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Abstract

We describe here a supervised learning
model that, given paradigms of related
words, learns the morphological and
phonological rules needed to derive the
paradigm. The model can use its rules to
make guesses about how novel forms
would be inflected, and has been tested
experimentally against the intuitions of
human speakers.

1 Introduction

In recent years, linguists have explored theoretical
models of how speakers discover the rules of their
language. Automated learning systems can be of
great use in developing such models. The predic-
tions of a theoretical model can be fully tested only
when it is formalized explicitly enough to be im-
plemented.

In our research, we have developed and imple-
mented a model for discovering rules of morphol-
ogy and phonology. The model is trained on pairs
of morphologically related words, and learns the
rules by which one form of a pair can be derived
from the other. We have tested our model by com-
paring its predictions against intuitions gathered
experimentally from human speakers.

2 Criteria for Evaluating Models

A number of properties are desirable in a learning
model whose goal is to mimic human intuition. We
have been motivated to develop our own model in
part because these criteria have rarely been met by
previous models. Such models include, for exam-

ple, connectionist models (Rumelhart and
McClelland 1986, Daugherty and Seidenberg
1994, MacWhinney and Leinbach 1991), neigh-
borhood similarity models (Nakisa, Plunkett and
Hahn 2001), decision tree/ILP models (Ling and
Marinov 1993, Mooney and Califf 1996, Dzeroski
and Erjavec 1997), and other rule-based models
(Neuvel, to appear).1

Our first criterion is that a model should be able
to generate complete output forms, rather than just
grouping the outputs into (possibly arbitrary) cate-
gories such as “regular,” “irregular,” “vowel
change,” etc. The reason is that people likewise
generate fully specified forms, and a model’s pre-
dictions can be fully tested only at this level of de-
tail.

Second, a model should be able to make multi-
ple guesses for each word and assign numerical
well-formedness scores to each guess. People, too,
often favor multiple outcomes, and they also have
gradient preferences among the various possibili-
ties (Prasada and Pinker 1993).2

Third, a model should be able to locate detailed
generalizations. Here is an example: English past
tenses are often formed by changing [] to [] when
the final consonant of the word is [] (fling-flung,
cling-clung, sting-stung). As experiments show,
such generalizations are learned by speakers of
English (that is, speakers do more than just memo-

                                                          
1 The Analogical Model of Language (Skousen 1989, Ed-
dington 2002) satisfies all of our criteria. However, in our use
of this model so far, we have been unable to find any setting
of its parameters that can achieve good correlations to our
experimental data, reported below in section 4.
2 On a practical level, an ability to consider multiple outputs
would also improve the performance of a recognition system.
For example, a system not told that spelt is a dialectal past
tense for spell should be able to interpret it as such, even if
spelled were its first choice.
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rize each irregular verb). For example, experimen-
tal participants often volunteer splung as the past
tense of spling, extending the generalization to a
novel verb.

The importance of detailed generalizations is
not limited to irregular forms. We have found that
speakers are often sensitive to detailed generaliza-
tions even among regulars. For example, verbs in
English ending in voiceless fricatives ([f, T, s, S])
are always regular. Our experiments indicate that
English speakers are tacitly aware of this pattern.
Thus, an accurate model of their linguistic intui-
tions must be able to detect and learn the pattern in
the training data.

Although detailed generalizations are impor-
tant, it is also crucial for a learning model to be
able to form very broad generalizations. The rea-
son is that general morphological patterns cannot
be learned simply as the aggregation of detailed
patterns. Speakers can generate novel inflected
forms even for words that don’t fit any of the de-
tailed patterns (Pinker and Prince 1988, Prasada
and Pinker 1993). Thus, a general rule is needed to
derive an output where no close analogues occur in
the training set. A special case of this sort is where
the base form ends in a segment that is not phonol-
ogically legal in the language (Halle 1978). Thus,
the German name Bach can be pronounced by
some English speakers with a final voiceless velar
fricative [x]. Speakers who can pronounce this
sound agree firmly that the past tense of to out-
Bach must be [aUtbaxt] (Pinker 1999), following a
generalization which is apparently learned on the
basis of ordinary English words.

In summary, we believe it is important that a
learning model for morphology and phonology
should produce complete output forms, generate
multiple outputs, assign each output a well-
formedness score, and discover both specific and
broad generalizations.

3 Description of the Model

3.1 Rule induction by minimal generalization

Our model employs a bottom-up approach to
learning, iteratively comparing pairs of surface
forms to yield ever more general rules. It takes as
its input ordered pairs of forms which stand in a
particular morphological relation – e.g., (present,
past) – and compares the members of each pair to

construct rules that derive one from the other. As
an example, consider the pairs of forms in (1).

(1) ([ms]pres., [mst]past) ‘miss(ed)’
([prs]pres., [prst]past) ‘press(ed)’
([læf]pres., [læft]past) ‘laugh(ed)’
([hg]pres., [hgd]past) ‘hug(ged)’
([rb]pres., [rbd]past) ‘rub(bed)’
([nid]pres., [nidd]past) ‘need(ed)’
([dZmp]pres., [dZmpt]past) ‘jump(ed)’
([plæn]pres., [plænd]past) ‘plan(ned)’

When we compare the present and past forms
of each word, we see that the relation between
them can be expressed as a structural change (in
this case, adding [-t], [-d], or [-d]) in a particular
context (after [ms], after [hg], etc.). Formally, the
structural change can be represented in the format
A → B, and the context in the format / C__D, to
yield word-specific rules like those in (2). (The
symbol ‘#’ stands for a word boundary.)

(2) ∅ → t / # ms __ #
∅ → t / # prs __ #
∅ → t / # læf __ #
∅ → d / # hg __ #
∅ → d / # rb __ #
∅ → d / # nid __ #
∅ → t / # dZmp __ #
∅ → d / # plæn __ #

The exact procedure for finding a word-specific
rule is as follows: given an input pair (X, Y), the
model first finds the maximal left-side substring
shared by the two forms (e.g., #ms), to create the
C term (left side context). The model then exam-
ines the remaining material and finds the maximal
substring shared on the right side, to create the D
term (right side context). The remaining material is
the change; the non-shared string from the first
form is the A term, and from the second form is the
B term.

(3) A B

# ms ∅ # # ms t #

C D

Note that either A or B can be zero. When A is
zero and edge-adjacent, we are dealing with an
affixational mapping. When B is zero and edge-



adjacent, we are dealing with some sort of trunca-
tion; e.g. the mapping from English plurals to sin-
gulars. When neither A nor B is zero, we are
dealing either with two paradigm members that
each have their own affix, or cases of ablaut or
similar nonconcatenative morphology.

As such word-specific rules accumulate, the
model attempts to generalize. As soon as two rules
with the same structural change have been discov-
ered, their contexts are compared to yield a more
general rule, retaining all shared context material,
and replacing all non-shared material with a vari-
able.  Here is the generalization process as applied
to miss and press:

 (4) ∅ → t / m  s __ #
+ ∅ → t / pr  s __ #

= ∅ → t / X







+syllabic
–low
–back
–tense
–round

s __ #

The procedure for comparing contexts of two
rules is much like the procedure for creating a
word-specific rule. The general scheme is as
shown in (5):

(5) A→ B / C1 __ D1
+ A→ B / C2 __ D2

= A→ B / X C′feat C′ __ D′ D′feat Y

Given two rules that share the same structural
change (Rule 1: A → B / C1 __ D1, Rule 2: A → B
/ C2 __ D2), the model compares C1 with C2, and
D1 with D2. Working outwards from the structural
change, it first locates the maximal right-side sub-
string shared by C1 and C2; this shared substring
forms part of the context for the new rule (C′) — in
this case, [s]. If C1 and C2 both contain additional
unmatched material, then the segments immedi-
ately to the left of C′ (here, [] and []) are com-
pared to see what features they have in common. If
they share any feature specifications, these are re-
tained as a left-side featural term (C′feat), in this
case, [+syllabic, –low, –back, –tense, –round]. Fi-
nally, if either C1 or C2 contains any additional
material that has not been included in C′ or C′feat,
this is converted into a free variable (X). The same
procedure is carried out in mirror image on the

right, yielding shared D′ and D′feat terms, and a
right-side variable Y. Any of these terms may be
null.

This generalization procedure retains as much
shared material as possible, yielding the most spe-
cific rule that will cover both input forms. For this
reason, we call it minimal generalization.

Minimal generalization is iterated over the data
set. Iteration consists of comparing word-specific
rules against other word-specific rules, and also
against generalized rules.3 The procedure for com-
paring a word-specific rule with a generalized rule
is much the same as in (5), but with the complica-
tion that it is often necessary to compare a segment
in the word-specific rule with a featural term (C′feat,
D′feat) in the generalized rule.

The result of this procedure is a large list of
rules, describing all of the phonological contexts in
which each change applies. The fact that the model
retains rules for each change means that it has the
potential to generate multiple outputs for a novel
input, satisfying one of the criteria we proposed in
section 2.

In some learning models, the goal of rule in-
duction is to find the most general possible rule for
each change. However, as noted above, we also
require our model to assign gradient well-
formedness scores to each output. To do this, we
evaluate the reliability of rules, then evaluate out-
puts on the basis of the rules that derive them.

3.2 Calculating reliability and confidence

The reliability of rules is calculated as follows.
First, we determine the number of forms in the
training data that meet the structural description of
the rule (for A → B / C__D, these are the forms
that contain CAD). This number is the scope of the
rule. The hits of the rule is the number of forms
that it actually derives correctly. The reliability of
a rule is simply the ratio of its hits to its scope.

Intuitively, reliability is what makes a rule
trustable. However, reliability based on high scope
(for example, 990 correct predictions out of 1000)
is better than reliability based on low scope (for
example, 5 out of 5). Following Mikheev (1997),
we therefore adjust reliability using lower confi-

                                                          
3 We believe, but have not proven, that no additional rules are
discovered by comparing generalized rules against generalized
rules.



dence limit statistics.4 The amount of the adjust-
ment is a parameter (α), which ranges from .5 < α
< 1; the higher the value of α, the more drastic the
adjustment. The result of this adjustment value,
which ranges from 0 to 1, we call confidence. Con-
fidence values are calculated for each generalized
rule, as soon as it is discovered. As each new input
pair is processed, it is compared against previously
discovered generalized rules to see whether it adds
to their hits or scope. If so, their confidence values
are updated.

The list of rules, annotated for confidence, can
be used to derive outputs for novel (unknown) in-
puts. In some systems, rules are applied in order of
decreasing specificity; the particular rule that is
used to derive an output is the most specific one
available. In our system, rules are applied in order
of decreasing confidence. The novel form is com-
pared against each known change Ai → Bi to see if
it contains the input to the change (Ai). If so, the
rules for that change are examined, in order of de-
creasing confidence, checking each rule to see if it
is applicable. Once an applicable rule has been
found, it is applied to create a novel output, and the
next change (Ai+1 → Bi+1) is considered. Each out-
put is assigned a well-formedness score, which is
the confidence value of the rule that derives it; that
is, the confidence value of the best available rule.
These well-formedness scores allow the model to
satisfy the second criterion laid out in section 2.

Minimal generalization and confidence values
provide an effective method of discovering the
phonological context in which a particular mor-
phological change applies. Rules that describe pro-
ductive processes in the correct context will have a
                                                          
4 Following Mikheev, we use the following formula to calcu-
late lower confidence limits: first, a particular reliability value
(p̂) is smoothed to avoid zeros in the numerator or denomina-
tor, yielding an adjusted value p̂*:

p̂i
* = 

xi + 0.5
ni + 1.0

This adjusted reliability value is then used to estimate the true
variance of the sample:

estimate of true variance = 
p̂*(1 – p̂*)

n

Finally, this variance is used to calculate the lower confidence
limit (πL), at the confidence level α:

πL = p̂i
* – z(1-α)/2 × 

p̂*(1 – p̂*)
n

(The value z for confidence level α is found by look-up table.)

very high confidence, whereas rules that describe
exceptional processes or the wrong contexts will
have lower confidence.

Moreover, when a change applies with espe-
cially high reliability in some particular context,
the rule that the model discovers for this context
will have especially high confidence. Thus, for
example, the rule that suffixes [-t] in the context of
final voiceless fricatives (§2), which is exception-
less and abundantly attested, is assigned an ex-
tremely high confidence value by our model.

3.3 Improving confidence with phonology

In many cases, it is possible to improve the con-
fidence of morphological rules, and even expand
their context, by discovering phonological rules.
To continue with the example from (1) above, con-
sider the rule that the model will generalize from
the items [hg] and [rb]. In the feature system we
use, the minimal natural class that covers both [g]
and [b] is the set of voiced stops [b,d,g], so the
model constructs a generalized rule that attaches
[-d] after any member of this class.

Suppose that the model is presented next with
the input pair ([nid], [nidd]). It first attempts to
update the confidence of the previously discovered
generalized rules, including the rule adding [d]
after voiced stops. Specifically, it tries to apply
each rule to [nid], checking to see if the rule can
derive the correct output [nidd]. When it does
this, it discovers that the [-d] affixation rule fails,
producing instead the incorrect output *[nidd].
What we want the model to do in this situation is
to recognize that [nidd] is in fact an instance of
[-d] affixation, but that there is an additional
phonological process of [] insertion that obscures
this generalization.

We allow the model to recognize this in the
following way: first, we provide it ahead of time
with a list of sequences that are illegal in English:
*dd#, *td#, *fd#, *pd#, *bt#, and so on. (We be-
lieve that it is not unrealistic to do this, because
experimental work (Jusczyk et al., 1993; Friederici
and Wessels, 1993) suggests that children have a
good notion of what sound sequences are legal in
their language well before they begin to learn al-
ternations.) When the learning model assesses the
reliability of a rule and finds that it yields an incor-
rect output, it compares the incorrect output against
the actual form, and hypothesizes a phonological
rule of the form A → B / C __ D that would



change the incorrect form into the correct one. In
this case, applying the [-d] suffixation rule to [nid]
yields incorrect *[nidd], which is compared against
correct [nidd], and the phonological rule that is
hypothesized is ∅ →  / d__d.5 Finally, the model
examines the target of the phonological rule (CAD,
in this case [dd]) to see if it contains a member of
the list of known illegal sequences. If so, then the
model has discovered a phonological rule that can
help the morphological rule to produce the correct
output, by fixing a phonologically illegal sequence.
In the present case, the phonological rule allows
[nid] to be counted as a hit for the morphological
rule of [-d] suffixation, thus increasing the latter
rule’s reliability.

3.4 Overcoming complementary distribution

Unfortunately, not all phonological rules can be
discovered by waiting for morphological rules to
produce incorrect outputs. Consider how our
model would analyze the pair ([ms], [mst])
‘miss(ed)’. Using the mechanisms described
above, this would initially be treated as a case of
[-t] suffixation. However, a more general analysis
can be found if we realize that [-t] can be the result
of /-d/ suffixation, with a phonological rule of de-
voicing that converts /-d/ to [-t] after a voiceless
consonant. This could be achieved by having the
model try attaching [-d] to [ms], yielding incorrect
*[msd], from which the devoicing rule could be
discovered using the procedure described in the
previous section. However, under the assumption
of strictly minimal generalization, the opportunity
to try [-d] after [ms] would never arise. The reason
is that [-d] suffixation was learned solely on the
basis of voiced stems, so it would never apply to a
voiceless stem like [ms]. More generally, the [-d]
and [-t] allomorphs of the English past tense suffix
occur in complementary distribution, so a system
that uses minimal generalization would never con-
struct rules that attempt to use one allomorph in the
environment of the other.

Our solution to this problem involves a slight
relaxation of minimal generalization. The intuition
is that when a new change is discovered (A → B,

                                                          
5 The set of possible phonological rules is restricted to insert-
ing a segment, deleting a segment, altering a segment, con-
verting one segment into two (diphthongization), converting
two segments into one (simple coalescence), or converting two
segments into two others (length-preserving coalescence (/XZ/
→ [YY]) and metathesis).

in this case ∅ → d), we should check to see if
there are any potentially related changes that have
already been discovered (A → B′, here ∅ → t) that
take the same input (A), but yield a different out-
put. The idea is that B and B′ might be the result of
the same morphological rule, obscured by a
phonological change.

To do this, we take every context that appears
in a rule with change A → B and pair it with the
change A → B′, creating a new set of rules, which
we will call cross-context rules. For example,
when the model encounters the first pair employ-
ing the ∅ → d change, it takes all of the existing
∅ → t rules and creates cross-context ∅ → d vari-
ants of them. The result is, among other things, a
rule affixing [-d] after voiceless fricatives, mirror-
ing the previously generalized rule affixing [-t] in
the same environment.

The model then assesses the reliability of this
cross-context rule, applying it to (among others)
[ms] and deriving incorrect *[msd]. By compar-
ing this with the actual output [mst], the model
posits a phonological rule for devoicing, in the
same manner as described in the previous section.
It then checks to see if the proposed phonological
rule will enable the cross-context rule to produce
the same output as the rule from which it was
cloned in all cases. If so, the cross-context rule is
kept, and can serve as the input for further gener-
alization. Thus, the phonological rule is able to
extend the set of contexts in which [-d] affixation
successfully applies.

With these procedures in place, our model is
able to discover a single rule that covers all Eng-
lish regular past tenses, namely ∅ → d / ___ #.
The various regular past tense allomorphs are de-
rived from /-d/ by phonological rules of voicing
assimilation (deriving [-t]) and [] insertion (de-
riving [-d]). We would guess that these are the
rules that are assumed by most linguists; see Pinker
and Prince (1988) for a detailed presentation.
However, we discuss evidence below suggesting
that simple [-d] affixation is not the only rule that
derives regulars.

3.5 The grammar so far

We summarize here the grammar that is learned by
our model (as described up until this point) when
exposed to a representative corpus of English pres-
ent-past pairs. The most general rule of the gram-
mar is the noncontextual suffixation rule ∅ → d /



___ #; with the help of phonology this rule can
derive all regulars. In addition, the model also dis-
covers a large number of rules with lower general-
ity. Many of these rules describe
subgeneralizations about the regular process, for
example, the highly reliable rule suffixing [-t] (or
its underlying counterpart /-d/) after voiceless
fricatives. Other rules describe exceptional proc-
esses, such as  →  before [] (fling-flung, wring-
wrung, etc.), i →  between a liquid and [d] (bleed-
bled, read-read, etc.), and no change after [t] (hit-
hit, cut-cut, etc.). In general, such exceptional pro-
cesses will have much lower confidence than the
regular rules, partly because they are based on
fewer forms, and partly because there are regular
forms that fail to obey them (need-needed, not
*ned).

Lastly, the model learns a large number of rules
that could fairly be described as detritus, because
they are never used in deriving any form (other,
more reliable rules take precedence over them). In
principle, we could prune these rules from the fin-
ished grammar, though we have not taken this step
in our current implementation.

3.6 The distributional encroachment problem

Exceptional forms are easy to identify as such
when they involve a change that occurs in only a
few words, such as  → . Not all exceptions have
this property, however; sometimes exceptions are
disguised by the fact that they involve a change
that is regular, but in a different environment.

An example of this type of exception is seen in
the past tense forms in (6), which occur in some
dialects of English:

(6) ([bn]pres., [bnt]past) ‘burn(t)’
([ln]pres., [lnt]past) ‘learn(t)’
([dwl]pres., [dwlt]past) ‘dwell(t)’
([spl]pres., [splt]past) ‘spell(t)’
([sml]pres., [smlt]past) ‘smell(t)’

These words form their past tense using one of the
regular changes (∅ → t), but in the wrong envi-
ronment (after sonorant consonants, rather than
after voiceless ones). We call this type of excep-
tion distributional encroachment, because one
morphological change is encroaching on the
phonological context in which another change
regularly occurs.

Distributional encroachment appears to be a
major problem for all morphological learning sys-
tems that attempt to find large-scale generaliza-
tions. In what follows, we will explain why the
example in (6) is problematic, then propose a
method for coping with distributional encroach-
ment in general.

Assume that prior to hearing any of the forms in
(6), the model has already processed a fair number
of regular stems ending in voiceless obstruents.6
Comparing forms like [ms]-[mst] ‘miss(ed)’,
[læf]-[læft] ‘laugh(ed)’, and [dZmp]-[dZmpt]
‘jumped’, the model would learn a number of rules
of [t]-suffixation. Since [t] suffixation after voice-
less obstruents is the regular outcome in English,
these rules will achieve quite high confidence
scores. Moreover, if we are willing to have a
phonological rule that voices /-t/ to [-d] after a
voiced obstruent, the context of /-t/ suffixation
could be expanded to all obstruents. Under this
analysis, past tense forms like hugged can now be
derived as /hg/ → hgt → [hgd], so the confi-
dence for this generalized rule would be even
higher.

The distributional encroachment problem is en-
countered when the model, having reached this
state, is confronted with one of the exceptional
forms in (6). The result will be a serious overgen-
eralization. Suppose that the first such form en-
countered is [bn]-[bnt] ‘burn(t)’. The model
would first posit a single-form rule adding [-t] after
the stem [bn]. Then, the generalization procedure
would compare it with the other known [-t] affixa-
tion rules, all of which apply after obstruents. This
comparison would lead to a generalized rule add-
ing [-t] after any consonant at all: ∅ → t /
[–syllabic]__#. 

Let us now estimate the reliability of this gen-
eralized rule. Corpus counts show that the final
segments of verb stems occur in roughly the fol-
lowing proportion in English:

(7) Obstruents 60%
Sonorant consonants 25%
Vowels 15%

Suppose that prior to learning the form burnt, the
model has learned 600 input pairs, of which 500
are regular and 100 are irregular exceptions, none
                                                          
6 The voiceless obstruents of English are [p, t, tS, k, f, T, s,
S, h], and the voiced obstruents are [b, d, dZ, g, v, , z, Z].



of them of the burnt type. Assume for simplicity
that the distribution of final segments in both
regulars and irregulars follows the proportions of
(7). Thus, there will be 300 regular obstruent-final
stems, and 60 obstruent-final exceptions, giving
the rule attaching [-t] after obstruents a reliability
of 300/360 = .83. Since 500 of the verbs are regu-
lar and 100 are irregular, the confidence of the rule
attaching [-d] after any segment will be 500/600,
which is also .83.

When the model encounters the pair ([bn],
[bnt]), this adds a sonorant-final stem employing
the ∅ → t change. The first step the model takes is
to update reliability scores. Rules attaching [-t]
after obstruents will be unaffected, since [n] is not
an obstruent. The reliability of the rule attaching
[-d] everywhere drops a minuscule amount, from
500/600 to 500/601. The second step is the fatal
one: generalization with [bnt] gives rise to the
new rule ∅ → t / [–syllabic]__#. This rule works
correctly for 301 verbs (the 300 regular obstruent-
final stems plus burnt), and fails for 210 verbs (the
60 obstruent-final exceptions, plus 150 verbs other
than burnt that end in a sonorant consonant). Thus,
its reliability would be 301/511, or .59. The pre-
diction therefore is that for novel verbs that end in
sonorant consonants, such as pran [præn], pasts
with [-t] (prant [prænt]) should be at least moder-
ately acceptable as a second choice, after the
regular pranned [prænd]. We believe that this pre-
diction is wrong; prant strikes us as absurd.

3.7 Impugnment as a solution to the distribu-
tional encroachment problem

The problem we are faced with is to let the model
identify cases of distributional encroachment as
such, and not be fooled into grouping burnt and
laughed together under the same [-t] generaliza-
tion. Intuitively, the problem with the rule attach-
ing [-t] after any consonant is that it is internally
heterogeneous; it consists of one very consistent
subset of cases (the obstruent-final stems) and one
fundamentally different case (burnt). We can char-
acterize internal heterogeneity more precisely if we
compare the scope and hits of the “correct” rule
(after obstruents) and the “spurious” rule (after any
consonant):

(8) Rule Hits Scope
∅ → t / [–sonorant]__# 300 / 360
∅ → t / [–syllabic]__# 301 / 511

We see that the rule adding [-t] after any consonant
gains just one hit, but adds a significant number of
exceptions (150).

Formalizing this intuition, we propose a re-
finement of the way that confidence is calculated,
in order to diagnose when a subpart of a generali-
zation is doing most of the work of the larger gen-
eralization. When we consider the confidence of a
context ℂ associated with a change A → B, we
must consider every other context ℂ′ associated
with A → B, checking to see whether ℂ′ covers a
subset of the cases that ℂ covers. In the present
case, when we assess the confidence of adding [-t]
after any consonant, we would check all of the
other rules adding [-t], including the one that adds
[-t] after obstruents. For each ℂ′ that covers a sub-
set of ℂ, we must ask whether the rule A → B / ℂ′
is actually “doing most of the work” of the larger
rule A → B / ℂ.

To find out if the smaller rule is doing most of
the work, we calculate how well the larger rule (ℂ)
performs outside the area covered by the smaller
rule (ℂ′). The reliability of the residue area (ℂ –
 ℂ′) is calculated as follows:

(9) Reliability(ℂ – ℂ′) = 
hits(ℂ) – hits(ℂ′)

scope(ℂ) – scope(ℂ′)

From the reliability of this residue area (ℂ –
 ℂ′), we can then calculate its confidence, using
confidence limit statistics in a way similar to that
described above in section 3.2. However, there is a
crucial difference: when we are assessing whether
a rule explains enough cases to be trustable, we are
interested in the denseness of cases within the gen-
eralization. But when we are assessing whether a
rule offers an improvement over a subpart, we are
interested in the sparseness of cases in the residue
outside of the subpart. Therefore, when calculating
the confidence of the residue, we must use the up-
per confidence limit rather than the lower confi-
dence limit.

If the upper confidence limit of the reliability of
the residue (ℂ – ℂ′) is lower than the lower confi-
dence limit of the reliability of the larger context
(ℂ), then we can infer that the smaller rule
(A → B / ℂ′) is doing most of the work of the
larger rule (A → B / ℂ). Therefore, we penalize the
larger rule by replacing its confidence value
(Lower confidence(ℂ)) with the confidence value
of the residue (Upper confidence(ℂ – ℂ′)). We call



this penalty impugnment, because the validity of
the larger rule is being called into question by the
smaller rule. Impugnment is carried out for all
contexts of all rules.

This impugnment algorithm is similar to the
pruning algorithm proposed by Anthony and Frisch
(1997). However, their algorithm requires that the
smaller rule cover at least as many positive cases
(hits) as the larger rule. In this case, the larger rule
does cover one more case than the smaller rule (the
form burnt), so it would not be eligible for pruning
under their system. Impugnment is also similar to
the pruning strategies based on “minimum im-
provement” or “lift” (e.g., Bayardo, Agrawal and
Gunopulos 1999), but in this case, we are consid-
ering the improvement of a more general (less
specified) context, rather than a more specific one,
and the criterion of improvement is built in rather
than user-specified.

3.8 The status of impugnment

We find that in general, impugnment suffices to
relegate forms of the burnt class to the status of
minor irregular classes, and thus saves the model
from serious overgeneralization. Since distribu-
tional encroachment appears to be common in lan-
guages (Albright and Hayes 1999), we feel that
impugnment or some other algorithm of equivalent
effect is crucial for accurate morphological learn-
ing.

This said, we must add a somewhat puzzling
postscript. In the experiment described below, we
found that speakers gave forms like prant surpris-
ingly high ratings. As a result, we found that we
could achieve the closest match in modeling the
experimental data by turning impugnment off. We
feel that the high ratings for prant forms most
likely were an artifact, reflecting the sociolinguis-
tic status of burnt pasts (they are most often en-
countered by Americans as literary forms and may
be felt to be prestigious). The upshot is that at pre-
sent the empirical necessity of impugnment re-
mains to be demonstrated.

4 Testing the Model

4.1 Training

Before a model can be tested, it must be trained
on a representative learning set. For our studies of
English past tenses, we used a corpus of 4253
verbs, consisting of all the verbs that had a fre-

quency of 10 or greater in the English portion of
the CELEX database (Burnage 1991). We trained
our model to predict the past tense form from the
present stem.

The model, implemented in Java,7 accom-
plished its task fairly rapidly, learning the English
past tense pattern in about 20 minutes on a 450
MHz PC. Most of this learning time was spent ex-
panding and refining the more detailed rules; the
broad generalizations governing the system were in
place after only a few dozen words had been ex-
amined.

4.2 Corpus testing

As a first test of our model’s performance, we
divided the training data randomly into ten parts,
and used the model to predict past tenses for each
part based on the remaining nine tenths. For virtu-
ally every verb, the first choice of our model was
the regular past tense, in its phonologically correct
form: [-t], [-d], or [-d], depending on the last
segment of the stem. We consider this preference
to be appropriate, given that English past tenses are
on the whole a highly regular system; human
speakers output irregulars only because they have
memorized them.

4.3 Testing on novel forms

In our opinion, the most important criterion for
a model like ours is the ability to deal with novel,
made-up stems in the same way that people do.
Novel stems access the native speaker’s generative
ability, abstracting away from whatever behavior
results from memorization of existing verbs.

To begin, we have found that the model cor-
rectly inflects unusual words like Prasada and
Pinker’s (1993) ploamph and smairg; i.e. as
[plomft] and [smergd]. The model can do this be-
cause it learns highly general rules that encompass
these unusual items. Moreover, when confronted
with the non-English sound [x] in to out-Bach
[aUtbax], our model correctly predicts [aUtbaxt].
The model is able to do this because it can gener-
alize using features, and thus can learn a rule that
covers [x] based on phonetically similar segments
like [f] and [k].

On a more systematic level, we have explored
the behavior of the model with a carefully chosen

                                                          
7 Source code available at http://www.linguistics.ucla.edu/
people/hayes/rulesvsanalogy/



set of made-up verbs, which were rated both by our
model and by groups of native speakers. We car-
ried out two experiments, which are described in
detail in Albright and Hayes (2001).

In our first experiment, we asked participants to
complete a sentence by using the past tense of a
made-up verb that had been modeled in previous
sentences. For example, participants filled in the
blank in the frame “The chance to rife would be
very exciting. My friend Sam ___ once, and he
loved it.” Typically, they would volunteer rifed, or
occasionally rofe or some other irregular form. In
the second experiment, participants were given a
number of choices, and rated each on a scale from
1 (worst) to 7 (best).

In selecting verbs to use in the experiments, we
tried to find a set of verbs for which our learning
model would make a wide range of different pre-
dictions. We began with a constructed corpus of
phonologically-ordinary monosyllables (i.e. com-
binations of common onsets and rhymes), and used
the model to predict past tenses for each. Based on
these predictions, we selected four kinds of verbs,
which according to the model:

 I. should sound especially good as regular,
but not as irregular

 II. should sound especially good as (some
kind of) irregular, but not as regular

 III. should sound good both as regular and as
some kind of irregular

 IV. should not sound especially good either as
regular or as any kind of irregular

Here are examples of all four categories.
I. Blafe is expected to sound particularly good as a
regular (because it falls within the scope of the
high confidence voiceless-fricative rule), but not as
an irregular. II. Spling is expected to sound espe-
cially good as an irregular (splung), because it fits
a high-reliability [I] → [√] rule, but it is not pre-
dicted to be especially good as a regular. III. Bize
is predicted to sound good as both a regular and an
irregular, since it falls into a highly reliable context
for regulars (final fricatives) and also falls into a
highly reliable context for the [a] → [o] change
(before a coronal obstruent). IV. Gude is not cov-
ered by any especially reliable rules for either
regulars or irregulars. The full set of verbs is given
in the Appendix.

When we tested these four categories of made-
up verbs, we found that our participants gave them

ratings that corresponded fairly closely to the pre-
dictions of our model. Not only did participants
strongly prefer regulars, as we would expect, but
there was also a good match of model to data
within the categories I-IV defined above. The fol-
lowing graphs show this for both regulars and ir-
regulars (all responses are rescaled to the same
vertical axis):

Figure 1. Mean ratings for regulars
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Figure 2. Mean ratings for irregulars
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The graphs show data for participant ratings;
similar results were obtained when we counted
how frequently the various past tenses were vol-
unteered when the participants were asked to fill in
the blanks themselves.

As a more stringent test, we can examine not
just mean values, but word-by-word predictions. A
measure of this is the correlation between the
model’s predictions and the experimental results.
The correlations are carried out separately for
regulars and irregulars, since an overall correlation
only establishes that the model knows that it
should rate regulars highly.

(10) Ratings Data (n = 41)

regulars r = .745, p < .0001
irregulars r = .570, p < .0001



(11) Volunteered Data (% volunteered, n = 41)

regulars r = .695, p < .0001
irregulars r = .333, p < .05

In summary, our experiments validate a number
of the model’s predictions. First, participants prefer
regulars over irregulars. Second, their intuitions are
gradient, ranging continuously over the scale.
Third, participants favor only those irregular forms
that fall within a context characteristic of existing
irregular verbs, like -ing ~ -ung. Finally, and most
surprisingly, the participants followed the predic-
tions of our model in favoring regular forms that
can be derived by rules with high reliability.8

We conclude that our model captures a number
of subtle but important patterns in the preferences
of human speakers for past tense formation of
novel verbs. Some of these preferences (e.g., the
special preference for voiceless-fricative regulars)
are not predicted by traditional linguistic analyses.
We have obtained similar results in other lan-
guages (Albright 1999; to appear) We suspect that
there may be many generalizations in morphology
that are apprehended by native speakers but have
been missed by traditional analysis. The use of
machine learning may be useful in detecting such
generalizations.

5 How the model could be improved

5.1 Phonological representations

Our model uses a very simple kind of phonological
representation, from Chomsky and Halle (1968),
and a very simple schema for rules ((5)). While
this works well in systems that involve only local
phonological generalizations, more complex sys-
tems are likely to require better representations if
the correct generalizations are to be discovered.
For example, the notion “closest vowel” is needed
to characterize vowel harmony (e.g. Hungarian
könyv-nAk → könyv-nek ‘book-dative’). Our model
cannot ignore the consonants that intervene be-
tween vowels, so it would not do well in learning
this kind of rule. Our model also lacks any notion
                                                          
8 Statistical testing reported in Albright and Hayes (2001)
indicates that the effect on regulars cannot be attributed (en-
tirely) to a “trade-off” effect with irregulars; i.e. splinged does
not sound bad just because splung sounds good. In fact, the
observable tradeoff effects are equally strong in both direc-
tions: some irregular forms sound worse because they also fall
into a strong context for regulars.

of syllables or syllable weight. Thus it could not
learn the generalization that all polysyllabic Eng-
lish verb stems are regular (Pinker and Prince
1988); nor could it learn the distribution of the
Latin abstract noun suffixes [-ia] and [-ie˘s], which
depends on the weight of the stem-final syllable
([gra˘.ti.a] ‘favor’, [kle.men.tia] ‘mercy’ vs.
[ma˘.te.ri.e˘s] ‘matter’; Mester 1994). Lastly, the
model lacks any notion of foot structure. Thus, it
could not learn the distribution of the Yidiny loca-
tive suffixes [-la] and [-˘] (prelengthening), which
is arranged so that the output will have an even
number of syllables, that is, an integral number of
disyllabic stress feet ([»gabu][»dyula] ‘clay-loc.’ vs.
[u»na][ga»ra˘] ‘whale-loc’; Dixon 1977).
Phonological theory provides some of the means to
solve these problems: theories of long-distance
rules (e.g. Archangeli and Pulleyblank 1987), of
syllable weight (McCarthy 1979), and of foot
structure (Hayes 1982). We anticipate that incorpo-
rating such mechanisms would permit these phe-
nomena to be learned by our system.

At the same time, however, we must consider
the possibility that introducing new structures may
expand the hypothesis space so much that it cannot
be searched effectively by minimal generalization.
Thus, where there are alternative phonological
theories available, they should be assessed for
whether they permit the right generalizations to be
found without excessively expanding search time.
It may also be possible to cut back on search time
by using better algorithms for searching the hy-
pothesis space.

5.2 Multiple changes

A number of morphological processes involve
multiple changes, as in the German past participle
geschleppt ‘dragged’, derived from schlepp- using
both prefixation and suffixation. Our model (spe-
cifically, our method for detecting affixes) cannot
characterize such cases as involving two simple
changes, and would treat the relation as arbitrary.
Two methods that might help here would be (a) to
use some form of string-edit distance (Kruskal
1983), weighted by phonetic similarity, to deter-
mine that -schlepp- is the string shared by the two
forms; (b) to adopt some method of morpheme
discovery (e.g. Baroni 2000; Goldsmith 2001;
Neuvel, to appear; Schone and Jurafsky 2001;
Baroni et al. 2002) and use its results to favor rules
that prefix ge- and suffix -t.



Summarizing, we anticipate that improvements
in the model could result from better phonological
representations, better methods of search, and more
sophisticated forms of string matching.

Appendix: Made-Up Verbs Used in the
Experiments

I. Expected to be especially good as regular

blafe [blef], bredge [brdZ], chool [tSul], dape
[dep], gezz [gz], nace [nes], spack [spæk],
stire [star], tesh [tS], wiss [ws]

II. Expected to be especially good as irregular

blig [blg], chake [tSek], drit [drt], fleep
[flip], gleed [glid], glit [glt], plim [plm],
queed [kwid], scride [skrad], spling [spl],
teep [tip]

III. Expected to be good both as regular and as
irregular

bize [baz], dize [daz], drice [dras], flidge
[fldZ], fro [fro], gare [ger], glip [glp], rife
[raf], stin [stn], stip [stp]

IV. Not expected to be especially good either as
regular or as irregular

gude [gud], nold [nold], nung [n], pank
[pæk], preak [prik], rask [ræsk], shilk [Slk],
tark [tark], trisk [trsk], tunk [tk],
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