Proceedi ngs of the SI GLEX/ SENSEVAL Wirkshop on Wrd Sense

Di sanbi guati on:
July 2002, pp. 74-80.

Recent Successes and Future Directions,

Phi | adel phi a,

Associ ation for Conputational Linguistics.

Combining Heterogeneous Classifiers for Word-Sense Disambiguation

Dan Klein, Kristina Toutanova, H. Tolgallhan,
Sepandar D. Kamvar and Christopher D. Manning
Computer Science Department
Stanford University
Stanford, CA 94305-9040, USA

Abstract

This paper discusses ensembles of simple but het-
erogeneous classifiers for word-sense disambigua-
tion, examining the Stanford-cs224N system en-
tered in the SENSEVAL-2 English lexical sample
task. First-order classifiers are combined by a
second-order classifier, which variously uses ma-
jority voting, weighted voting, or a maximum en-
tropy model. While individual first-order classifiers
perform comparably to middle-scoring teams’ sys-
tems, the combination achieves high performance.
We discuss trade-offs and empirical performance.
Finally, we present an analysis of the combination,
examining how ensemble performance depends on
error independence and task difficulty.

1 Introduction

The problem of supervised word sense disambigua-
tion (wsD) has been approached using many differ-
ent classification algorithms, including naive-Bayes,
decision trees, decision lists, and memory-based
learners. While it is unquestionable that certain al-
gorithms are better suited to the wsbD problem than
others (for a comparison, see Mooney (1996)), it
seems that, given similar input features, various al-
gorithms exhibit roughly similar accuracies.® This
was supported by the SENSEVAL-2 results, where a

This paper is based on work supported in part by the Na-
tional Science Foundation under Grants 115-0085896 and 1IS-
9982226, by an NSF Graduate Fellowship, and by the Research
Collaboration between NTT Communication Science Labora-
tories, Nippon Telegraph and Telephone Corporation and CSLI,
Stanford University.

Lin fact, we have observed that differences between imple-
mentations of a single classifier type, such as smoothing or win-
dow size, impacted accuracy far more than the choice of classi-
fication algorithm.

large fraction of systems had scores clustered in a
fairly narrow region (Senseval-2, 2001).

We began building our system with 23 supervised
wsD systems, each submitted by a student taking
the natural language processing course (CS224N) at
Stanford University in Spring 2000. Students were
free to implement whatever wsb method they chose.
While most implemented variants of naive-Bayes,
others implemented a range of other methods, in-
cluding n-gram models, vector space models, and
memory-based learners. Taken individually, the best
of these systems would have turned in an accuracy
of 61.2% in the SENSEVAL-2 English lexical sam-
ple task (which would have given it 6th place), while
others would have produced middling to low perfor-
mance. In this paper, we investigate how these clas-
sifiers behave in combination.

In section 2, we discuss the first-order classifiers
and describe our methods of combination. In sec-
tion 3, we discuss performance, analyzing what ben-
efit was found from combination, and when. We also
discuss aspects of the component systems which
substantially influenced overall performance.

2 The System

2.1 Training Procedure

Figure 1 shows the high-level organization of our
system. Individual first-order classifiers each map
lists of context word tokens to word-sense predic-
tions, and are self-contained wsb systems. The first-
order classifiers are combined in a variety of ways
with second-order classifiers. Second-order classi-
fiers are selectors, taking a list of first-order out-

Final classifier

2nd. order ranking

Majority Weighted

2nd. order classifiers { oy } { iaghe } {Maximum]

Entropy

1st. order ranking

1st. order classifiers

Figure 1: High-level system organization.

1 Split data into multiple training and held-out parts.
Rank first-order classifiers globally (across all words).
Rank first-order classifiers locally (per word),
breaking ties with global ranks.
For each word w
For each size k
Choose the ensemble E,, i to be the top k classifiers
For each voting method m
Train the (k, m) second-order classifier with E,, x
Rank the second-order classifier types (k, m) globally.
10 Rank the second-order classifier instances locally.
11 Choose the top-ranked second-order classifier for each word.
12 Retrain chosen per-word classifiers on entire training data.
13 Run these classifiers on test data, and evaluate results.

w N

©O© 00 N O 01~

Table 1: The classifier construction process.

puts and choosing from among them. An outline
of the classifier construction process is given in ta-
ble 1. First, the training data was split into training
and held-out sets for each word. This was done us-
ing 5 random bootstrap splits. Each split allocated
75% of the examples to training and 25% to held-
out testing.? Held-out data was used both to select
the subsets of first-order classifiers to be combined,
and to select the combination methods.

For each word and each training split, the 23 first-
order classifiers were (independently) trained and
tested on held-out data. For each word, the first-
order classifiers were ranked by their average per-
formance on the held-out data, with the most accu-
rate classifiers at the top of the rankings. Ties were
broken by the classifiers” (weighted) average perfo-
mance across all words.

For each word, we then constructed a set of can-

2Bootstrap splits were used rather than standard n-fold
cross-validation for two reasons. First, it allowed us to gen-
erate an arbitrary number of training/held-out pairs while still
leaving substantial held-out data set sizes. Second, this ap-
proach is commonly used in the literature on ensembles. Its
well-foundedness and theoretical properties are discussed in
Breiman (1996). In retrospect, since we did not take proper ad-

vantage of the ability to generate numerous splits, it might have
been just as well to use cross-validation.

didate second-order classifiers. Second-order clas-
sifier types were identified by an ensemble size k
and a combination method m. One instance of each
second-order type was constructed for each word.

We originally considered ensemble sizes k in the
range {1, 3,5,7,9,11, 13, 15}. For a second-order
classifier with ensemble size k, the ensemble mem-
bers were the top k first-order classifiers according
to the local rank described above.

We combined first-order ensembles using one of
three methods m:

e Majority voting: The sense output by the most
first-order classifiers in the ensemble was chosen.
Ties were broken by sense frequency, in favor of
more frequent senses.

e Wekighted voting: Each first-order classifier was
assigned a voting weight (see below). The sense
receiving the greatest total weighted vote was
chosen.

¢ Maximumentropy: A maximum entropy classifier
was trained (see below) and run on the outputs of
the first-order classifiers.

We considered all pairs of k and m, and so for
each word there were 24 possible second-order clas-
sifiers, though for k = 1 all three values of m are
equivalent and were merged. The k = 1 ensemble,
as well as the larger ensembles (k € {9, 11, 13, 15}),
did not help performance once we had good first-
order classifier rankings (see section 3.4).

For m = Majority, there are no parameters to set.
For the other two methods, we set the parameters of
the (k, m) second-order classifier for a word w using
the bootstrap splits of the training data for w.

In the same manner as for the first-order classi-
fiers, we then ranked the second-order classifiers.
For each word, there was the local ranking of the
second-order classifiers, given by their (average) ac-
curacy on held-out data. Ties in these rankings were
broken by the average performance of the classifier
type across all words. The top second-order classi-
fier for each word was selected from these tie-broken
rankings.

At this point, all first-order ensemble members
and chosen second-order combination methods were
retrained on the unsplit training data and run on the
final test data.

It is important to stress that each target word was
considered an entirely separate task, and different
first- and second-order choices could be, and were,
made for each word (see the discussion of table 2
below). Aggregate performance across words was
only used for tie-breaking.

2.2 Combination Methods

Our second-order classifiers take training instances
of the formS = (s, s, ..., &) where sis the correct
sense and each s is the sense chosen by classifier i.
All three of the combination schemes which we used
can be seen as weighted voting, with different ways
of estimating the voting weights A; of the first-order
voters. In the simplest case, majority voting, we skip
any attempt at statistical estimation and simply set
each A; to be 1/k.

For the method we actually call “weighted vot-
ing,” we view the combination output as a mixture
model in which each first-order system is a mixture
component:

P(slst.....S) = > AP(sls)

The conditional probabilties P(s|s)) assign mass
one to the sense s chosen by classifier i. The mix-
ture weights A; were estimated using EM to max-
imize the likelihood of the second-order training
instances. In testing, the sense with the highest
weighted vote, and hence highest posterior likeli-
hood, is the selected sense.

For the maximum entropy classifier, we have a
different model for the chosen sense s. In this case,
it is an exponential model of the form:

exp Zx)“X fX(s’ S.I.’ R Sr()
dexpd Axfx(t, s, ..., S0)

The features f, are functions which are true over
some subset of vectors S. The original intent was to
design features to recognize and exploit “sense ex-
pertise” in the individual classifiers. For example,
one classifier might be trustworthy when reporting
a certain sense but less so for other senses. How-
ever, there was not enough data to accurately esti-
mate parameters for such models.® In fact, we no-

P(slsy, ..., s) =

3The number of features was not large: only one for each
(classifier, chosen sense, correct sense) triple. However, most
senses are rarely chosen and rarely correct, so most features
had zero or singleton support.

ticed that, for certain words, simple majority voting
performed better than the maximum entropy model.
It also turned out that the most complex features we
could get value from were features of the form:

fi(s,s1,....,.90 =1 & s=5
That is, for each first-order classifier, there is a sin-
gle feature which is true exactly when that classi-
fier is correct. With only these features, the maxi-
mum entropy approach also reduces to a weighted
vote; the s which maximizes the posterior probabil-
ity P(s|si, ...,) also maximizes the vote:

v(S) =) 2id(§ =9)

The indicators § are true for exactly one sense, and
correspond to the simple f; defined above.* The
sense with the largest vote v(s) will be the sense
with the highest posterior probability P(s|sy, . .. %)
and will be chosen.

For the maximum entropy classifier, we estimate
the weights by maximizing the likelihood of a held-
out set, using the standard 11S algorithm (Berger et
al., 1996). For both weighted schemes, we found
that stopping the iterative procedures before conver-
gence gave better results. 11S was halted after 50
rounds, while EM was halted after a single round.
Both methods were initialized to uniform starting
weights.

More importantly than changing the exact weight
estimates, moving from method to method triggers
broad qualitative changes in what kind of weights
are allowed. With majority voting, classifiers all
have equal, positive weights. With weighted vot-
ing, the weights are no longer required to be equal,
but are still non-negative. With maximum entropy
weighting, this non-negativity constraint is also re-
laxed, allowing classifiers’ votes to actually reduce
the score for the sense that classifier has chosen.
Negative weights are in fact assigned quite fre-
quently, and often seem to have the effect of using
poor classifiers as “error masks” to cancel out com-
mon errors.

As we move from majority voting to weighted
voting to maximum entropy, the estimation becomes

4If the ith classifier returns the correct sense s, then
8(si = s)is 1, otherwise it is zero.

more sophisticated, but also more prone to overfit-
ting. Since solving the overfitting problem is hard,
while choosing between classifiers based on held-
out data is relatively easy, this spectrum gives us a
way to gracefully handle the range of sparsities in
the training corpora for different words.

2.3 Individual Classifiers

While our first-order classifiers implemented a va-
riety of classification algorithms, the differences in
their individual accuracies did not primarily stem
from the algorithm chosen. Rather, implementation
details led to the largest differences. For example,
naive-Bayes classifiers which chose sensible win-
dow sizes, or dynamically chose between window
sizes, tended to outperform those which chose poor
sizes. Generally, the optimal windows were either
of size one (for words with strong local syntactic or
collocational cues) or of very large size (which de-
tected more topical cues). Programs with hard-wired
window sizes of, say, 5, performed poorly. Iron-
ically, such middle-size windows were commonly
chosen by students, but rarely useful; either extreme
was a better design.®

Another implementation choice dramatically af-
fecting performance of naive-Bayes systems was the
amount and type of smoothing. Heavy smoothing
and smoothing which backed off conditional dis-
tributions P(wj|s) to the relevant marginal P(w;)
gave good results, while insufficient smoothing or
backing off to uniform marginals gave substantially
degraded results.®

There is one significant way in which our first-
order classifiers were likely different from other
teams’ systems. In the original class project, stu-
dents were guaranteed that the ambiguous word
would appear only in a single orthographic form,
and many of the systems depended on the input sat-
isfying this guarantee. Since this was not true of
the SENSEVAL-2 data, we mapped the ambiguous

5Such window sizes were also apparently chosen by other
SENSEVAL-2 systems, which commonly used “long distance”

and “local” features, but defined local as a window size of 3-5
words on each side of the ambiguous word.

6In particular, there is a defective behavior with naive-Bayes
where, when one smooths far too little, the chosen sense is the
one which has occurred with the most words in the context
window. For small training sets of skewed-prior data like the
SENSEVAL-2 sets, this is invariably the common sense, regard-
less of the context words.

words (but not context words) to a citation form.
We suspect that this lost quite a bit of information
and negatively affected the system’s overall perfor-
mance, since there is considerable correlation be-
tween form and sense, especially for verbs. Nev-
ertheless, we have made no attempt to re-engineer
the student systems, and have not thoroughly inves-
tigated how big a difference this stemming made.

3 Resultsand Discussion

3.1 Results

Table 2 shows the results per word, and table 3
shows results by part-of-speech and overall, for the
SENSEVAL-2 English lexical sample task. It also
shows what second-order classifiers were selected
for each word. 54.2% of the time, we made an opti-
mal second-order classifier choice. When we chose
wrong, we usually made a mistake in either ensem-
ble size or method, rarely both. A wide range of
second-order classifier types were chosen. As an
overview of the benefit of combination, the globally
best single classifier scored 61.2%, the locally best
single classifier (best on test data) scored 62.2%, the
globally best second order classifier (ME-7, best on
test data) scored 63.2%, and our dynamic selection
method scored 63.9%. Section 3.3 examines combi-
nation effectiveness more closely.

3.2 Changes from SENSEVAL-2

The system we originally submitted to the
SENSEVAL-2 competition had an overall accu-
racy of 61.7%, putting it in 4th place in the revised
rankings (among 21 supervised and 28 total sys-
tems). Assuming that our first-order classifiers
were fixed black-boxes, we wanted an idea of how
good our combination and selection methods were.
To isolate the effectiveness of our second-order
classifier choices, we compared our system to an
oracle method (OR-BEST) which chose a word’s
second-order classifier based on test data (rather
than held-out data). The overall accuracy of this
oracle method was 65.4% at the time, a jump of
3.7%.” This gap was larger than the gap between
the various top-scoring teams’ systems. Therefore,
while the test-set performance of the second-order
classifiers is obviously not available, it was clear

TWith other changes, OR-BEST rose to 66.1%.

LB Baselines Combination OR UB System

Word AL | MFS SNG | M>7 WT-7 ME-7 | BesT | SOME [Acc CL

art-n 28.6 41.8 50.6 52.0 54.1 52.0 58.2 69.4 58.2 WT-5
authority-n 457 337 613 69.6 69.6 65.2 69.6 783 66.3 W3
bar-n 311 39.7 637 616 69.5 72.2 72.2 815 722 ME-7
begin-v 50.0 58.6 70.0 836 84.3 88.2 88.2 946 836 M7
blind-a 65.5 83.6 77.8 83.6 83.6 855 85.5 90.9 83.6 Wr-7
bum-n 711 756 713 756 75.6 71.8 77.8 822 778 ME-7
call-v 15 258 333 258 30.3 27.3 34.8 62.1 303 Wr-7
carry-v 9.1 227 27.8 34.8 333 333 37.9 62.1 333 MJ-5
chair-n 76.8 79.7 84.2 82.6 826 826 82.6 84.1 81.2 ME-3
channel-n 46.6 274 61.1 60.3 60.3 65.8 67.1 78.1 67.1 ME-3
child-n 34.4 547 579 67.2 70.3 70.3 75.0 90.6 719 W5
church-n 56.2 531 631 734 73.4 75.0 75.0 85.9 734 WT-7
circuit-n 52.9 271 709 65.9 65.9 78.8 788 80.0 78.8 ME-5
collaborate-v | 90.0 90.0 929 90.0 90.0 90.0 90.0 90.0 90.0 W5
colorless-a 486 65.7 80.0 68.6 68.6 68.6 68.6 829 68.6 ME-5
cool-a 154 46.2 65.0 57.7 55.8 59.6 59.6 80.8 59.6 ME-5
day-n 36.6 59.3 58.4 69.0 68.3 66.2 69.0 82.8 63.4 WT-3
develop-v 11.6 29.0 352 420 435 42,0 435 68.1 | 420 MJ3
draw-v 4.9 98 234 29.3 26.8 24.4 29.3 415 26.8 WT-5
dress-v 254 42.4 49.9 52.5 525 55.9 59.3 729 55.9 ME-7
drift-v 31 25.0 317 375 375 34.4 375 65.6 375 WT-5
drive-v 16.7 286 40.0 45.2 45.2 40.5 45.2 61.9 42.9 MJ-3
dyke-n 85.7 89.3 865 89.3 89.3 89.3 929 96.4 929 W3
face-v 8238 839 809 839 83.9 82.8 839 849 | 839 Wr5
facility-n 36.2 48.3 70.5 67.2 70.7 65.5 74.1 86.2 70.7 Wr-7
faithful-a 56.5 783 650 783 78.3 78.3 826 100.0 783 M3
fatigue-n 67.4 76.7 839 88.4 90.7 90.7 90.7 93.0 90.7 M35
feeling-n 29.4 56.9 76.7 62.7 70.6 725 745 86.3 725 W3
find-v 74 147 37.6 30.9 279 30.9 32.4 48.5 324 WrT-3
fine-a 329 38.6 469 514 57.1 54.3 57.1 67.1 529 M3
fit-a 51.7 517 877 89.7 89.7 86.2 931 96.6 931 M5
free-a 26.8 39.0 58.2 65.9 65.9 61.0 65.9 74.4 64.6 ME-3
graceful-a 62.1 75.9 814 79.3 79.3 79.3 79.3 82.8 79.3 WT-5
green-a 69.1 78.7 800 83.0 83.0 83.0 85.1 883 | 830 Muy3
grip-n 255 549 492 60.8 60.8 58.8 74.5 84.3 60.8 M7
hearth-n 46.9 75.0 56.3 75.0 719 65.6 75.0 84.4 625 W3
holiday-n 77.4 839 897 839 83.9 80.6 83.9 87.1 | 839 Wr5
keep-v 19.4 373 361 388 493 52.2 52.2 65.7 522 W5
lady-n 60.4 69.8 67.7 755 75.5 77.4 774 811 755 W3
leave-v 21.2 318 291 439 53.0 50.0 545 68.2 545 W5
live-v 209 50.7 54.6 53.7 59.7 65.7 716 77.6 716 M3J-3
local-a 15.8 579 768 711 68.4 68.4 711 921 711 M7
match-v 11.9 357 304 52.4 52.4 57.1 57.1 786 | 476 WT-3
material-n 39.1 42.0 56.0 55.1 55.1 50.7 66.7 73.9 66.7 WT-3
mouth-n 15.0 45.0 40.5 53.3 53.3 45.0 56.7 78.3 53.3 MJ-5
nation-n 70.3 70.3 711 70.3 70.3 70.3 70.3 70.3 70.3 WT-5
natural-a 18.4 272 504 495 50.5 58.3 58.3 76.7 553 WT-3
nature-n 23.9 457 513 63.0 67.4 65.2 67.4 826 60.9 Mi5
oblique-a 517 69.0 73.7 82.8 82.8 82.8 86.2 89.7 79.3 WT-5
play-v 121 197 356 409 51.5 50.0 515 62.1 515 W5
post-n 26.6 316 665 49.4 57.0 65.8 67.1 734 67.1 ME-3
pull-v 17 217 217 217 217 28.3 28.3 46.7 233 W3
replace-v 289 53.3 49.0 57.8 53.3 60.0 60.0 77.8 57.8 MJ-7
restraint-n 356 311 539 7.1 68.9 711 711 822 66.7 ME-5
see-v 29.0 319 400 420 420 42.0 420 551 | 420 MJ5
sense-n 18.9 226 46.3 64.2 60.4 50.9 64.2 79.2 64.2 MJ-7
serve-v 35.3 29.4 54.4 60.8 64.7 66.7 66.7 745 62.7 WT-5
simple-a 515 515 43.0 515 515 515 515 54.5 515 ME-3
solemn-a 96.0 96.0 89.2 96.0 96.0 96.0 96.0 96.0 96.0 W3
spade-n 66.7 63.6 818 758 75.8 78.8 78.8 818 788 WT-3
stress-n 77 46.2 47.0 43.6 43.6 359 51.3 82.1 48.7 WT-5
strike-v 5.6 167 323 315 29.6 29.6 40.7 556 | 315 My5
train-v 22.2 302 483 57.1 57.1 54.0 57.1 76.2 571 Wr-7
treat-v 36.4 38.6 518 54.5 545 52.3 54.5 705 52.3 Wrt-3
turn-v 15 149 38.8 32.8 29.9 328 35.8 52.2 313 MJ-5
use-v 61.8 65.8 69.6 65.8 65.8 72.4 72.4 75.0 724 ME-3
vital-a 84.2 921 915 921 92.1 92.1 921 921 921 Wr5
wander-v 70.0 80.0 83.2 80.0 82.0 82.0 82.0 84.0 80.0 ME-3
wash-v 16.7 25.0 40.0 58.3 58.3 25.0 58.3 83.3 58.3 MJ-7
work-v 10.0 26.7 28.1 433 43.3 41.7 45.0 63.3 45.0 Wr-3
yew-n 75.0 78.6 814 78.6 78.6 78.6 78.6 82.1 78.6 W5

Table 2: Results by word for the SENSEVAL-2 English lexi-
cal sample task. Lower bound (LB): ALL is how often all of
the first-orders chose correctly. Baselines (BL): MFS is the
most-frequent-sense baseline, SNG is the best single first-order
classifier as chosen on held-out data for that word. Fixed com-
binations: majority vote (MJ), weighted vote (WT), maximum
entropy (ME). Oracle bound (OR): BEST is the best second-
order classifier as measured on the test data. Upper bound (UB):
SOME is how often at least one first-order classifier produced
the correct answer. Methods which are ensemble-size depen-
dent are shown for k = 7. System choices: Acc is the accuracy
of the selection the system makes based on held-out data. CL is
the 2nd-order classifier selected.

that a more sophisticated or better-tuned method
of selecting combination models could lead to
significant improvement. In fact, changing only
ranking methods, which are discussed further in the
next section, resulted in an increase in final accu-
racy for our system to the current score of 63.9%,
which would have placed it 1st in the SENSEVAL-2
preliminary results or 2nd in the revised results. Our

LB Baselines Combination OR UB | System
ALL | MFS SNG | M3-7 WT-7 ME-7 | BEST | SOME | Acc
noun | 425 | 505 638 | 664 679 678 | 719 | 8l2 69.7
adj. | 451 | 578 66.7 | 69.0 694 699 | 71.6 | 81.0 69.9
verb | 28.8 | 40.2 487 | 534 547 558 | 58.2 | 71.2 55.7
avg. | 465 | 475 622 | 615 627 632 | 689 | 720 63.9

Table 3: Results by part-of-speech, and overall.

65

64 T Chosen
g 63 Combination
o1 —— Maximum
3 62 Entropy
=%
= —=— Weighted
B pom——— __._Ak‘< I _j__J Vote
[\\ —a— Majority
3
o 50 Vote
& \ — — — Global Best

Single
59 9
A
58

1 3 5 7 9 11 13 15
Number of Classifiers

Figure 2: Accuracy of the various combination methods as
the ensemble size varies. The three combination methods are
shown. In addition, the globally best single classifier is the sin-
gle first-order classifier with the highest overall accuracy on the
test data. Chosen combination is our final system’s score. These
two are both independent of k in this graph.

final accuracy is thus higher than the first draft of
the system, and, in particular, the classifier selection
gap between actual performance and the OR-BEST
oracle has been substantially decreased.

In addition, since the top first-order classifiers
were more reliably identified, larger ensembles were
no longer beneficial in the revised system, for an in-
teresting reason. When the first-order rankings were
poorly estimated, large ensembles and weighted
methods were important for achieving good accu-
racy, because the weighting scheme could “rescue”
good classifiers which had been incorrectly ranked
low. In our current system, however, first-order clas-
sifiers were ranked reliably enough that we could re-
strict our ensemble sizes to k € {1, 3, 5, 7}. Further-
more, since k = 1 was only chosen a few times,
usually among ties, we removed that option as well.

3.3 Combination Methods and Ensemble Size

Our system differs from the typical ensemble of
classifiers in that the first-order classifiers are not
merely perturbations of each other, but are highly
varied in both quality and character. This scenario
has been investigated before, e.g. (Zhang et al.,
1992), but is not the common case. With such het-
erogeneity, having more classifiers is not always bet-
ter. Figure 2 shows how the three combination meth-
ods’ average scores varied with the number of com-

ponent classifiers used. Initially, accuracy increases
as added classifiers bring value to the ensemble.
However, as lower-quality classifiers are added in,
the better classifiers are steadily drowned out. The
weighted vote and maximum entropy combinations
are much less affected by low-quality classifiers than
the majority vote, being able to suppress them with
low weights. Still, majority vote over small ensem-
bles was effective for some words where weights
could not be usefully set by the other methods.

3.4 Ranking Methods

Because of the effects described above, it was nec-
essary to identify which classifiers were worth in-
cluding for a given word. A global ranking of first-
order classifiers, averaged over all words, was not
effective because the strengths of the classifiers were
so different. In fact, every single first-order clas-
sifier was a top-5 performer on at least one word.
On the other hand, SENSEVAL-2 training sets were
often very small, and very skewed towards a fre-
quent most-frequent-sense. As a result, accuracy es-
timates based on single words’ held-out data pro-
duced frequent ties. The average size of the per-
word largest set of tied first-order classifiers was
3.6 (with a maximum of 23 on the word collabo-
rate where all tied). The second-order local rank-
ings also produced many ties. For the top position
(the most important for second-order ranks) 43.1%
of the words had local ties.

In our submitted entry, all ties were broken unin-
telligently (in an arbitrary manner based on the order
in which systems were listed in a file). The approach
of local ranking with global tie-breaking presented
in this paper was much more successful accord-
ing to two distinct measures. First, it predicted the
true ranks more accurately, (measured by the Spear-
man rank correlation: 0.08 for global ranks, 0.63
for globally-broken local ranks) and gave better fi-
nal accuracy scores (63.5% with global, 63.9% with
globally-broken local - significant only at p=0.1 by
a sign test at the word type level).

The other ranking that our system attempts to es-
timate is the per-word ranking of the second-order
classifiers. In this case, however, we are only
ever concerned with which classifier ends up be-
ing ranked first, as only that classifier is chosen.
Again, globally-broken local ranks were the most

effective, choosing a second-order classifier which
was actually top-performing on test data for 54% of
the words, as opposed to 50% for global selection
(and increasing the overall accuracy from 62.8% to
63.9% - significant at p=0.01, sign test).

These results stress that ranking, and effective tie-
breaking, are important for a system such as ours
where the classifiers are so divergent in behavior.

3.5 Combination

When combining classifiers, one would like to know
when and how the combination will outperform the
individuals. One factor (Tumer and Ghosh, 1996)
is how complementary the mistakes of the individ-
ual classifiers are. If all make the same mistakes,
combination can do no good. We can measure this
complementarity by averaging, over all pairs of first-
order classifiers, the fraction of errors that pair has in
common. This gives average pairwise error indepen-
dence. Another factor is the difficulty of the word
being disambiguated. A high most-frequent-sense
baseline (BL-MFS) means that there is little room
for improvement by combining classifiers. Figure 3
shows, for the global top 7 first-order classifiers, the
absolute gain between their average accuracy (BL-
AVG-7) and the accuracy of their majority combina-
tion (MJ-7). The quantity on the x-axis is the dif-
ference between the pairwise independence and the
baseline accuracy. The pattern is loose, but clear.
When either independence increases or the word’s
difficulty (as indicated by the BL-MFs baseline) in-
creases, the combination tends to win by a greater
amount.

Figure 4 shows how the average pairwise inde-
pendent error fraction (api) varies as we add classi-
fiers. Here classifiers are added in an order based on
their accuracy on the entire test set. For each k, the
average is over all pairs of classifiers in the top k and
all samples of all words. This graph should be com-
pared to figure 2. After the third classifier, adding
classifiers reduces the api, and the performance of
the majority vote begins to drop at exactly this point.
However, the weighted methods continue to gain in
accuracy since they have the capacity to downweight
classifiers which hurt held-out accuracy.

The drop in api reflects that the newly added sys-
tems are no longer bringing many new correct an-
swers to the collection. However, they can still add

20
4 - .
-
s 15 -~ .
- o T .
10 . :‘ . }} *
. - .
5 — ’A’:
. ® RN . 0‘ . ‘ . ‘0
e -
0 oo - - -
.
[
-5 T T T T T T
-100 -80 -60 -40 -20 0 20 40

Error minus P)

Figure 3: Gain in accuracy of majority vote over the average
component performance as (pairwise independence — baseline
accuracy) grows.

0.45
0.43 /\
0.41

0.39 \\/\ A
0.37 W

0.35

Error Independence (percent)

2 4 6 8 10 12 14 16 18 20 22 24
Number of Classifiers

Figure 4: The average pairwise error independence of classifiers
as their number is increased.

deciding votes in areas where the ensemble had the
right answer, but did not choose it. The final gradual
rise in api reflects the somewhat patternless new er-
rors that substantially lower-performing systems un-
fortunately bring to the ensemble.

4 Conclusions

In this paper, we have explored ensemble sizes, com-
bination methods, bounds for what can be expected
from combinations, factors in the performance of in-
dividual classifiers, and methods of improving per-
formance by effective tie-breaking. In accord with
much recent work on classifier combination, e.g.
(Breiman, 1996; Bauer and Kohavi, 1999), we have
demonstrated that the combination of classifiers can
lead to a substantial performance increase over the
individual classifiers within the domain of wsb. In
addition, we have shown that highly varying com-
ponent systems augment each other well and that
adding lower-scoring systems can still improve en-
semble performance, at least to a certain point. A
particular emphasis of our research has been how to
make the combination robust to both the wide range
of first-order classifier accuracies and to the sparsity

of the available training data. Careful but greedy de-
termination of rankings proved to be effective, cap-
turing the highly word-dependent strengths of our
classifiers. The resulting system’s overall accuracy
is very high, despite the medium level of accuracy
of the component systems.

5 Acknowledgments

We would like to thank the following people for
contributing their classifiers to the Stanford cs224N
system: Zoe Abrams, Jenny Berglund, Dmitri Bo-
brovnikoff, Chris Callison-Burch, Marcos Chavira,
Shipra Dingare, Elizabeth Douglas, Sarah Har-
ris, ldo Milstein, Jyotirmoy Paul, Soumya Ray-
chaudhuri, Paul Ruhlen, Magnus Sandberg, Adil
Sherwani, Philip Shilane, Joshua Solomin, Patrick
Sutphin, Yuliya Tarnikova, Ben Taskar, Kristina
Toutanova, Christopher Unkel, and Vincent Van-
houcke.

References

Alan Agresti. 1990. Categorical Data Analysis. John Wiley &
Sons.

Eric Bauer and Ron Kohavi. 1999. An empirical comparison of
voting classication algorithms: Bagging, boosting and vari-
ants. Machine Learning, 36:105-139.

Adam L. Berger, Stephen A. Della Pietra, and Vincent J. Della
Pietra. 1996. A maximum entropy approach to natural lan-
guage processing. Computational Linguistics, 22(1):39-71.

Leo Breiman. 1996. Bagging predictors. Machine Learning,
24:123-140.

Raymond J. Mooney. 1996. Comparative experiments on dis-
ambiguating word senses: An illustration of the role of bias
in machine learning. In EMNLP 1.

Senseval-2. 2001. Senseval-2 proceedings, in publication.

Kagan Tumer and Joydeep Ghosh. 1996. Error correlation and
error reduction in ensemble classifiers. Connection Science,
8:385-404.

Xiru Zhang, Jill Mesirov, and David L. Waltz. 1992. Hybrid
system for protein structure prediction. Journal of Molecular
Biology, 225:1049-1063.

