scoreis nearly
20%belowtheresult on thetrain set(seeFigure1):
73.8%.A possible explanation for theaccuracy dif-
ferencesbetween the word-expert classifiers on the
testandtraindata, is thattheinstancesin theSemcor
training corpus do not cover all possible WordNet
senses: in the training corpus, the words we used
for theconstruction of word-expertshadon average
4.8� 3.2 senses, whereasthosesamewordshadon
average 7.4� 5.8 senses in WordNet. This implies
that for many sense distinctions in the testmaterial
no training material was provided: for 603 out of
2,473 test instances(24%), the assigned sensetag
(or in caseof multiple possible sensetags, one of
those senses) wasnot providedin thetrain set.

5 Conclusion

In thispaper, weevaluatedtheresults of theAntwerp
automatic disambiguation system in the context of
the SENSEVAL -2 English all words task. Our ap-
proach was to createword-experts per word-POS
pair. Theseword-expertsconsist of different clas-
sifiers/voters, which all take different information
sourcesas input. We concluded that therewas no
informationsourcewhich wasoptimal for all word-



nouns verbs adverbs adjectives U Total
One-sense # 263 29 110 89 22 513

acc. 98.9 72.4 96.4 86.5 0.0 90.5
More-sense	 threshold # 241 120 33 132 30 556

acc. 74.3 57.5 72.7 60.6 0.0 63.3
More-sense
 threshold # 563 405 158 244 34 1,404

acc. 63.4 44.2 59.5 59.8 0.0 55.3
Total # 1,067 554 301 465 86 2,473

acc. 74.6 48.6 74.4 65.2 0.0 64.4

Table3: Results on theSENSEVAL -2 testdata.

experts. But we alsoshowedthatselecting theopti-
mal classifier/voter for each singleword-expert led
to majoraccuracy improvements.

Sincenotall wordswereequally hard/easyto pre-
dict, we alsoevaluatedthe results of our WSD sys-
tem in terms of the available number of training
items, the number of senses and the sensedistri-
butions in the data set. Suprisingly, we observed
that the available number of training itemswasnot
anaccuratemeasurefor taskdifficulty. But we fur-
thermoreconcludedthatthefluctuationsin accuracy
largely depend on the polysemyandentropy of the
ambiguouswords. On thebasis of theseresults, we
conclude that a morecoarse-grainedgranularity of
thedistinctionbetweenword senses would increase
performanceof theWSD systemsandmake thema
possible candidatefor integration in practical appli-
cationssuchasmachine translation systems.

When evaluating our system on the test set, ac-
curacy droppedby nearly20% compared to scores
on the train set, which could be largely explained
by lack of training material for many senses.Sothe
creation of more annotateddata is necesssary and
will certainly causemajor improvements of current
WSDsystemsandNLP systemsin general (seealso
(Banko andBrill, 2001)).
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