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Abstract

In this paperwe compae the perfaomance
of two method for speeb transhtion.
Oneis a statidical dependercy trangluc-
tion model using head trarsduces, the
othera casebasedransducton modelin-

volving a lexical similarity measue. Ex-

amplesof translated utterancetranscrip-

tions are usedin training both models,
thoudh the case-lasedmodelalsousesse-
manticlabds classifying the soure utter-
ances The main conclusionis thatwhile

the two methals provide similar transh-
tion accuacy unde the experimentalcon-
ditionsandaccuacgy metricused,the sta-
tistical dependemry transgluction methal

is significantly fager at computng trans-
lations.

1 Intr oduction

Machire trarslation, naturd language processim,
and more gererally other computtiond problems
that are not amendle to closed form soluions,
have typically beentacked by one of three broad
appoache: rule-based systens, staistical mod-
els (including geneative model9, and casebasal
systens. Hybrid soluions combinng thes ap-
proaches have also been used in language pro-
cessng geneally (Klavans and Resnik 1996 and
morespedfically in machinetranslation (for exam-
ple Frederling etal. (1994)).

In this paper we comparehe perfamanceof two
method for speeb translation. Oneis the statistcal
depeadeny trangluction model (Alshavi and Dou-

glas,2000; Alshawi etal.,200(), atrainablegener-
ative statistical trandation modelusing headtrans
duces (Alshawi, 1996. The otheris a casebase
trangluction modelwhich makesuseof a semantt
similanity measue betweenwords. Both modelsare
trained autanaticaly using examples of transhted
utterances(the transcription of a spdken utterance
and a translation of that transcripion). The case
base& modelmakesuseof additionalinformation in
the form of labds asso@ted with souice language
utterancestypically oneor two labek per utterance.
This addtiond information which was originally
providedfor a sepaatemonoingud task,is usedto
congructthelexical similarity measure

In training thesetrarslation methods aswell as
their runtime applcation, no pre-&isting bilingual
lexicon is neead. Instead, in both casss, theinitial
pha® of training from the trandation datais a sta-
tistical hierarchial alignmentsearchappliedto the
setof bilingual examples. This training phase pro-
duces a bilinguallexicon, usedby both methals, as
well assyndchronizedhierarchicd alignmentsusedto
build the depenleng transducton model

In the experiments comparing the perfomance
of the modelswe look at accurzy aswell asthe
time taken to translate sertencesfrom English to
Japaese.The soure languageinputsusedin these
expeliments are natually spolen utterancesfrom
large numbes of real custaners calling telepltone
opeitorservies.

In sectin 2 we descibe the hierachicd align-
ment algorithm followed by desciptions of the
trandation methodsin sectbns3 and4. We present
the experimentsin secton 5 andprovide conduding
remarksin sectbn 6.
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Figure 1. Alignment mappirg f, souce head-ma
g, andtargetheadmaph

2 Hierarchical alignments

Both the translation systens desribed in this pa-
per make useof automaically creatd hierarchicd
alignmentsof the soure and target strings of the
training corpus bitexts. As will bedescibedin sec-
tion 3, we estimae the paramegérsof a depandercy
trangluction model from such alignments. In the
casebasednethoddescibedin secton 4, thealign-
mentsarethe bags for the transhtion lexicon used
to compue subditutionsandword-for-word transla-
tions.

A hierarchical alignment consistsof four func-
tions. The first two functions are an alignment
mapping f from source words w to tarmget words
f (w) (which may be the emptyword ¢), andanin-
verse alignment mapping from target words v to
sourcewords f'(v). (Theinversemappingis neede
to hande mappirg of target wordsto ¢; it coinddes
with f for pairs withoute.) The othertwo functions
areasourcehead-mapg mappingsoucedependet
words w to their headsg(w) in the source string,
andatarget head-maph mappngtarget dependen
wordsw to ther head wordsh(v) in thetarget string.
An examplehierarchicd alignmentis shownin Fig-
urel.

A hierarchical alignment is synchronized (i.e.
correspond to syndironized dependeny trees) if,
roughly spe&ing, f induces an isomorghism be-
tween the dependemy functions ¢ and h (see
Alshawi andDouglas(2000) for a moreformal def-
inition). The hierarchial alignmentin Figure 1 is
syndironized.

In somepreviouswork (Alshawi etal., 1998; Al-
shawi etal., 2000g; Alshawi etal., 20008 thetrain-
ing methodcondructs synchrorized alignments in
which eachheal word hasat mosttwo dependen
phrases. Here we usethe techrique desribed by

Alshawi andDouglas(2000) wherethe modelshave
greaerfreecbmto vary the grarularity of phraselo-
cality.

Constricting synchronzed hierachicd align-
mentsfor a corpus hastwo stages (a) compuing
co-occurrence statigics from the training data; (b)
searding for an optimal synchonized hierarchicd
alignmentfor eachbitext.

2.1 Word correlation statistics

For eachsouce word in the dataset, a translation
pairing costr(w,wv,b) is assigned for all possble
trandationsin thecontext of abitext b. Herew andv
areusualy words,but mayalsobetheemptyword e
or compaundsformedfrom contiguouswords here
we restict compouwndsto a maximumlengh of two
words.

The assgnmentof theselexical trarnslation pair-
ing cogs may be doneusingvarious statigical mea-
sures The main comporent of r is the so-cdled
¢ correlationmeasuréseeGaleandChurch(1991))
normalzedto therange|0, 1] with 0 indicating per-
fect corrdation. In theexpelimentsdescrbedin this
pape, the costfunction r relating a sourceword (or
compound) w in abitext with atargetword (or com-
pourd) v is

whered(w, v, b) is alength-namalized measue of
theapparat distortion in the posifonsof w andwv in
the source andtarget strings of b. For example, if w
appersat the middle of the source string andv ap-
pearsat the middle of the target string, then the dis-
tortionis 0. We have foundthat, atlead for our data,
this pairing costleadsto betta performancehanthe
useof log probabilities of target wordsgivensoure
words(cf. Brown etal. (1993).

Thevalueusedfor ¢(w, v) is first compuedfrom
courts of the numberof bitexts in thetraining setin
whichw andw co-occur, in whichw only appers,in
which v only appeas, andin which neither of them
appar. In otherwords, we first trea any word in
the tamet string to be a possille trandation of ary
word in the souice string. This value is thenrefined
by re-estimatian during the alignmentoptimization
process.



2.2 Optimal hierarchical alignments

We wish to find a hierarchial alignment that re-
speds the co-occurrerce statistics of bitexts aswell
asthephrasalstructureimplicit in thesouceandtar
getstrings. For this pumposewe definethe costof a
hierachicd subdignmert to bethe sumof the cost
r(w,v,b) of eachpairing (w,v) € f, wheref isthe
(subalignmentmappirg function.

The complet hierarchical alignmentwhich min-
imizes this cost function is computel using a dy-
namic programming procedure. This procedire
works bottom-up, startig with all possille sub
alignmentswith at mostone source word (or com-
pourd) and onetamget word (or compoum). Adja-
cent sour@ subdgrings are then combired to deter-
minethelowestcostsulalignmentsfor sucessvely
larger subgrings of the bitext satisfying the con
strants for syndironized alignmentsstatal above.
The succasively larger substings eventually span
the entire soure string, yielding the optimal hierar-
chicd alignmentfor the bitext.

At eachcombindion stepin the optimizationpro-
cedue, one of the two souce subphrasesis addeal
asa depementof the headof the other subphase.
Sincethe alignmentwe are constucting is syndro-
nized this choice will forcethe seledion of atamet
dependentphrage. Our current (admittedly crude
straegy for seleting the dependentsulphra® is to
chocsethe onewith the highestsulalignmen cost,
i.e. the headof the subphrasewith the bette sub
alignmentbemmesthe headof the enlaged phra®.

Recallthattheinitial estmatedor ¢ arecompued
from co-oaurene courts for w, v in bitexts. In the
secad andsubsguentrounds of this procedure the
¢ values arecomputel from co-occurencecourts for
(w, v) in pairingsin thealignmentsproducedby the
previousround Theimprovemert in the modelsre-
sulting from this re-estimation seemdo stabilze af-
ter apprximatelyfive to tenrounds.

3 Statistical Dependency Transduction

Thedependery transducton modelis anautomati
cally trainabletranshtionmethodthatmodelscross
lingual lexical mappirg, hierachical phrag struc
ture, and monolingual lexical depemeng. It is a
geneative staisticad model for syndironized pairs
of depenleng treesin which eachlocal treeis pro-

ducal by a weighted headtranslucer Since this
modelhasbeenpreseted at length elsavhere (Al-
shawi, 1996; Alshawi et al., 2000a; Alshawi and
Douglas, 2000) the deription in this pape will be
relaively compat.

3.1 Weightedfinite state headtransducers

A weightd finite stateheadtransduce is a finite
statemachinethatdiffersfrom ‘standard finite state
trangluces in that, insteadof consuming the input
string left to right, it consunesit ‘middle out’ from
a symbolin the string Similarly, the output of a
headtransdiceris built up middle-out at positions
relaive to asymbd in the output string.

Formally, aweightedheadtransdiceris a5-tuple:
an alphaet W of input symbok; an alphabetV of
output symbds; afinite set( of states ¢, ..., ¢qs; @
setof final states F' C Q; anda finite setT of stake
transtions. A transtion from stateq to stae ¢ has
theform

(q,4'sw,v,0, B,¢)

wherew is amemberof W or is theemptystring e;
v is amemberof V or ¢; the integer « is the input
position; the integer S is the output position; and
therealnumbe c is theweightof thetranstion. The
rolesof ¢, ¢', w, andw in transtions are similar to
therolesthey have in left-to-right tranglucersi.e.in
transtioning from stateq to stateq, the transduce
‘reads’ input symbolw and‘writes’ output symbd
v, andasusual if w (or v) is e thenno read(repec-
tively write) takes placefor thetranstion.

To definethe role of trarsition positions « and
B, we consder notional input (source) and outpu
(target) tapesdivided into squaes. On sucha tape,
onesquareis numbeed0, andthe othersquaresare
numbeed 1,2, ... rightwards from squae 0, and
—1,-2,... leftwardsfrom squae 0. A transtion
with input position o and outpu postion 3 is in-
terpretedasreadng w from squae o on the input
tapeandwriting v to squae S of the output tape;if
squae g is alrealy occupiedthenw is written to the
next emptysquareto theleft of g if 8 < 0, orto the
right of g if 8 > 0, andsimilarly if input was al-
readyreadfrom postion «, w is taken from the next
unreadsquaeto theleft of « if & < 0 orto theright
of aif a > 0.



3.2 Dependery transduction models

Dependencytransduction models are gengative
statstical modelswhich derive syndronized pairs
of dependercy tr ees, asourcelanguagedependercy
tree and a tamget dependery tree A depeandercy
tree,in thesensef depemeny grammair(for exam-
ple Hays(1964), Hudsa (1984)), is atreein which
the wordsof a senenceappear asnodes; the paren
of a nodeis its head andthe child of a nodeis the
nodes dependent

In a depemeny transluction model, eachsyn
chronizedlocal subteecorregponds to a headtrans
duce derivation: the headtrangluceris usedto con
vert a seqenceconsisting of a headword w andits
immediateleft and right dependentwordsto a se-
guerceconsiging of atarget word v andits immedi-
ateleft andright depemlentwords. (Sincetheempty
string mayappearin atranstion in placeof asoure@
ortamgetsymbd, thenumberof soure andtargetde-
pendentscanbedifferent.) Whenapplying adepen
deng transdiction modelto translation, we choo®
thetarget string obtanedby flattening thetaget tree
of the lowest costrecusive depemleng derivation
thatalsoyieldsthe souice string.

For adependercy transdiction modelto be a sta-
tistical modelfor geneating pairsof strings, we as-
signtrarsition weights thatare derived from condk
tiond probabilities. Severalprobabilistic parameter
izations can be usedfor this purposeincluding the
following for a transition with headwordsw andw
anddependentwordsw’ andv':

p(q’7 wl, IU,? a? /8|w7 IU’ Q)'

Hereq andq’ arethe from-stae andto-gatefor the
transtion anda andg arethesoure andtarget posk
tions, asbefore We alsoneedparanetersp(q|w, v)
for the probability of choosinganinitial headtrans
duce stateq given a pair of words (w,v) headng
a synchronized pair of sultrees.To startthe deriva-
tion, we needparametersp(R(wp, vo)) for theprob-
ability of chocsing wy,vg asthe root nodes of the
two trees

Thesemodel paraméers can be usedto geneate
pairsof synchrorizeddepeandercy treesstartirg with
the topmostnodes of the two treesand proceedirg
recusively to the leaves The probaility of sucha

derivationcanbeexpressedas:

p(R(wo, UO))p(Dwo,Uo)

wherep(D,, ,) is the probability of a subdeivation
heacdby w andw, thatis

p(Dw,v) =
p(qo|w,v)

H p(qi+17 ws, Vg, O, ﬁllwa v, Q’L)p(Dw“’U@)
0<i<n

for aderivationin which the dependetts of w andwv
aregenentedby n transtions.

The paramegrsof this probabilistic synchrorized
treederivation modelareestimaed from the resuls
of running the hierarcchical alignmentalgorithm de-
scribedin sectbn 2 onthesenencepairsin thetrain-
ing corpus. For this purpose eachsyndronizedtree
resuting from the alignment processis assumedto
be derived from a depemleng transdiction model,
so trarsition couns for the model are tallied from
the set of synchronizedtrees (For further detals,
seeAlshawi andDouglas (2000).)

To carry out translation with adependeng trans
ducton model, we apply a “middle-out” dynamic
programmingseard to find the optimal derivation.
This algorithm cantake asinput eitherword strings
or word lattices producedby a speeh recoqizer
The algorithm is similar to thosefor context free
parsing suchaschat parsng (Earley, 1970) andthe
CKY algarithm (Younger, 1967) It is descrbedin
Alshawi etal. (2000b).

4 Similarity Cased-Basedransduction

4.1 Training the transduction parameters

Our semanticsimilanty transduction methodis a
casebasedor examplke-base) methal for transdic-
ing soure stringsto target stringsthat makesuseof
two differentkinds of training data

e A setof source-string, target-sting pairs that
are instances of the transducton mappirg.
Specificaly, transcripions of spolen utter-
ancesin the souce languageandtheir transla-
tion into the target language. This is the same
data usedfor training the dependemy trans
duction model. It is usedin this transdiction



methodto constuct a probabilistic bilingual
lexicon, while the souicesideis usal asthe set
of examplesfor matchirg.

e A mappirg betweenthe soucestringsandsub
setsof a (relatively small) setof classes,or la-
bels. Theideais that the labek give a broad
classfication of the meanirg of the soure
strings, sowe will referto theminformaly as
“semanic” labds. In our experiments, these
clas®s correspondto 15 call routing destna-

tionsasso@tedwith thetransribedutterances.

For the purposesof the case-lasedmethod this
datais usedto constuct a similarity measue
betweernwordsof the soure language.

As noted earlia, the alignment algarithm de-
scribedin sectbn 2 is applied to thetrandation pairs
toyield asetof synchronzeddependemy trees.Us-
ing theresuting trees theprobabilitiesof abilingual
lexicon, i.e.

p(vlw)

wherew is a soure languageword, andv is a tar
getlanguageword, areestimatel from the courts of
syndronizedlexical nodes. (Sincethesynchrorized
treesaredependeny trees bothpairedfringe nodes
andinterior nodes areincludedin thecourts.) In this
probabilistic lexicon,v maybee, theemptysymbol,
so source words may have different probabilities of
being deletal. However, for insettion probabiliti es,
we assumehat P(ele) = 1, to avoid prodemswith
sputiousinsetions of tamget words.

Thelabelsassaiatedwith the soure stringswere
originally assigred by manual anndation for the
purposesof a differentresarchproject, specfically
for training an automatic call routing system, us-
ing the methals descibed by Gorinetal. (1997).
(Many of the training sentecesare assigred mul-
tiple labds.)

For the trarslation task, the labds are usedto
compue asimilarity measuwe m(wy , w-) asadiver-
gene betweera probability distribution condtional
on sourceword w; anda correspoming distribution
condtional on anohersouceword uy. The distri-
butions involved, p(L|w,) and p(L|ws), are those
for the probability p(I|w) that a souce stringwhich
includesword w hasbeenassigredlabell. Thesim-
ilarity measuren(w, , w2) is compuedfrom therel-

ative entropy D (Kullbadc Leibler distance (Kull-
back and Leibler, 1951)) betweenthes distribu-
tions. To make the similarity measue symmetrial,
i.e. m(wy,wy) = m(we,w;), We take the average
of two relative entropy quatrtities:

1/2 (D(p(L|w1)|[p(L|w2)) +

D(p(L|w2)||p(L|w1)))

m(wy,ws) =

Of course, this is one of mary different possble
similarity measueswhich coud have beenused(cf
Pereiraetal. (1993)), including onesthatdo not de-
pendon addtional labek. However, since seman
tic labds had already beenassigied to our train-
ing data,the distributionsseemedik e a corveniert
rouch proxy for the semantt similarity of wordsin
this limited doman.

4.2 Case-basedransduction procedure

Basicaly, the trangluction procedue (i) finds an
instance (s,t) of the translation training pairs for
which the example soure@ string s provides the
“bed” matchto the input soure string «, and (ii)
produces,asthe translation output, a modified ver
sionof theexampletamget stringt, wherethe modifi-
cationsreflectmismatctesbetwea s andtheinput.
For thefirst step the similarity measurebetwea
wordscompuedin termsof therelative entropy for
labeldistributionsis used to compue a distance

d(sl,s2)

betweentwo souce strings s; ands,. The(seman
tically influenaed) string distance d, is a weighted
edit distance (Wagnerand Fischer 1974) betwea
the two stringsin which the costof subgituting one
source word wy for anotrer wy is provided by the
“semartic” similarity measue m(w;,ws). A stan
dard quadatic dynamic programmingseach algo-
rithm is usedto find the weighted edit distancebe-
tweentwo strings. This algorithm finds a sequace
of edit opeationrs (insetions, delefons, and substi
tutions) thatyield s2 from s1 sothatd(s1, s2), the
sum of the cods of the edit operdions, is minimal
over all sucheditsequeces.

The weighted edit distance seard is applied to
u and eachexamplesoure string s to idenify the
exampletranslation pair (s,t) for which d(u, s) is



minimal over all examplesoure strings. The cor-
respading sequace of edits for this minimal dis-
tanceis usedto computea modifiedversian # from
t. For this purpcse, the source languageedits are
“translated into corresponling targetlanguageedits
using the probailistic bilingual lexicon estimatel
from aligning the training data. Specificaly, for
eachsubsitution w; — ws in the edits resuting
from the weighted edit distanceseach, a subsitu-
tion v; — vy is applied to t. Herew; is choenso
that p(v;|w;) is maximal. The transhtededits are
appled sequentidly to ¢ to give?.

The modified exampletarget string ¢ is usedas
the outpu of this trandation methal unles the min-
imal edit distarcebetweenu andtheclosestexample
s exceds a threshold determired expelimentally.
(For this purpose,the edit distanceis normalzedby
utterancelengt.) If the threshold is excealed, so
that no “sufficiently clos€ examplesare available,
thena word-for-word trandation is usedasthe out-
put by simply applying the probabilistic lexicon to
eachword of the input. It is pethapsworth men-
tioning tha the statidical dependeng transdiction
methoddoesnot needa sucha fall-back to word-
for-word trandation: themiddle-out(island parsng)
seart algorithm usedwith headtransdicersgrace
fully degradesinto word-for-word transhtionwhen
the training datais too spase to cover the input
string.

5 Experimentsand results

5.1 Dataset

The corpaa for the experiments repoted herecon
sist of spoken English utterances, pairedwith their
trandations into Japaese. The English utterances
were the custaner side of actud AT&T cusbmer
opeiator corversatioms. Therewere 12,22 training
bitextsandanadditional 3,253bitexts for tesing. In
thetext expeliments,the English sideof thebitext is
the humantran<riptions of the recadedspeeh; in
the speeb experiments, it is the output of speet
recoquition. The case-basd model makes use of
addtional informationin the form of labds associ
atedwith soucelanguageutterances classfying the
sourceutterancesinto 15 taskrelatal classessuchas
“collect-cdl”, “directory-assisance’, etc.

The trandations were carried out by a commer

cial translation company. SinceJapamsetext hasno
word boundaries, we asked the transhtorsto insett
spaes betweenJapamsechamacterswhenewer they
‘arose from different English wordsin the sour@’.
This imposeal an English-ceriric view of Japarese
text segmentaion.

5.2 Evaluation metrics

We usetwo simple string edit-dstane evaluaion
metricsthat canbe calaulatedautomdically. These
metrics simpleacauracy andtranslaion acauracy,
areusedto compaethetargetstringproducedby the
systan agairstthereferencehumantrandation from
held-out data. Simple accuacy (the ‘word accu
ragy’ of speetirecoqition reseach)is computedby
first finding a trandormation of one string into an-
othe that minimizes the total numbe of inserions,
deletonsandsubsitutions. Transldion accuacy in-
cludes trangositons (i.e. movement) of words as
well asinsetions, deldions, and subsitutions. We
regard the latter measureas more apprqriate for
evaluaion of translation sysemsbeausethe simple
metricwould count atranspsition astwo errors: an
insetion plusadeleton. If we write ¢ for the num-
berof insetions, d for delefons, s for substtutions,
t for transpostions, and » for numbe of wordsin
the referencetrarslation string, we canexpressthe
metricsasfollows:

simpleaccuacy =1 — (1 +d + s)/r

trandationacaurayy =1— (i +d+s+1t)/r

Sincea trangosition correspors to an insetion
andadeleton, thevalues of 7z andd will bedifferent
in the expressiors for computng the two accuagy
metrics Theunits for string opeations in the evalu-
ationmetricsare Japamsechaactes.

5.3 Experimental conditions and results

The following expelrimental systans are evaluated
here:

Word-Word A simple word for word basdine
methodin which eachsouceword is replacedwith
themosthighly correltedtargetwordin thetraining
corpus.

Stat-Dep The statstical depandercy transdiction
methodasdescibedin sedion 3.



Simple Transhtion
accuacy accuacy
Word-Word 37.2 42.8
Stat-Dep 69.3 72.9
Sim-Case 70.6 71.5

Tablel: Accurag for text (%)

Simple Transhtion
accuagy  accuacy
Word-Word 29.2 33.7
Stat-Dep 57.4 59.7
Sim-Case 59.4 60.2

Table2: Accurecy for speeb (%)

Sim-Case The sematic similanty casebasel
methodde<ribedin sectbn 4.

Tablel showvstheresuts on humantransriptions
of the setof testutterances.

Table 2 shaws the test set resuls of trarslating
autamnatic speechrecognition output. The speeb
recoquizer used a spe&erindepadent teleghory
acoustic model and a statiscal trigram language
model.

Table3 shaws the sped of loadng (once pertest
set)andthe average run time per utterancetransla-
tion for thedepenleng transducton andcasebasel
systens.

6 Concluding Remarks

In this pape we have compaed the accuray and
speal of two transhtion method, statigical depen
deng transdiction and sematic similarity cased
basa transdiction. The staistica transdiction
model is traineble from unamotaked examplkes of
sentance transhtions, while the casebasedmethal
addtionally makes useof a mode$ amour of an-
notaion to leam alexical semantt similarity func-
tion, afacta in favor of thedependery transdiction
method

In the experiments we preseated, the transdic-
tion method were applied to trandating automatic
speeh recaynition output for English utterances
into Japaesein a limited domain The evaluaion
metric usead to compae trandation accuacy wasan
autamatic string comparson function apdied to the
output prodwced by both methals. The basicresut

Loadtime Runtime/

transhtion
text
Stat-Dep 7176 53
Sim-Case 3856 2220
speeb
Stat-Dep 7447 66
Sim-Case 5925 2333

Table3: Transldion time (ms)

was that trandation accuacgy was very similar for
both models while the statstical depereng trans
ducton methodwas significantly faster at produc-
ing trarslations at run time. Sincetraining time for
bothmethodis domingedby thealignmenttraining
pha® they share training time issues do not favor
onemethodover the other

Theseresuls needto be interpretedin the rathe
narrowexperimental settirg used here the amoun
of training dataused the spedfic languagepair (En-
glish to Japaese) the evaluation metric, and the
uncetainty in the input strings (speet recoqnition
output) to which the method were applied. Fur
therreseach varying theseexperimental condtions
is neeakdto provide afuller compaison of therela
tive perfomanceof themethals. However, it shout
be possble to develop algorithmic improvemens to
increasethe computdiond efficiency of similarity
casedbasel transducton to make it more compet
itive with statisticaldepemleng trangluction atrun-
time.
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