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Abstract 

This paper describes the results of 
some experiments exploring statistical 
methods to infer syntactic categories 
from a raw corpus in an unsupervised 
fashion. It shares certain points in 
common with Brown et at (1992) and 
work that has grown out of that: it 
employs statistical techniques to 
derive categories based on what 
words occur adjacent to a given word. 
However, we use an eigenvector 
decomposition of a nearest-neighbor 
graph to produce a two-dimensional 
rendering of the words of a corpus in 
which words of the same syntactic 
category tend to form clusters and 
neighborhoods. We exploit this 
technique for extending the value of 
automatic learning of morphology. In 
particular, we look at the suffixes 
derived from a corpus by 
unsupervised learning of morphology, 
and we ask which of these suffixes 
have a consistent syntactic function 
(e.g., in English, -ed is primarily a 
mark of verbal past tense, does but –s 
marks both noun plurals and 3rd 
person present on verbs). 

1 Introduction 

This paper describes some results of our efforts 
to develop statistical techniques for 
unsupervised learning of syntactic word-
behavior, with two specific goals: (1) the 
development of visualization tools displaying 
syntactic behavior of words, and (2) the 
development of quantitative techniques to test 

whether a given candidate set of words acts in a 
syntactically uniform way, in a given corpus.1  
 
In practical terms, this means the development 
of computational techniques which accept a 
corpus in an unknown language as input, and 
produce as output a two-dimensional image, 
with each word identified as a point on the 
image, in such a fashion that words with similar 
syntactic behavior will be placed near to each 
other on the image.  

We approach the problem in two stages: first, 
a nearest-neighbor analysis, in which a graph is 
constructed which links words whose 
distribution is similar, and second, what we 
might call a planar projection of this graph onto 
R2, that is to say, a two-dimensional region, 
which is maximally faithful to the relations 
expressed by the nearest-neighbor graph.   

2 Method 

The construction of the nearest-neighbor graph 
is a process which allows for many linguistic 
and practical choices. Some of these we have 
experimented with, and others we have not, 
simply using parameter values that seemed to us 
to be reasonable.  Our goal is to develop a graph 
in which vertices represent words, and edges 
represent pairs of words whose distribution in a 
corpus is similar. We then develop a 
representation of the graph by a symmetric 
matrix, and compute a small number of the 
eigenvectors of the normalized laplacian for 

                                                      
1 We are grateful to Yali Amit for drawing our 
attention to Shi and Malik 1997, to Partha Niyogi for 
helpful comments throughout the development of this 
material, and to Jessie Pinkham for suggestions on an 
earlier draft of this paper. 
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which the eigenvalues are smallest. These 
eigenvectors provide us with the coordinates 
necessary for our desired planar representation, 
as explained in section 2.2. 

2.1 Nearest-neighbor graph 
construction. 

We begin with the reasonable working 
assumption that to determine the syntactic 
category of a given word w, it is the set of words 
which appears immediate before w, and the set 
of words that appears immediately after w, that 
gives the best immediate evidence of a word’s 
syntactic behavior. In a natural sense, under that 
assumption, an explicit description of the 
behavior of a word w in a corpus is a sparse 
vector L = [l1, l2, …, lV], of length V (where “V” 
is the number of words in the vocabulary of the 
corpus), indicating by li how often each word vi 
occurs immediately to the left of w, and also an 
similar vector R, also of length V, indicating 
how often each word occurs immediately to the 
right of w. Paraphrasing this, we may view the 
syntactic behavior of a word in a corpus as being 
expressed by its location in a space of 2V 
dimensions, or a vector from the origin to this 
location; this space has a natural decomposition 
into two spaces, called Left and Right, each of 
dimension V.  

Needless to say, such a representation is not 
directly illuminating -- nor does it provide a way 
to cogently present similarities or clusterings 
among words.  We now construct a symmetrical 
graph (“LeftGraph”), whose vertices are the K 
most frequent words in the corpus. (We have 
experimented with K = 500 and K = 1000). For 
each word w, we compute the cosine of the 
angle between the vector w and the K-1 other 

words wi: 
|||| i

i

ww

ww ⋅
, and use this figure to select 

the N words closest to w. We have experimented 
with N = 5,10,20 and 50. We insert an edge (vi, 
vj) in LeftGraph if vi is one of the N words 
closest to vj or vj is one of the N words closest to 
vi.. We follow the same construction for 
RightGraph in the parallel fashion. In much of 
the discussion that follows, the reader may take 
whatever we say about LeftGraph to hold 
equally true of RightGraph when not otherwise 
stated. 

2.2 Projection of nearest-neighbor 
graph by spectral decomposition 

In the canonical matrix representation of a 
(unweighted) graph, an entry M(i,j), with i 
distinct from j, is 1 if the graph includes an edge 
(i,j) and 0 otherwise. All diagonal elements are 
zero. The degree of a vertex of a graph is the 
number of edges adjacent to it; the degree of the 
mth vertex, d(vm)is thus the sum of the values in 
the mth row of M. If we define D as the diagonal 
matrix whose entry D(m,m) is d(vm), the degree 
of vm, then the laplacian of the graph is defined 
as D – M. The normalized laplacian L is defined 
as D½ ( D – M ) D½. The effect of normalization 
on the laplacian is to divide the weight of an 
entry M(i,j) that represents the edge between vi 

and vj by 
)()(

1

ji vdvd
, and to set the values of 

the diagonal elements to 1.2 
The laplacian is a symmetric matrix which is 

known to be positive semi-definite (Chung 
1997). Therefore all the eigenvalues of the 
laplacian are non-negative. We return to the 
space of our observations by premultiplying the 
eigenvectors by D½. We will refer to these 
eigenvectors derived from LeftGraph (pre-
multiplied by D½) as {L0, L1, …} and those 
derived from RightGraph as {R0, R1, …}.  

Now, L0 (and R0) are trivial (they merely 
express the frequency of the words in the 
corpus), but L1 and L2 provide us with very 
useful information. They each consist of a 
vector with one coordinate for each word among 
the K most frequent words in the corpus, and 
thus can be conceived of as a 1-dimensional 
representation of the vocabulary. In particular, 
L1 is the 1-dimensional representation that 
optimally preserves the notion of locality 
described by the graph we have just constructed, 
and the choice of the top N eigenvectors 
provides a representation which optimally 
preserves the graph-locality in N-space. By 
virtue of being eigenvectors in the same 
eigenvector decomposition, L1 and L2 are 
orthogonal, but subject to that limitation, the 
projection to R2 using the coordinates of L1 and 
L2 is the 2-dimensional representation that best 

                                                      
2 Our attention was drawn to the relevance of the 
normalized laplacian by Shi and Malik 1997, who 
explore a problem in the domain of vision. We are 
indebted to Chung 1997 on spectral graph theory. 



preserves the locality described by the graph in 
question (Chung 1997, Belkin and Niyogi 
2002). 

Thus, to the extent that the syntactic behavior 
of a word can be characterized by the set of its 
immediate right- and left-hand neighbors (which 
is, to be sure, a great simplification of syntactic 
reality), using the lowest-valued eigenvectors 
provides a good graphical representation of 
words, in the sense that words with similar left-
hand neighbors will be close together in the 
representation derived from the LeftGraph (and 
similarly for RightGraph).  

2.3 Choice of graphs 

We explore below two types of projection to 2 
dimensions: plotting the 1st and 2nd eigenvectors 
of LeftGraph (and RightGraph), and plotting the 
1st eigenvectors of LeftGraph and RightGraph 
against each other. In all of these cases, we have 
built a graph using the 20 nearest neighbors. In 
future work, we would like to look at varying 
the number of nearest neighbors that are linked 
to a given word. From manual inspection, one 
can see that in all cases, the nearest two or three 
words are very similar; but the depth of the 
nearest neighbor list that reflects words of truly 
similar behavior is, roughly, inversely 
proportional to the frequency of the word. This 
is not surprising, in the sense that higher 
frequency words tend to be grammatical words, 
and for such words there are fewer members of 
the same category. 

 

2.4  English 

Figure 1 illustrates the results of plotting the 1st 
and 2nd eigenvectors of LeftGraph based on the 
first 1,000,000 words of the Brown corpus, and 
using the 1,000 most frequent words and 
constructing a graph based on the 20 nearest 
neighbors. Figure 2 illustrates the results derived 
from the first two eigenvectors of RightGraph. 

Figures 1 and 2 suggest natural clusterings, 
based both on density and on the extreme values 
of the coordinates. In Figure 1 (LeftGraph), the 
bottom corner consists primarily of non-finite 
verbs (be, do, make); the left corner of finite 
verbs (was, had, has); the right corner primarily 
of nouns (world, way, system); while the top 
shows little homogeneity, though it includes the 
prepositions. See Appendix 1 for details; the 

words given in the appendix are a complete list 
of the words in a neighborhood that includes the 
extreme tip of the representation. As we move 
away from the extremes, in some cases we find 
a less homogeneous distribution of categories, 
while in others we find local pockets of 
linguistic homogeneity: for example, regions 
containing names of cities, others containing 
names of countries or languages. 
 

 
Figure 1 English based on left-neighbors 

 

 
Figure 2 English based on right-neighbors 

 
In Figure 2, the bottom corner consists of 
adjectives (social, national, white), the left 
corner of words that often are followed by of 
(most, number, kind, secretary), the right corner 
primarily by prepositions (of, in for, on by) and 
the top corner of words that often are followed 
by to (going, wants, according), (See Appendix 
2 for details).  
 



2.5 French 

Figure 3 illustrates the results of plotting the 1st 
and 2nd eigenvectors of LeftGraph based on the 
first 1,000,000 words of a French encyclopedia, 
using the 1,000 most frequent words and 
constructing a graph based on the 20 nearest 
neighbors. 

The bottom left tip of the figure consists 
entirely of feminine nouns (guerre, population, 
fin), the right tip of plural nouns (années, états-
unis, régions), the top tip of finite verbs (est, fut, 
a, avait) plus se and y. A bit under the top tip 
one finds two sharp-tipped clusters; the one on 
the left consists of masculine nouns (pays, sud, 
monde). Other internal clusters, not surprisingly, 
are composed of words which, with high 
frequency, are preceded by a specific pre-
position (e.g., preceded by à: peu, l’est, Paris; 
by en: particulier, effet, and feminine names of 
geographical areas such as France). 

Figure 4 illustrates plotting the 1st 
eigenvector of LeftGraph against the 1st 
eigenvector of RightGraph. We find a striking 
“striped” effect which is due to the 
masculine/feminine gender system of French. 
There are three stripes that stand out at the top 
of the figure. The one on the extreme left 
consists of singular feminine nouns, the one to 
its right, but left of center, consists of singular 
masculine nouns, and the one on the extreme 
right consists of plural nouns of both genders. 
The lowest region of the graph, somewhat left of 
center, contains grammatical morphemes. At the 
very bottom are found relative and 
subordinating conjunctions (où, car, lequel, 
laquel, lesquelles, lesquels, quand, si), and just 
above them are the prepositions: selon, durant, 
malgré, pendant, après, entre, jusqu’à, contre, 
sur, etc.) 

We find it striking that the gender system of 
French has such a pervasive impact upon the 
global form of the 1st eigenvector map as in 
Figure 4, and we plan to run further experiments 
with other language with gender systems to see 
the extent to which this result obtains 
consistently. 

Figure 3 French based on left-neighbors 

Figure 4 French 1st eigenvector of Left and Right 

3 Identifying syntactic behavior of 
automatically identified suffixes 

Interesting as they are, the representations we 
have seen are not capable of specifying 
membership in grammatical categories in an 
absolute sense. In this section, we explore the 
application of this representation to a text which 
has been morphologically analyzed by a 
language-neutral morphological analyzer. For 
this purpose, we employ the algorithm described 
in Goldsmith (2001), which takes an unanalyzed 
corpus and provides an analysis of the words 
into stems and suffixes. What is useful about 
that algorithm for our purposes is that it shares 
the same commitment to analysis based only on 
a raw (untreated) natural text, and neither hand-
coding nor prior linguistic knowledge. 

The algorithm in Goldsmith (2001) links 
each stem in the corpus to the set of suffixes 
(called its signature) with which it appears in 
the corpus. Thus the stem jump might appear 



with the three suffixes ed-ing-s in a given 
corpus. 

But a morphological analyzer alone is not 
capable of determining whether the –ed that 
appears in the signature ed-ing-s is the same –ed 
suffix that appears in the signature ed-ing (for 
example), or whether the suffix –s in ed-ing-s is 
the same suffix that appears in the signature 
NULL-s-‘s (this last signature is the one 
associated with the stem boy in a corpus 
containing the words boy-boys-boy’s). A 
moment’s reflection shows that the suffix –ed is 
indeed the same verbal past tense suffix in both 
cases, but the suffix –s is different: in the first 
case, it is a verbal suffix, while in the second it 
is a noun suffix. 

In general, morphological information alone 
will not be able to settle these questions, and 
thus automatic morphology alone will not be 
able to determine which signatures should be 
“collapsed” (that is, ed-ing-s should be viewed 
as a special sub-case of the signature NULL-ed-
ing-s, but NULL-s is not to be treated as a 
special case of NULL-ed-ing-s).  

We therefore have asked whether the 
rudimentary syntactic analysis described in the 
present paper could provide the information 
needed for the automatic morphological 
analyzer. 

The answer appears to be that if a suffix has 
an unambiguous syntactic function, then that 
suffix’s identity can be detected automatically 
even when it appears in several different 
signatures. As we will see momentarily, the 
clear example of this is English -ed, which is 
(almost entirely) a verbal suffix. When a suffix 
is not syntactically homogeneous, then the 
words in which that suffix appears are scattered 
over a much larger region, and this difference 
appears to be quite sharply measurable. 

3.1 The case of  the verbal suffix –ed 

In the automatic morphological analysis of the 
first 1,000,000 words of the Brown corpus that 
we produced, there are 26 signatures that 
contain the suffix –ed: NULL.ed.s, e.ed.ing, 
NULL.ed.er.es.ing, and 23 others of similar sort. 
We calculated a nearest neighbor graph as 
described above, with a slight variation. We 
considered the 1000 most frequent words to be 
atomic and unanalyzed morphologically, and 
then of the remaining words, we automatically 
replaced each stem with its corresponding 

signature. Thus as jumped is analyzed as 
jump+ed, and jump is assigned the signature 
NULL.ed.er.s.ing (based on the actual forms of 
the stem found in the corpus), the word jumped 
is replaced in the bigram calculations by the 
pseudo-word NULL.ed.er.s.ing_ed: the stem 
jump is replaced by its signature, and the actual 
suffix -ed remains unchanged, but is separated 
from its stem by an underscore _. Thus all words 
ending in –ed whose stems show the same 
morphological variations are treated as a single 
element, from the point of view of our present 
syntactic analysis.  

We hoped, therefore, that these 26 signatures 
with –ed appended to them would appear very 
close to each other in our 2-dimensional 
representation, and this was exactly what we 
found. 

To quantify this result, we calculated the 
coordinates of these 26 signatures in the 
following way. We normalize coordinates so 
that the lowest x-coordinate value is 0.0 and the 
highest is 1.0; likewise for the y-coordinates. 
Using these natural units, then, on the LeftGraph 
data, the average distance from each of the 
signatures to the center of these 26 points is 
0.050. While we do not have at present a 
criterion to evaluate the closeness of this 
clustering, this appears to us at this point to be 
well within the range that an eventual criterion 
will establish. (A distance of 0.05 by this 
measure is a distance equal to 5% along either 
one of the axes, a fairly small distance.) On the 
RightGraph data, the average distance is 0.054. 

3.2 The cases of –s and –ing  

By contrast, when we look at the range of the 19 
signatures that contain the suffix –s, the average 
distance to mean in the LeftGraph is 0.265, and 
in the RightGraph, 0.145; these points are much 
more widely scattered.  We interpret this as 
being due to the fact that –s serves at least two 
functions: it marks the 3rd person present form 
of the verb, as well as the nominal plural. 

Similarly, the suffix –ing marks both the 
verbal progressive form as well as the 
gerundive, used both as an adjective and as a 
noun, and we expect a scattering of these forms 
as a result. We find an average to mean of 0.096 
in the LeftGraph, and of 0.143 in the 
RightGraph. 

By way of even greater contrast, we can 
calculate the scatter of the NULL suffix, which 



is identified in all stems that appear without a 
suffix (e.g., the verb play, the noun boy). This 
“suffix” has an average distance to mean of  
0.312 in the LeftGraph, and 0.192 in the 
RightGraph. This is the scatter we would expect 
of a group of words that have no linguistic 
coherence. 

3.3 Additional suffixes tested 

Suffix –ly occurs with five signatures, and an 
average distance to mean of 0.032 in LeftGraph, 
and 0.100 in RightGraph.3 The suffix ‘s occurs 
in only two signatures, but their average 
distance to mean is 0.000 [sic] in LeftGraph, and  
0.012 in RightGraph. Similarly, the suffix –al 
appears in two signatures (NULL.al.s and 
NULL.al), and their average distance to mean is 
0.002 in LeftGraph, and also 0.002 in 
RightGraph. The suffix –ate appears in three 
signatures, with an average distance to mean of 
0.069 in LeftGraph, and 0.080 in RightGraph. 
The suffix –ment appears in two signatures, with 
an average distance to mean of 0.012 in 
LeftGraph, and 0.009 in RightGraph.  

3.4 French suffixes –ait, -er, -a, -ant, -e 

We performed the same calculation for the 
French suffix –ait as for the English suffixes 
discussed above. –ait is the highest frequency 
3rd person singular imperfect verbal suffix, and 
as such is one of the most common verbal 
suffixes, and it has no other syntactic functions. 
It appears in seven signatures composed of 
verbal suffixes, and they cluster well in the 
spaces of both LeftGraph and RightGraph, with 
an average distance to mean of 0.068 in the 
LeftGraph, and 0.034 in the RightGraph. 

The French suffix –er is by far the most 
frequent infinitival marker, and it appears in 14 
signatures, with an average distance to mean of 
0.055 in LeftGraph, and 0.071 in RightGraph. 

The 3rd singular simple past suffix –a appears 
in 11 signatures, and has an average distance to 
mean of 0.023 in LeftGraph, and 0.029 in 
RightGraph. 

The present participle verbal suffix –ant 
appears in 10 suffixes, and has an average 

                                                      
3 This latter figure deserves a bit more scrutiny; one 
of the five is an outlier: if we restricted our attention 
to four of them, the average distance to mean is 
0.014. 

distance to mean of 0.063 in LeftGraph, and of 
0.088 in RightGraph. 

On the other hand, the suffix –e appears as 
the last suffix in a syntactically heterogeneous 
set of words: nouns, verbs, and adjectives. It has 
an average distance to mean of 0.290 in 
LeftGraph and of 0.130 in RightGraph. This is 
as we expect: it is syntactically heterogeneous, 
and therefore shows a large average distance to 
mean. 

3.5 Summary 

Here are the average distances to mean for the 
cases where we expect syntactic coherence and 
the cases where we do not expect syntactic 
coherence. Our hypothesis is that the numbers 
will be small for the suffixes where we expect 
coherence, and large for those where we do not 
expect coherence, and this hypothesis is strongly 
borne out.  We note empirically that we may 
take an average value of the two columns of .10 
as a reasonable cut-off point.  
 
 LeftGraph RightGraph 
Expect coherence:  
ed 0.050 0.054 
-ly 0.032 0.100 
‘s  0.000 0.012 
-al 0.002 0.002 
-ate 0.069 0.080 
-ment 0.012 0.009 
-ait 0.068 0.034 
-er 0.055 0.071 
-a 0.023 0.029 
-ant 0.063 0.088 
 LeftGraph RightGraph 
Expect little/no coherence: 
-s 0.265 0.145 
-ing  0.096 0.143 
NULL 0.312 0.192 
-e 0.290 0.130 

Figure 5 Average distance to mean of suffixes 

4 Conclusions 

We have presented a simple yet mathematically 
sound method for representing the similarity of 
local syntactic behavior of words in a large 
corpus, and suggested one practical application. 
We have by no means exhausted the possibilities 
of this treatment. For example, it seems very 



reasonable to adjust the number of nearest 
neighbors permitted in the graph based on word-
frequency: the higher the frequency, the fewer 
the number of nearest neighbors would be 
permitted in the graph. We leave this and other 
questions for future research. 

This method does not appear strong enough 
at present to establish syntactic categories with 
sharp boundaries, but it is strong enough to 
determine with some reliability whether  sets of 
words proposed by other, independent heuristics 
(such as presence of suffixes determined by 
unsupervised learning of morphology) are 
syntactically homogenous. 
 
 
 
The reader can download the files discussed in 
this paper and a graphical viewer from 
http://humanities.uchicago.edu/faculty/ 
goldsmith/eigenvectors/. 

Appendix 1 

Typical examples from corners of Figure 1. 
Bottom: 
be do me make see 
get take go say put 
find give provide keep run 
tell leave pay hold live 
Left: 
was had has would said 
could did might went thought 
told took asked knew felt 
began saw gave looked became 
Right: 
world way same united right 
system city case church problem 
company past field cost department 
university rate center door surface 
Top: 
and to in that for 
he as with on by 
at or from but I 
they we there you who 

 

 

Appendix 2 

Typical examples from corners of Figure 2. 
Bottom: 
social national white local  political 
personal private strong medical final 
black French technical nuclear british 
health husband blue   
Left: 
most number kind full type 
secretary amount front instead member 
sort series rest types  piece 
image lack    
Right: 
of in for on by 
at from into after through 
under since  during against among 
within along across including near 
Top: 
going want seems seemed able 
wanted likely difficult according due 
tried decided trying related try 
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