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Abstract

Speech-to-speech translation can be ap-
proached using finite state models and
several ideas borrowed from automatic
speech recognition. The models can be
Hidden Markov Models for the accous-
tic part, language models for the source
language and finite state transducers for
the transfer between the source and target
language. A *“serial architecture” would
use the Hidden Markov and the language
models for recognizing input utterance
and the transducer for finding the transla-
tion. An “integrated architecture”, on the
other hand, would integrate all the mod-
els in a single network where the search
process takes place. The output of this
search process is the target word sequence
associated to the optimal path. In both
architectures, HMMs can be trained from
a source-language speech corpus, and the
translation model can be learned automat-
ically from a parallel text training cor-
pus. The experiments presented here cor-
respond to speech-input translations from
Spanish to English and from Italian to En-
glish, in applications involving the inter-
action (by telephone) of a customer with
the front-desk of a hotel.

Enrique Vidal

Juan Miguel Vilar
Dpt. de Llenguatges i Sistemes Infatits
Universitat Jaume |
Casteld, SPAIN.
jvilar@lsi.uji.es

recognition (ASR). In ASR the acoustic hidden
Markov models (HMMs) can be integrated into the
language model, which is typically a finite-state
grammar (e.g. a N-gram). In ST the same HMMs
can be integrated in a translation model which con-
sists in a stochastic finite-state transducer (SFST).
Thanks to this integration, the translation process
can be efficiently performed by searching for an
optimal path of states through the integrated net-
work by using well-known optimization procedures
such as (beam-search accelerated) Viterbi search.
This “integrated architecture” can be compared with
the more conventional “serial architecture”, where
the HMMs, along with a suitable source language
model, are used as a front-end to recognize a se-
guence of source-language words which is then pro-
cessed by the translation model. A related approach
has been proposed in (Bangalore and Ricardi, 2000;
Bangalore and Ricardi, 2001).

In any case, a pure pattern-recognition approach
can be followed to build the required systems.
Acoustic models can be trained from a suffi-
ciently large source-language speech training set,
in the very same way as in speech recognition.
On the other hand, using adequate learning algo-
rithms (Casacuberta, 2000; Vilar, 2000), the trans-
lation model can also be learned from a sufficiently
large training set consisting of source-target parallel
text.

1 Introduction . .
In this paper, we comment the results obtained us-

Present finite-state technology allows us to buildhg this approach in ETRANS, a five-year joint ef-
speech-to-speech translation (ST) systems usifigrt of four European institutions, partially funded
ideas very similar to those of automatic speechy the European Union.



2 Finite-state transducers and speech forqg,d € Q,acX,weA*and P: R — RT
translation (transition probabilitie3 andF : Q — IR (final-

. state probabilitiey are functions such thaty € Q:
The statistical framework allow us to formulate the P » e Q

speech translation problem as follows: bebe an Flg) + Z P(g,a,0,¢) = 1
acoustic representation of a given utterance; typi- o) ST A X O T
cally a sequence of acoustic vectors“rames”. T @awd)eR

The translation ok into a target-language sentence )
can be formulated as the search for a word séid- 1 shows a small fragment of a SFST for Spanish

quencet, from the target language such that: to English translation.
A particular case of finite-state transducers are
t = argmaxPr(t|x). (1) known as subsequential transducers (SSTs). These
t

are finite-state transducers with the restriction of be-

Conceptually, the translation can be viewed as 89 deterministic (if(¢, a,w, q), (¢,a,w’,¢') € R,

two-step process (Ney, 1999; Ney et al., 2000): thenw = o' andq = ¢'). SSTs also have output
strings associated to the (final) states. This can fit

X — s —t, well under the above formulation by simply adding

) an end-off-sentence marker to each input sentence.
where s is a sequence of source-language words g, 4 pair(s,t) € * x A*, atranslation form

which would match the observed acoustic SeqUence is 5 sequence of transitions in a SFET
x andt is a target-language word sequence associ-

ated W|thS Consequently’ d) : (q07 Slufh Q1)7 (611, 52, f27 Q2)7

Pr(t|x) = ZPr(t,S’X), (2) R (QI—laSIatI>QI)7

wheref; denotes a substring of target words (the
and, with the natural assumption ttat(x|s, t) does empty string fort; is also possible), such that

not depend on the target sentetice f; T, ...T; = t andI is the length of the source sen-
tences. The probability ofp is
t = argmax(Z Pr(s, t) - Pr(xs)) NG I
’ s Prr(¢) = F(qr) - [[ P(gi-1,8:.%.0:).  (5)
Using a SFST as a model fdtr(s, t) and HMMs =0

to modelPr(x]s), Eq. 3 is transformed in the opti- Fing|ly, the probability of the paifs, t) is
mization problem:

Prr(s;t) = Y Prr(¢) (6)

t = argmax(Z Prr(s,t) -PrM(X|S)> , (4) ped(s,t)
¢ E ~ max Prr(¢), )
ped(s,t)

wherePrz (s, t) is the probability supplied by the _ _
SFST andPr(x|s) is the density value supplied where_d(s,t) is the set of all translation forms for
by the corresponding HMMs associatedstfor the  the pair(s, t).

acoustic sequence These models have implicit source and target lan-
o guage models embedded in their definitions, which
2.1 Finite-state transducers are simply the marginal distributions &fr7. In

A SFST,7,is atuple(Q, X, A, R, qo, F, P), where practice, the source (target) language model can be
Q is a finite set obtates g is theinitial state > and obtained by removing the target (source) words from
A are finite sets ofhput symbolgsource words) and each transition of the model.

OUtqu symbol@target \_/\{ords), respectively;(0A = 1By A* and=* we denote the sets of finite-length strings on
0); R is aset of transitionof the form(q, a,w,¢’) A andx, respectively



habitacién / room (0.1) doble / with two beds (1)

una/a (0.5)
la / the (0.5)

habitacién / room (0.3)

habitacion / A (0.6) doble / double room (0.3)

individual / single room (0.7)

Figure 1. Example of SFST denotes the empty string. The source sentéana habitacion doble” can
be translated to eithéa double room” or “a room with two beds” The most probable translation is the
first one with probability of 0.09.

The structural (states and transitions) and the Finally, by substituting Eq. 5 and Eq. 9 into Eq. 8
probabilistic components of a SFST can be learneghd approximatingumsby maximisations
automatically from training pairs in a single process
using theMGTI technique (Casacuberta, 2000). Al- . ! _ _
ternatively, the structural component can be learned = fé%g?ﬁﬂp(qpl,si,ti, @) - Pra(Xilsi)-
using theOMEGA technique (Vilar, 2000), while Tl (10)

the probabilistic component is estimated in a secongp|ying this maximisation yields (an approximation
step usingnaximum likelihooar other possible cri- to) the most likelytarget-language sentenédor the
teria (Pi® and Casacuberta, 2001). One of the maiBbserved;ource—language acoustic sequence
problems that appear during the learning process is This computation can be accomplished using the
the modelling of events that have not been seen {ge|| known Viterbi algorithm It searches for an op-
the training set. This problem can be confronted;mg| sequence of states in an integrated netwiork (
in a similar way as in language modelling, by usingegrated architecturewhich is built by substituting
smoothing techniques in the estimation process @f5ch edge of the SFST by the corresponding HMM
the probabilistic components of the SFST (Llorensyf the source word associated to the edge.

2000). Alternatively, smoothing can be applied in  This integration process is illustrated in Fig. 2. A
the process of learning both components (Casacemga|| SFST is presented in the first panel (a) of this

berta, 2000). figure. In panel (b), the source words in each edge
. _ are substituted by the corresponding phonetic tran-

2.2 Architectures for speech translation scription. In panel (c) each phoneme is substituted

Using Eq. 7 as a model fdtr(s, t) in Eq. 4, by the corresponding HMM of the phone. Clearly,

this direct integration approach often results in huge

R finite-state networks. Correspondingly, a straight-
t = argmax(Z max Pry(¢)-Pra(x|s) |,  forward (dynamic-programming) search for an op-
t s timal target sentence may require a prohibitively

, _ (8) high computational effort. Fortunately, this compu-
For the computation oPraq(x[s) in EQ. 8, let y4i0na1 cost can be dramatically reduced by means

b be an arbitrarysegmentatiorof x into 1 aC0us- ¢ sandard heuristic acceleration techniques such as
tic subsequences, each of which associated Wlthb%am search

source word (thereford, is the number of words in An alternative, which sacrifices optimality more

s). Then: drastically, is to break the search down into two

steps, leading to a so-calléskrial architecture”. In

_ the first step a conventional source-language speech
Pru(xls) = HPFM (%ils:), 9) decoding system (using just a source-language lan-

b=l guage model) is used to obtain a single (may be mul-

wherex; is thei-th. acoustic segment &f and each tiple) hypothesis for the sequence of uttered words.

source words; has an associated HMM that suppliedn the second step, this text sequence is translated

the density valu@®r ,((x;]s;). into a target-language sentence.

I



maleta/A (5> azul/ blue suitcase

la / the \J\,
! bolsa / A @

D azul / blue bag o
3
a) Original FST.

t/A ala z/A

- A o 1A I @ alk
U althe qpy =0 miA o2 o u/A I/ blue suitcase _
o/A . 1A z/A |/ blue ba )

b) Lexical expansmn.

C) Phonetic expansion.

Figure 2. Example of the integration process of the lexical knowledge (figure b) and the phonetic knowledge
(figure c) in a FST (figure a)A denotes the empty string in panels a and b. In panel ¢, source symbols are
typeset in small fonts, target strings are typeset in large fonts and edges with no symbols denote empty
transitions.

UsingPr(s,t) = Pr(t | s) - Pr(s) in Eq. 3and A better alternative for this crude “two-step” ap-
approximating the sum by the maximum, the optiproach is to us®r(s,t) = Pr(s | t)-Pr(t) in Eq. 3.
mization problem can be presented as Now, approximating the sum by the maximum, the

. optimization problem can be presented as
(t,s) = argmax(Pr(t|s) - Pr(s) - Pr(x]s)),
ts (t,8) = argmaxPr(s | t) - Pr(t) - Pr(x | s)),
and the two-step approximation reduces tgl) t.s
and now the two-step approximation reduceg'@

s ~ argmax{Pr(s) - Pr(x]s)}, (12)
R s § ~ argmax{Pr(s|t)-Pr(x|s)}, (16)
t ~ argmaxPr(t|s) (13) . s
t t ~ argmaxPr(s|t)-Pr(t) 17)
= argmaxPr(s,t). (14) t
t = argmaxPr(s,t). (18)

t

In other words, the search for an optimal target- The main problem of this approach is the term
language sentence is now approximated as follows; that appears in the first maximisation (Eq. 16).
A possible solution is to follow an iterative proce-
dure wheret, that is used for computing, is the
one obtained from argma¥®r(s, t) in the previous
iteration (Garta-Varea et al., 2000). In this case,
Pr(s | t) can be modelled by a source language
s ~ argmax(Pry(s) - Pra(x]s)). model that deper?ds on a previgqsly computed

s _ Pryi(s). In the first iteration nat is known, but
2. Translation ofs. A target-language sentente Pr./\/:f(S) can be approximated B9r-(s). Follow-

is searched for using a SFSFr7(s,t), as @ ing this idea, the search can be formulated as:
model ofPr(s, t)

1. Word decoding ofx. A source-language sen-
tences is searched for using a source language
model,Prx/(s), for Pr(s) and the correspond-
ing HMMs, Pr 4 (x|s), to modelPr(x|s):

Initialization :
t ~ argmaxPrr (8, t). Let Pry (s) be approximated by a source lan-
guage modePr/(s).



while not convergence For the serial architecture, the speech decoding
. was performed in a conventional way, using the
1. Word decoding ofx. A source-language S€N" same acoustic models as with the integrated archi-

tences is searched for using a source lans .
tecture and trigrams of the source language models.

guage model that depends on the target S€Bor the integrated architecture, the speech decoding
tence,PrME(s), for Pr(.s | t). (t is thet com- ¢ 1 Utterance is a sub-product of the translation
puted n the previous iteration) and the Corre'process (the sequence of source words associated to
sponding HMMsPr1(x | s), to modelPr(x | the optimal sequence of transitions that produces the

s): sequence of target words).

S ~ argsrnax(PrME(s) Pr(x| S)) : The acoustic models of phone units were trained

_ A . with the HTK Toolkit (Woodland, 1997). For the

2. _Translatlon ofs. A 'Farget—language sentente gy TrANS-0 and EJTRANS- prototypes, a training
is searched for using a SFSHy7(8,t), @ & gpeech corpus of 57,000 Spanish running words was

model ofPx(s, t) used, while the BETRANS-II Italian acoustic models
t ~ argmaxPr7 (8, t). were trained from another corpus of 52,000 running
t words
end of while Performance was assessed on the base of 336

The firstiteration corresponds to the sequential arP2nish_sentences in the case O0OTRANS-O
chitecture proposed above. and BEUTRANS-| and 278 lItalian sentences in

While this seems a promising idea, only Ver))EUTRANs-II. In all the cases, the test sentences (as
preliminary experiments were carried out (Garc well as the corresponding speakers) were different

Varea et al., 2000) and it has not been considered {fPM those appearing in the training data.

the experiments presented in the present paper. For the easiest task\H RANS-0, (well controlled
. and a large training set), the best result was achieved
3 Experiments and results with an integrated architecture and a SFST obtained

Three sets of speech-to-speech translation prot)%'—Ith the OMEGA learning technique. A Transa-

types have been implemented for Spanish to Engli§ n Word Errc&r_ Rate of 7.I6% was achievehdé whi:je_‘
and for Italian to English. In all of them, the appli-t € corresponding source-language speech decoding

) .
cation was the translation of queries, requests aA’éfOfd Error Rate was 8;/:] AIthongh thes_elflggjre_s
complaints made by telephone to the front desk Jpay seem strange (and they would certainly be in

a hotel. Three tasks of different degree of difficult)}he case _0:] ahsefrlal ar:chlt_ec';]u_re) ’ tEey arein fa;]:t con-
have been considered. sistent with the fact that, in this task (corpus), the tar-

In the first one (B TRANS-0), Spanish-to-English get language exhibits a significantly lower perplex-

translation systems were learned from a big an¥/ than the source language.

well controlled training corpus: about 170k differ- For the second, less easy taskTRANS-I, (well

ent pairs & 2M running words), with a lexicon of controlled task but a small training set), the best
about 700 words. In the second oneU(ERANS- result was achieved with an integrated architecture
1), also from Spanish to English, the systems werand a SFST obtained with the MGT]I learning tech-
learned from a random subset of 10k paisX00k nique (10.5% of word error rate corresponding to the
running words) from the previous corpus; this wasgPeech decoding and 12.6% of translation word er-
established as a more realistic training corpus for tHOr rate).

kind of application considered. In the third and most For the most difficult task, ETRANS-II (spon-
difficult one, from Italian to English (ETRANS-II),  taneous task and a small training set), the best result
the systems were learned from a small training cowas achieved with a serial architecture and a SFST
pus that was obtained from a transcription of a sporebtained with the MGTI learning technique (22.1%
taneous speech corpus: about 3k pai¢est0k run- of word error rate corresponding to the speech de-
ning words), with a lexicon of about 2,500 words. coding and 37.9% of translation word error rate).



4 Conclusions of the North American Chapter of the Association for
_ Computational Linguistics
Several systems have been implemented for speech- o
to-speech translation based on SFSTs. Some of thdmCasacuberta. 2000. Inference of finite-state trans-
. . . ducers by using regular grammars and morphisms.
were implemented for translation from Italian to En- | " 5;ammatical Inference: Algorithms and Applica-
glish and the others for translation from Spanish to tions volume 1891 of ecture Notes in Artificial Intel-

English. All of them support all kinds of finite-state  ligence pages 1-14. Springer-Verlag.

translation models and run on low-cost hardwarq_. Garda-Varea, A. Sanchis, and F. Casacuberta. 2000.

They are currently accessible through standard tele- A new approach to speech-input statistical translation.

phone lines with response times close to or better In Proceedings of the International Conference on Pat-

than real time. tern Recognition (ICPR2000yolume 2, pages 907—
From the results presented, it appears that the in-910: Barcelona, Sept. IAPR, IEEE Press.

tegrated architecture allows for the achievement @b. Lliorens. 2000. Suavizado de a@tnatas y traduc-

better results than the results achieved with a serial tores finitos estaasticos Ph.D. thesis, Universitat

architecture when enough training data is available Politecnica de Vancia.

to train the SFST. However, when the training datg. Ney, S. NieRen, F. Och, H. Sawaf, C. Tillmann, and

is insufficient, the results obtained by the serial ar- S. Vogel. 2000. Algorithms for statistical translation

chitecture were better than the results obtained by Xf SdF?OkF?” '3”99399'15'_523“336”330“0”5 on Speech and

the integrated architecture. This effect is possible udio ProcessingB(1):24-36.

because the source language models for the exper-Ney. 1999. Speech translation: Coupling of recogni-

iments with the serial architecture were smoothed tion and translation. IfProceedins of the IEEE Inter-

trigrams. In the case of sufficient training data, the national Conference on Acoustic, Speech and Signal

. Processingpages 517-520, Phoenix, AR, March.

source language model associated to a SFST learnt gpag

by the MGTI or OMEGA is better than trigrams D. Picd and F. Casacuberta. 2001. Some statistical-

(Section 2.1). However, in the other case (not suf- estimation methods for stochastic finite-state transduc-

ficient training data) these source languages were ers.Machine Learning44:121-141.

worse than trigrams. Consequently an importantM. Vilar. 2000. Improve the learning of subsequen-

degradation is produced in the implicit decoding of tial transducers by using alignments and dictionaries.
the input utterance. In Grammatical Inference: Algorithms and Applica-

tions, volume 1891 of enture Notes in Artificial Intel-

ligence pages 298—-312. Springer-\Verlag.
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