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Abstract retical point of view, morphological learning algo-

We present an algorithm that takes an
unannotated corpus as its input, and re-
turns a ranked list of probable morpho-
logically related pairs as its output. The
algorithm tries to discover morphologi-
cally related pairs by looking for pairs
that are both orthographically and seman-
tically similar, where orthographic simi-
larity is measured in terms of minimum
edit distance, and semantic similarity is
measured in terms of mutual information.
The procedure does not rely on a mor-
pheme concatenation model, nor on dis-
tributional properties of word substrings
(such as affix frequency). Experiments
with German and English input give en-
couraging results, both in terms of pre-
cision (proportion of good pairs found at
various cutoff points of the ranked list),
and in terms of a qualitative analysis of
the types of morphological patterns dis-
covered by the algorithm.

1 Introduction

rithms can help answer questions related to human
language acquisition.

In this study, we present a system that, given a
corpus of raw text from a language, returns a ranked
list of probable morphologically related word pairs.
For example, when run with the Brown corpus as
its input, our system returned a list with pairs such
aspencil/pencilsand structured/unstructureat the
top.

Our algorithm is completely knowledge-free, in
the sense that it processes raw corpus data, and it
does not require any form & priori information
about the language it is applied to. The algorithm
performs unsupervised learning, in the sense that it
does not require a correctly-coded standard to (iter-
atively) compare its output against.

The algorithm is based on the simple idea that a
combination of formal and semantic cues should be
exploited to identify morphologically related pairs.
In particular, we use minimum edit distance to mea-
sure orthographic similarity,and mutual informa-
tion to measure semantic similarity. The algo-
rithm does not rely on the notion of affix, and it
does not depend on global distributional properties
of substrings (such as affix frequency). Thus, at
least in principle, the algorithm is well-suited to

In recent years, there has been much interest in coiScover pairs that are related by rare and/or non-
putational models that learn aspects of the morphofoncatenative morphological processes.

ogy of a natural language from raw or structured The algorithm returns a list of related pairs, but
data. Such models are of great practical interest #sdoes not attempt to extract the patterns that relate
tools for descriptive linguistic analysis and for mini-the pairs. As such, it can be used as a tool to pre-
mizing the expert resources needed to develop moWenphonetically transcribed input, our model would
phological analyzers and stemmers. From a theeempute phonetic similarity instead of orthographic similarity.



process corpus data for an analysis to be performéeft substring (with constraints that we do not dis-
by a human morphologist, or as the first step of auss here).
fully automated morphological learning program, to Jacquemin’s procedure then builds upon these
be followed, for example, by a rule induction pro-early steps by clustering together sets that follow the
cedure that extracts correspondence patterns frasame patterns, and using these larger classes to look
paired forms. See the last section of this paper fdor spurious analyses. Finally, the algorithm tries to
further discussion of possible applications. cluster classes that are related by similar, rather than
We tested our model with German and Englistidentical, suffixation patterns. Again, we will not
input. Our results indicate that the algorithm isgdescribe here how this is accomplished.
able to identify a number of pairs related by a va- Our basic idea is related to that of Jacquemin, but
riety of derivational and inflectional processes withwe propose an approach that is more general both
a remarkably high precision rate. The algorithm isn terms of orthography and in terms of semantics.
also discovering morphological relationships (sucln terms of orthography, we do not require that two
as German plural formation with umlaut) that wouldstrings share the left (or right) substring in order to
probably be harder to discover using affix-based aponstitute a candidate pair. Thus, we are not limited
proaches. to affixal morphological patterns. Moreover, our al-
The remainder of the paper is organized as folgorithm extracts semantic information directly from
lows: In section 2, we shortly review related work.the input corpus, and thus it does not require a pre-
In section 3, we present our model. In section 4, weompiled list of semantically related pairs.
discuss the results of experiments with German and
English input. Finally, in section 5 we summarizc—:‘z'2 Schone and Jurafsky (2000)
our main results, we sketch possible directions th&chone and Jurafsky (2000) present a knowledge-
our current work could take, and we discuss somi&ee unsupervised model in which orthography-

potential uses for the output of our algorithm. based distributional cues are combined with seman-
tic information automatically extracted from word
2 Related work co-occurrence patterns in the input corpus.

They first look for potential suffixes by search-

For space reason, we discuss here only three afy for frequent word-final substrings. Then, they
proaches that are closely related to ours. See, fRok for potentially morphologically related pairs,
example, Goldsmith (2001) for a very different (p0S; ¢ najrs that end in potential suffixes and share the

sibly complementary) approach, and for a review ot substring preceding those suffixes. Finally, they
other relevant work. look, among those pairs, for those whose semantic

: vectors (computed using latent semantic analysis)
2.1 Jacquemin (1997) are significantly correlated. In short, the idea behind
Jacquemin (1997) presents a model that automathe semantic component of their model is that words
cally extracts morphologically related forms from athat tend to co-occur with the same set of words,
list of English two-word medical terms and a corpuswithin a certain window of text, are likely to be se-
from the medical domain. mantically correlated words.

The algorithm looks for correspondences between While we follow Schone and Jurafsky’s idea of
two-word terms and orthographically similar pairscombining orthographic and semantic cues, our al-
of words that are adjacent in the corpus. For exangorithm differs from them in both respects. From the
ple, the list contains the termrtificial ventilation,  point of view of orthography, we rely on the com-
and the corpus contains the phraséficially ven- parison between individual word pairs, without re-
tilated. Jacquemin’s algorithm thus postulates theuiring that the two pairs share a frequent affix, and
(paired) morphological analysestificial ventilat- indeed without requiring that they share an affix at
ion andartificial-ly ventilat-ed all.

Similar words, for the purposes of this pairing From the point of view of semantics, we compute
procedure, are simply words that share a commatores based on mutual information instead of latent



semantic analysis. Thus, we only look at the cothe target language has not been properly described

occurrence patterns of target words, rather than gét, or when the relevant information is not available

the similarity of their contexts. for other reasons. Moreover, even when such infor-

Future research should try to assess to what extemition is in principle available, trying to determine

these two approaches produce significantly differend what extent morphology could be learned with-

results, and/or to what extent they are complemerut relying on any other knowledge source remains

tary. an interesting theoretical pursuit, and one whose an-
) ) swer could shed some light on the problem of human

2.3 Yarowsky and Wicentowski (2000) language acquisition.

Yarowsky and Wicentowski (2000) propose an algo-

rithm that extracts morphological rules relating root8  The current approach: Morphological

and inflected forms of verbs (but the algorithm can relatedness as a function of orthographic

be extended to other morphological relations). and semantic similarity

Their algorithm performs unsupervised, but not o _
completely knowledge-free, learning. It requiresThe basic intuition behind the model presented here

a table of canonical suffixes for the relevant parttS €xtremely simple: Morphologically related words
of speech of the target language, a list of the corl€Nd to be both orthographically and semantically
tent word roots with their POS (and some informaSimilar. Obviously, there are many words that are or-
tion about the possible POS/inflectional features dfegraphically similar, but are not morphologically
other words), a list of the consonants and vowels dflated; for exampleblue and glue At the same
the language, information about some characteristitn® many semantically related words are not mor-

syntactic patterns and, if available, a list of functiofPhologically related (for examplélue andgreer).
words. However, if two words have a similar shape and a

The algorithm uses a combination of differenf€late€d meaning (e.ggreenandgreenisf), they are
probabilistic models to find pairs that are likely to be/€Y likely to be also morphologically related.
morphologically related. One model matches root N order to make this idea concrete, we use min-
+ inflected form pairs that have a similar frequency™mum edit distance to identify words that are ortho-
profile. Another model matches root + inflectecgraph'ca”y sm_ular, and mutual information between
form pairs that tend to co-occur with the same sup¥ords to identify semantically related words.
jects and objects (identified using simple regular ex- .
pressions). Yet another model looks for words tha\%'1 Outline of the procedure
are orthographically similar, in terms of a minimumGiven an unannotated input corpus, the algorithm
edit distance score that penalizes consonant chandafier some elementary tokenization) extracts a list
more than vowel changes. Finally, the rules relatingf candidate content words. This is simply a list
stems and inflected forms that the algorithm extractsf all the alphabetic space- or punctuation-delimited
from the pairs it finds in an iteration are used as atrings in the corpus that have a corpus frequency
fourth probabilistic model in the subsequent iterabelow .01% of the total token coufit.
tions. Preliminary experiments indicated that our proce-

Yarowsky and Wicentowski show that the al-dure does not perform as well without this trimming.
gorithm is extremely accurate in identifying En-Notice in any case that function words tend to be of
glish root + past tense form pairs, including thosdittle morphological interest, as they display highly
pairs that are related by non-affixal patterns (e.glexicalized, often suppletive morphological patterns.
think/thought) The word list extracted as described above and the

The main issue with this model is, of course, thainput corpus are used to compute two lists of word
it cannot be applied to a new target language withpairs: Anorthographic similarity list in which the
out having somea priori knowledge about some of ———— _ _

In future versions of the algorithm, we plan to make this

its ”nngtiC_pro_perties' Thus'_the algorithm Ca'nhighfrequencythreshold dependent on the size of the input cor-
not be applied in cases in which the grammar ofus.



pairs are scored on the basis of their minimum edihinimum edit distance of.3
distance, and semantic similarity listbased on mu- Rather than computing absolute minimum edit
tual information. Because of minimum thresholdslistance, we normalize this measure by dividing
that are enforced during the computation of the tw@ by the length of the longest string (this corre-
measures, neither list contains all the pairs that caponds to the intuition that, say, two substitutions
in principle be constructed from the input list. are less significant if we are comparing two eight-
Before computing the combined score, we get ritetter words than if we are comparing two three-
of the pairs that do not occur in both lists (the raletter words). Moreover, since we want to rank pairs
tionale being that we do not want to guess the moon the basis of orthographic similarity, rather than
phological status of a pair on the sole basis of orthadissimilarity, we compute (1 - normalized minimum
graphic or semantic evidence). edit distance), obtaining a measure that ranges from
We then compute a weighted sum of the orthol for identical forms to O for forms that do not share
graphic and semantic similarity scores of each reany character.
maining pair. In the experiments reported below, the This measure is computed for all pairs of words in
weights are chosen so that the maximum weightetie potential content word list. However, for reasons
scores for the two measures are in the same ordefr size, only pairs that have a score.6for higher
of magnitude (we prefer to align maxima rather thaii.e., where the two members share at least half of
means because both lists are trimmed at the bottottheir characters) are recorded in the output list.
making means and other measures of central ten-Notice that orthographic similarity does not favor

dency less meaningful). concatenative affixal morphology over other types
The pairs are finally ranked on the basis of thef morphological processes. For example, the pairs
resulting combined scores. woman/womemnd park/parksboth have an ortho-

In the next subsections, we describe how the ographic similarity score of.
thographic and semantic similarity lists are con- Moreover, orthographic similarity depends only
structed, and some properties of the measures we the two words being compared, and not on global

adopted. distributional properties of these words and their
substrings. Thus, words related by a rare morpho-
3.2 Scoring the orthographic similarity of logical pattern can have the same score as words
word pairs related by a very frequent pattern, as long as the

minimum edit distance is the same. For example,

Like Yarowsky and Wicentowski, we use mini- .
o .. both nucleus/nucleand bench/benchebave an or-
mum edit distance to measure orthographic simi; A .
. o A~ hographic similarity score af714, despite the fact
larity. The minimum edit distance between two .
. : . " that the latter pair reflects a much more common plu-
strings is the minimum number of editing oper-_|." .
ralization pattern.

ations (insertion, deletion, substitution) needed to of hi i0ation f q hored
transform one string into the other (see section 5.6 course, this emancipation from edge-anchore

of Jurafsky and Martin (2000) and the referenCegé:oncatenation and global distributional salience also
quoted there) implies that orthographic similarity will assign high

Unlike Yarowsky and Wicentowski, we do not at-  3rojiowing a suggestion by two reviewers, we are currently
tempt to define a phonologically sensible edit disexperimenting with an iterative version of our algorithm, along

; ; ; ; . the lines of the one described by Yarowsky and Wicentowski.
tance scoring function, as this would require makmg\]le start with the cost matrix described in the text, but we re-

assumptions about how the phonology of the targ@ttimate the editing costs on the basis of the empirical character-

language maps onto its orthography, thus falling outo-character (or character-to-zero/zero-to-character) probabili-

. . ) . : lies observed in the output of the previous run of the algorithm.
side the domain of knowledge-free induction. In Surprisingly, the revised version of the algorithm leads to (mod-

stead, we assign a cost bfo all editing operations, erately) worse results than the single-run version described in
independently of the nature of the source and targi¥s paper. Further experimentation with edit cost re-estimation

ts. Th . t th aios)/D is needed, in order to understand which aspects of our iterative
segments. us, In our system, the paiog/Dog procedure make it worse than the single-run model, and how it

man/men bat/mat and day/dry are all assigned a could be improved.



scores to many pairs that an®t morphologically relatively large window, but excluding “close” co-
related — for example, the pditends/trendsilso has occurrences (which would tend to capture colloca-
an orthographic similarity score af14. tions and lexicalized phrases), the measure identifies
Furthermore, since in most languages the range sémantically related pairs.
possible word lengths is narrow, orthographic simi- It is particularly interesting for our purposes that
larity as a ranking measure tends to suffer of a “masnost of the examples of English word clusters con-
sive tying” problem. For example, when pairs fromstructed on the basis of this interpretation of mutual
the German corpus described below are ranked dmformation by Brown and colleagues (reported in
the sole basis of orthographic similarity, the resulttheir table 6) include morphologically related words.
ing list is headed by a block of 19,597 pairs that alA similar pattern emerges among the examples of
have the same score. These are all pairs where o@erman words clustered in a similar manner by
word has 9 characters, the other 9 or 8 characteBaroniet alii (2002). Rosenfeld (1996) reports that
and the two differ in only one character. morphologically related pairs are common among
For the above reasons, it is crucial that orthowords with a high (average) mutual information.
graphic similarity is combined with an independent \We computed mutual information by considering,
measure that allows us to distinguish between simfor each pair, only co-occurrences within a maxi-
larity due to morphological relatedness vs. similarmal window of 500 words and outside a minimal
ity due to chance or other reasons. window of 3 words. Given that mutual informa-
tion is notoriously unreliable at low frequencies (see,
for example, Manning and Satre (1999), section
5.4), we only collected mutual information scores
Measuring the semantic similarity of words on thdor pairs that co-occurred at least three times (within
basis of raw corpus data is obviously a much hardéhe relevant window) in the input corpus. Obvi-
task than measuring the orthographic similarity obusly, occurrences across article boundaries were
words. not counted. Notice however that the version of the
Mutual information (first introduced to compu- Brown corpus we used does not mark article bound-
tational linguistics by Church and Hanks (1989)) isaries. Thus, in this case the whole corpus was treated
one of many measures that seems to be rough&s a single article.
correlated to the degree of semantic relatedness be-Our “semantic” similarity measure is based on the
tween words. The mutual information between twamotion that related words will tend to often occur in

3.3 Scoring the semantic similarity of word
pairs

words A and B is given by: the nears of each other. This differs from the (more
general) approach of Schone and Jurafsky (2000),
I(A, B) = log Pr(4, B) 1) Who look for words that tend to occur in the same
’ Pr(A)Pr(B) context. It remains an open question whether the
Intuitively, the larger the deviation between thdWO a@pproaches produce complementary or redun-

empirical frequency of co-occurrence of two word<!ant results.

and the expected frequency of co-occurrence if they Taken by itself, mutual information is a worse

were independent, the more likely it is that the ocpPredictor of morphological relatedness than mini-

currence of one of the two wordsii®tindependent Mum edit distance. For example, among the top one

from the occurrence of the other. hundred pairs ranked by mutual information in each
Brown et alii (1990) observed that when mutuall@nguage, only one German pair and five English

information is computed in a bi-directional fashion Pairs are morphologically motivated. This poor per-

and by counting co-occurrences of words within Jormance is not too surprising, given that there are

“Most of the pairs in this block — 78% — are actually morpho-  We are currently experimenting with a measure based on
logically related. However, given that all pairs contain wordssemantic context similarity (determined on the basis of class-
of length 9 and 8/9 that differ in one character only, they ardased left-to-right and right-to-left bigrams), but the current im-
bound to reflect only a very small subset of the morphologicgblementation of this requiresd hoccorpus-specific settings to
processes present in German. produce interesting results with both our test corpora.



plenty of words that often co-occur together withou#.2  Precision
being morphologically related. Consider for exam-

T . In order to evaluate the precision obtained by our
ple (from our English list) the pairtndex/operand . .
andorthodontist/teeth procedure, we constructed a list of all the pairs that,

according to the analysis provided by the XEROX
analyzer for the relevant language, are morpholog-
ically related (i.e., share one of their sterfis)ve
refer to the lists constructed in the way we just de-
scribed ageference sets

The XEROX tools we used do not provide deriva-
We tested our procedure on the German APA corputlon.al gnalyss for Engllsh, and a limited form of

. - . “derivational analysis for German. Our algorithm,

a corpus of newswire containing over twenty-eigh : . ) 2

. . owever, finds both inflectionally and derivationally
million word tokens, and on the English Brown Cor-related airs. Thus. basing our evaluation on a com-
pus (Kitera and Francis, 1967), a balanced corpus pairs. ' 9

containing less than one million two hundred thouPa"'son with the XEROX parses leads to an underes-

: .fimation of the precision of the algorithm. We found
sand word tokens. Of course, the mostimportant difs . . , . . .
. that this problem is particularly evident in English,
ference between these two corpora is that they re

resent different languages. However, observe al gince English, unlike German, has a rather poor in-
. o ’ ?%ctional morphology, and thus the discrepancies

that they have very different sizes, and that they Aetween our output and the analyzer parses in terms
different in terms of the types of texts constitutingOf derivational morphology have a more visible im-
them. pact on the results of the comparison. For example,

Besides the high frequency trimming procedurghe English analyzer does not treat pairs related by
described above, for both languages we removafe adverbial suffixly or by the prefixun- as mor-
from the potential content word lists those wordgphologically related, whereas our algorithm found
that were not recognized by the XEROX morphologpairs such asoft/softlyandload/unload

ical analyzer for the relevant language. The reason |, order to obtain a more fair assessment of the

for this is that, as we describe below, we use this t0Q]5rithm, we went manually through the first 2,000
to build the refere_nce sets for eva_luatlon PUrpOSegnglish pairs found by our algorithm but not parsed
Thus, morphologically related pairs composed Ofg rejated by the analyzer, looking for items to be
words not recognized by the analyzer would unfairlygqed to the reference set. We were extremely
lower the precision of our algorithm. conservative, and we added to the reference set
Moreover, after some preliminary experimentaeonly those pairs that are related by a transparent
tion, we also decided to remove words longer than &nd synchronically productive morphological pat-
characters from the German list (this corresponds tern. When in doubt, we did not correct the analyzer-
trimming words whose length is one standard devbased analysis. Thus, for example, we add count
ation or more above the average token length). Thjzgirs such asnachine/machineryariables/varies
actuallylowersthe performance of our system, butor electric/electronias related.
makes the results easier to analyze — otherwise, thewe did not perform any manual post-processing
top of the German list would be cluttered by a higlon the German reference set.
number of rather uninteresting morphological pairs Taples 1 and 2 report percentage precision (i.e.,
formed by inflected forms from the paradigm ofthe percentage of pairs that are in the reference set
very long nominal compounds (such\rtschafts-  gyer the total number of ranked pairs up to the rele-
forschungsinstituinstitute for economic research’). vant threshold) at various cutoff points, for German
Unlike high frequency trimming, the two opera-and English respectively.
tions we just described are meant to facilitate empir—; _
. . . The XEROX morphological analyzers are state-of-the-art,
ical evaluation, and they do not constitute necessaWowledge-driven morphological analysis tools (see for exam-
steps of the core algorithm. ple Karttuneret alii (1997)).

4 Empirical evaluation

4.1 Materials



# of pairs | precision Of course, what counts as a “good” precision rate
500 97% :
1000 96% depends on what we want to do with the output of
1500 96% our procedure. We show below that even a very
5888 2‘1122 naive morphological rule extraction algorithm can
4000 65% extract sensible rules by taking whole output lists as
5000 53% its input, since, although the number of false pos-

0, . . .

5279 50% itives is high, they are mostly related by patterns

(5279 = total number of pairs) patterns relating true morphological pairs. In other
words, true morphological pairs tend to be related
#of pairs | precision by patterns that are distributionally more robust than
500 98% those displayed by false positives. Thus, rule ex-
1(5)88 giﬁ tractors and other procedures processing the output
2000 83% of our algorithm can probably tolerate a high false
3000 72% positive rate if they take frequency and other distri-
gggg Zgﬁ;‘: butional properties of patterns into account.
8902 2004 Notice that we discussed only precision, and not

_ o _ ~ recall. This is because we believe that the goal of a
Table 2: English precision at various cutoff point§yorphological discovery procedure is not to find the
(8902 = total number of pairs) exhaustive list of all morphologically related forms
in a language (indeed, because of morphological
roductivity, such list is infinite), but rather to dis-
- _ over all the possible (synchronically active and/or
precision rate X 90%) up to the 1500-pair cutoff common) morphological processes present in a lan-

point. guage. It is much harder to measure how good our

After that, there is a sharper drop in the Englisr}allgorithm performed in this respect, but the qualita-

precision, whereas the decline in German is MOTe analysis we present in the next subsection indi-

gr_adual. Th's_'s perhaps due in part _to the prObIemc<;ates that, at least, the algorithm discovers a varied
with the English reference set we discussed abovgnol interesting set of morphological processes.
but notice also that English has an overall poorer

morphological system and that the English corpus i3 Morphological patterns discovered by the
considerably smaller than the German one. Indeed,  gorithm

our reference set for German contains more than te_l_nh . bl G h h laorith
times the forms in the English reference set. e precision tables confirm that the algorithm

Notice anyway that, for both languages, the Iorecif_ound a good number of morphologically related

sion rate is still around 50% at the 5000-pair cutoff. pa!rs. However, if it turned out that all of_these
- pairs were examples of the same morphological pat-

"Yarowsky and Wicentowski (2000) report an accuracy of i i i
ern (say, nominal plural formation irs), the al-
over 99% for their best model and a test set of 3888 pairs. Our (say P )

precision rate at a comparable cutoff point is much lower (58280rithm would npt t_)e of muc_h use. Moreqver, we
at the 4000-pair cutoff). However, Yarowksy and Wicentowskistated at the beginning that, since our algorithm does
_restrlc_ted the possible matchings to pairs in wh|ch_one mempﬁrot assume an edge-based stem+affix concatenation
is an inflected verb form, and the other member is a potential

verbal root, whereas in our experiments any word in the corpu®0del of morphology, it should be well suited to dis-
(aslong as it was below a certain frequency threshold, and it wgdver relations that cannot be characterized in these
recognized by the XEROX analyzer) could be matched with any

other word in the corpus. Thus, on the one hand, Yarowsky andarowksy and Wicentowski’s algorithm did not have to con-
Wicentowski forced the algorithm to produce a matching for aider. Schone and Jurafsky (2000) report a maximum precision
certain set of words (their set of inflected forms), whereas owf 92%. It is hard to compare this with our results, since they
algorithm was not subject to an analogous constraint. On these a more sophisticated scoring method (based on paradigms
other hand, though, our algorithm had to explore a much largeather than pairs) and a different type of gold standard. More-
possible matching space, and it could (and did) make a higbver, they do not specify what was the size of the input they
number of mistakes on pairs (such as, esgtryandworry) that  used for evaluation.

For both languages we notice a remarkably higE



terms (e.g., pairs related by circumfixation, stem r“'es géf;?“nﬂielzms 9;‘11
changes, etc.). Itis interesting to check whether the o lautetelauteten 670
algorithm was indeed able to find relations of this e«en digital—digitalen 225
sort €€ rot—rote 201
' o ) €—es Papst-Papstes 113
Thus, we performed a qualitative analysis of the coge stiegen-gestiegen 9
output of the algorithm, trying to understand what e<0l Embarge~Olembargo| 6
; ; €<—Vor Mittag< Vormittag 5
_klnd of morphological processes were captured by aus—ein | ausfuhrereinfuhren 2
It. ers—drit | Erstens-Drittens 4

In order to look for morphological processes in _ o
the algorithm output, we wrote a program that eX:I'able 3: The most common German suffixation and

tracts “correspondence rules” in the following sim.Prefixation patterns
ple way: For each pair, the program looks for the

longest shared (case-insensitive) left- and right-edge | "ule eﬁa{np'ep B 8;%
. . . €S allotment—allotments
substrings (i.e., for atem + suffixparse and for a ced | accomplish-accomplished | 98
prefix + stemparse). The program then chooses the ed—ing | establishee-establishing 87
parse with the longest stem (assuming that one of the GH:]I“Q géﬁﬁéﬂf@ﬁgﬁi’i}g‘;"““g gg
€ <>

two parses has a non-zero stem), and extracts the_ rel- —=un T structuredsunstructured 17
evant edge-bound correspondence rule. If there isa | e~re | organizatior-reorganization| 12
tie, thestem + suffiyparse is preferred. The program 5‘—"n“0n gg%i?fzgl'lrﬂggg'scpeCiﬁcally g

. €<
then ranks the correspondencg rules qn_the basis of | . _gis | satisfied—dissatisfied 5
their frequency of occurrence in the original output _ o
list.8 Table 4: The most common English suffixation and

We want to stress that we are adopting this procdefixation patterns
dure as a method to explore the results, and we are
by no means proposing it as a serious rule induction
algorithm. One of the most obvious drawbacks of2nguages many of the most frequent rules (such as,
the current rule extraction procedure is that it is onl{-9- € <S) are poly-functional, corresponding to a
able to extract linear, concatenative, edge-bound sdtimber of different morphological relations within
fixation and prefixation patterns, and thus it misse@nd across categories.
or fails to correctly generalize some of the most in- The results reported in these tables confirm that
teresting patterns in the output. Indeed, looking dfe algorithm is capturing common affixation pro-
the patterns missed by the algorithm (as we do if€Sses, but they are based on patterns that are so
part below) is as instructive as looking at the rules ifrequent that even a very naive procedure could un-
found. cover therf

Tables 3 and 4 report the top five suffixation and More interesting observations emerge from fur-
prefixation patterns found by the rule extractor byher inspection of the ranked rule files. For exam-

taking the entire German and English output lists /€, among the 70 most frequent German suffixation
its input. rules extracted by the procedure, we encounter those

. i 10

These tables show that our morphological pait” table 5: o '
scoring procedure found many instances of various The patterns in this table show that our algorithm
common morphological patterns. With the exceplS capturing the non-concatenative plural formation

tion of the _German prefixation ru'?rs(_)c!r_lt (?C_ ®For example, as shown by a reviewer, a procedure that pairs
tually relating the roots of the ordinals ‘first’” andwords that share the same first five letters, and extracts the di-
‘second’), and of the compounding patterr—Ol verging substrings following the common prefix from each pair.

(‘Oil"), all the rules in these lists correspond to re- 10n order to find the set of rules presented in table 5 using the
! naive algorithm described in the previous footnote, we would

alistic affixation patterns. Not surprisingly, in bothhave to consider the 2672 most frequent rules. Most of these
- 2672 rules, of course, do not correspond to true morphological
8Ranking by cumulative score yields analogous results.  patterns — thus, the interesting rules would be buried in noise.



rule example fq
ag—age Anschlag—Anschihge | 10
ang—ange | Rickgang-Riickgange | 6
all<alle Uberfalk—Uberfélle
ug—lge Tiefflug— Tieffllige 5
and—ande | Vorstand—\Vorstande 5
uch—uche | Einbruch—Einbriche 3
3
3

native edge-bound stem+affix model.

5 Conclusion and Future Directions

We presented an algorithm that, by taking a raw cor-
pus as its input, produces a ranked list of morpho-
logically related pairs at its output. The algorithm
_ , finds morphologically related pairs by looking at the
Table 5: Some German rules involving stem Voweélegree of orthographic similarity (measured by min-
changes found by the rule extractor imum edit distance) and semantic similarity (mea-
sured by mutual information) between words from

process involving fronting of the stem vowel plusthe Nput corpus.

Experiments with German and English inputs

addition of a suffix {e/-en). A smarter rule extractor . ) e
. : ave encouraging results, both in terms of precision,
should be able to generalize from patterns like the . .
and in terms of the nature of the morphological pat-

to a smaller number of more general rules capturin L
g P %rns found within the output set.

the discontinuous change. Other umlaut-based pa | Ki lori .
terns that do not involve concomitant suffixation — 'bln workin progr(:ss:[, we art()e exp olrlng_:/t?rlogs ;I)ods-
such as inMutter/Mutter — were also found by our SIDI€ Improvements to our basic aigorithm, Inciud-

core algorithm, but they were wrongly parsed as ini_ng iterative re-estimation of edit costs, addition of a
volving prefixe,s (e.9.Mu—Mii) by the rule extrac- context-similarity-based measure, and extension of
tor e the output set bynorphological transitivityi.e. the
Finally, it is very interesting to look at those pairs!dea that if word is related to word, and wordb
is related to word:, then worda and worde should

that are morphologically related according to the . :
also form a morphological pair.

XEROX analyzer, and that were discovered by our M lan t | to relax th
algorithm, but where the rule extractor could not Oreover, We pian fo expiore ways fo refax e re-

posit a rule, since they do not share a substring gyirem(—?nt t_ha}t aI_I pairs must have a certain degree of
either edge. These are listed, for German, in table gemantic similarity to be treated as morphologically
' ’ related (there is evidence that humans treat certain

auf—aufe | Verkauk—Verkaufe
ag—agen | Vertrag—Vertragen

Alter alteren

Arzt Arzte
ArztesArzte
Fesseln gefesselt
Folter gefoltert
Putsch geputscht
Spende gespendet

fordern gefordert
forderten gefordert
fordern gebrdert
genannt nannte
genannten nannte
geprallt prallte
gesetzt setzte

kinds of semantically opaque forms as morpholog-
ically complex — see Baroni (2000) and the refer-
ences quoted there). This will probably involve tak-
ing distributional properties of word substrings into
account.

From the point of view of the evaluation
of the algorithm, we should design an as-

] ) sessment scheme that would make our exper-
Table 6: Morphologically related German pa'rSthaFmental results more directly comparable to

do not share an edge found by the basic algorithmthose of  Yarowsky and Wicentowski (2000),

Schone and Jurafsky (2000) and others. Moreover,

We notice in this table, besides three further ina more in depth qualitative analysis of the results
stances of non-affixal morphology, a majority ofshould concentrate on identifying specific classes of
pairs involving circumfixation of one of the mem- morphological processes that our algorithm can or
bers. cannot identify correctly.

While a more in-depth qualitative analysis of our We envisage a number of possible uses for the
results should be conducted, the examples we disanked list that constitutes the output of our model.
cussed here confirm that our algorithm is able to cag-irst, the model could provide the input for a
ture a number of different morphological patternsmore sophisticated rule extractor, along the lines of
including some that do not fit into a strictly concatethose proposed by Albright and Hayes (1999) and

Spenden gespendetgestirzt stirzte
Streik gestreikt




Neuvel (2002). Such models extract morphologi- discovery: A computational model and empirical ev-
cal generalizations in terms of correspondence pat- idence.Ph.D. dissertation, UCLA.

ter_ns PetWee” whole words, rather thah In ter_ms . Baroni, J. Matiasek and H. Trost. 2002. Wordform-
affixation rules, and are thus well suited to iden- and class-based prediction of the components of Ger-
tify patterns involving non-concatenative morphol- man nominal compounds in an AAC system. To ap-
ogy and/or morphophonological changes. A list PearinProceedings of COLING 2002

of related words constitutes a more suitable inpys, Brown, P. Della Pietra, P. DeSouza, J. Lai, and R. Mer-

for them than a list of words segmented into mor- cer. 1990. Class-based n-gram models of natural lan-
phemes. guage.Computational Linguisticsl8:467-479.

Ruleg extracted in this way would have a numbeg chyrch and P. Hanks. 1989. Word association norms,
of practical uses — for example, they could be used mutual information, and lexicographproceedings of

to construct stemmers for information retrieval ap- ACL 27, 76-83.
plications, or they could be integrated into morphoj_ Goldsmith. 2001. Unsupervised learning of the mor-

logical analyzers. phology of a natural languageComputational Lin-
Our procedure could also be used to re- guistics 27:153-198.

place the first step of algorithms, such as thos& Jacquemin. 1997. Guessing morphology from terms
of GOIdsmlth (2001) and Snover and Brent (2001), and corporaProceedings of SIGIR 9156-265.
where heuristic methods are employed to generate _
morphological hypotheses, and then an informatiorf2- Jurafsky and J. Martin. 2000peech and Language
. e e . . Processing Prentice-Hall, Upper Saddle River, NJ.

theoretically/probabilistically motivated measure is
used to evaluate or improve such hypotheses. Mote Karttunen, K. Gal, and A. Kempe. 1997. Xe-
in generaL our algorithm can help reduce the size oX Finite-State ToolXerox Research Centre EUrOpe,
of the search space that all morphological discovery Crénoble.
procedures must explore. H. Ku€era and N. Francis. 196Computational analysis

Last but not least, the ranked output of (an im- of present-day American EnglistBrown University
proved version of) our algorithm can be of use to Press, Providence, RI.
the linguist analyzing the morphology of alanguageg. Manning and H. Sditze. 1999.Foundations of sta-
who can treat it as a way to pre-process her/his tistical natural language processin/IT Press, Cam-
data, while still relying on her/his analytical skills bridge, MASS.
to extract the relevant morphological generalizationg neuvel. 2002. Whole word morphologizer. Expand-

from the ranked pairs. ing the word-based lexicon: A non-stochastic compu-
tational approachBrain and Languaggin press.
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