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Abstract 
Semitic languages pose a problem to 
Natural Language Processing since 
most of the vowels are omitted from 
written prose, resulting in consider-
able ambiguity at the word level. 
However, while reading text, native 
speakers can generally vocalize each 
word based on their familiarity with 
the lexicon and the context of the 
word. Methods for vowel restoration 
in previous work involving morpho-
logical analysis concentrated on a sin-
gle language and relied on a parsed 
corpus that is difficult to create for 
many Semitic languages. We show 
that Hidden Markov Models are a use-
ful tool for the task of vowel restora-
tion in Semitic languages. Our tech-
nique is simple to implement, does 
not require any language specific 
knowledge to be embedded in the 
model and generalizes well to both 
Hebrew and Arabic. Using a publicly 
available version of the Bible and the 
Qur’an as corpora, we achieve a suc-
cess rate of 86% for restoring the ex-
act vowel pattern in Arabic and 81% 
in Hebrew. For Hebrew, we also re-
port on 87% success rate for restoring 
the correct phonetic value of the 
words. 

1 Introduction 

In both Hebrew and in Arabic, modern writ-
ten texts are composed in script that leaves out 
most of the vowels of the words. Because many 

words that have different vowel patterns may 
appear identical in a vowel-less setting, consid-
erable ambiguity exists at the word level. 

In Hebrew, Levinger et al. (1995) computed 
that 55% out of 40,000 word tokens taken from 
a corpus of the Israeli daily Ha’aretz were am-
biguous. For example, the non-voweled Hebrew 
word , written in Latin transliteration as SPR, 
may represent the noun “book” (pronounced 
/sepher/), the third person singular form of the 
verb “ to count”  (pronounced /saphar/) or at least 
four other possible interpretations. In Arabic, 
there are almost five possible morphological 
analyses per word on average (Beesley 1998). 
Take, for example, the Arabic word  , writ-
ten in Latin transliteration as KTAAB. One pos-
sible interpretation is the noun “book”  (pro-
nounced /kitaab/) and another is the plural of the 
noun “secretary” , (pronounced /kuttaab/). Fur-
ther contributing to this ambiguity is the fact 
that Hebrew and Arabic morphology is com-
plex: most words are derived from roots that are 
cast in templates that govern the ordering of 
letters and provide semantic information. In 
addition, prefixes and suffixes can also be at-
tached to words in a concatenative manner, re-
sulting in a single string that represents verb 
inflections, prepositions, pronouns, and connec-
tives.  

Vowel restoration in Hebrew and Arabic text 
is a non-trivial task. In both languages, vowels 
are marked by both letters and diacritics. In 
Hebrew, there are twelve different vowel diacrit-
ics, and in general, most diacritics are left out of 
modern script. In Arabic, there are six vowels, 
which can be divided into three pairs consisting 
of a short vowel and a long vowel. Each pair 
corresponds to a different phonetic value. In 



written Arabic text, the short vowels are gener-
ally left out.  

Surprisingly, native speakers of Arabic or 
Hebrew can, in most cases, accurately vocalize 
words in text based on their context and the 
speaker’s knowledge of the grammar and lexi-
con of the language. However, speakers of He-
brew are not as successful in restoring the exact 
vowel diacritics of words. Since many vowels 
have the same pronunciation in modern Hebrew, 
and speakers of Hebrew generally use non-
voweled script in reading and writing text, they 
are not familiar with the precise vowel pattern of 
words.  

Throughout this paper, we refer to a word 
that is fully voweled,1 i.e. supplied with its full 
diacritical marking, as diacritisized (Beesley 
1998). A system that could restore the diacri-
tisized form of scripts, i.e. supply the full dia-
critical markings, would greatly benefit non-
native speakers, sufferers of dyslexia and could 
assist in diacritisizing children’s and poetry 
books, a task that is currently done manually. 

2 A Statistical Approach 

Identifying contextual relationships is crucial 
in deciphering lexical ambiguities in both He-
brew and Arabic and is commonly used by na-
tive speakers. Hidden Markov Models have been 
traditionally used to capture the contextual de-
pendencies between words (Charniak 1995). We 
demonstrate the utility of Hidden Markov Mod-
els for the restoration of vowels in Hebrew and 
Arabic. As we show, our model is straightfor-
ward and simple to implement. It consists of 
hidden states that correspond to diacritisized 
words from the training corpus, in which each 
hidden state has a single emission leading to an 
undiacritisized (non-voweled) word observation. 
Our model does not require any handcrafted 
linguistic knowledge and is robust in the sense 
that it generalizes well to other languages. The 
rest of this paper is organized as follows: in 
Section 3, we provide an explanation of the 
corpora we used in our experiment. Section 4 
and 5 describe the models we designed as well 
as our experimental setup for evaluating them. 
Section 6 describes related work done in mor-
phological analysis and vowel restoration in 

                                                      
1 In literature relating to Hebrew morphology 
analysis, this is often refered to as a pointed word. 

Hebrew and in Arabic. Finally, Section 7 dis-
cusses future work. 

3 Evaluation Methodology 

We compare a baseline approach using a 
unigram model to a bigram model. We train 
both models on a corpus of diacritisized text, 
and then check the models’  performance on an 
unseen test set, by removing the vowel diacritics 
from part of the corpus. For both Hebrew and 
Arabic, we evaluate performance by measuring 
the percentage of words in the test set whose 
vowel pattern was restored correctly, i.e. the 
vowel pattern suggested by the system exactly 
matched the original. We refer to this 
performance measure as word accuracy. For 
Hebrew, we also divided the vowel symbols into 
separate groups, each one corresponding to a 
specific phonetic value. We then measured the 
percentage of words whose individual letters 
were fitted with a vowel diacritic belonging to 
the same phonetic group as the correct vowel 
diacritic in the test set. In other words, the 
restored vowels, while perhaps not agreeing 
exactly with the original pattern, all belonged to 
the correct phonetic group. This performance 
measure, which corresponds to vocalization of 
non-voweled text, is useful for applications such 
as text-to-speech systems.2 We refer to this 
performance measure as phonetic group 
accuracy. 

There is an unfortunate lack of data for 
vowel-annotated text in both modern Hebrew 
and Arabic. The only easily accessible sources 
are the Hebrew Bible and the Qur’an, for which 
on-line versions transliterated into Latin charac-
ters are available. Ancient Hebrew and Arabic 
bear enough syntactical and semantic resem-
blance to their modern language equivalents to 
justify usage of these ancient texts as corpora. 
For Hebrew, we used the Westminster Hebrew 
Morphological Database (1998), a corpus con-
taining a complete transcription of the graphical 
form of the Massoretic text of the Hebrew Bible 
containing roughly 300,000 words. For the 
Qur’an, we used the transliterated version pub-
licly available from the sacred text archive at    

                                                      
2 In modern Hebrew, it is generally sufficient to 

associate each vowel symbol with its phonetic group 
in order to vocalize the word correctly. 
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www.sacred-texts.com. This corpus contains 
roughly 90,000 words. 

For both languages, we tested our model on 
10% of the corpus. We measured performance 
by evaluating word accuracy for both Hebrew 
and Arabic. In addition, we measured phonetic 
group accuracy for Hebrew.  

4 Baseline : A Unigram Model 

To assess the difficulty of the problem, we 
counted the number of times each diacriticized 
word appeared in the training set. For each non-
voweled word encountered in the test set, we 
searched through all of the words with the same 
non-voweled structure and picked the 
diacriticized word with the highest count in the 
table. Figure 1 shows the ambiguity distribution 
in the training set.  

 

Figure 1. Ambiguity Distribution in 
Training Set
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Note that for both languages, only about 30% 

of the words in the training set were 
unambiguous, i.e. had a single interpretation. 
For the baseline model, we achieved a word 
accuracy rate of 68% for Hebrew and 74% for 
Arabic. We note that even though the size of the 
Arabic training set was about a third of the size 
of the Hebrew training set, we still achieved a 
higher success rate of restoring vowels in 
Arabic. We attribute this to the fact that there 
are only three possible missing vowel diacritics 
in modern Arabic text, compared to twelve in 
Hebrew.  

5 A Bigram Model 

We constructed a bigram Hidden Markov 
Model (HMM) where hidden states were  
vowel-annotated (diacritisized) words, and ob-
servations were vowel-less words. One example 
of a path through the HMM for reconstructing a 
Hebrew sentence is given in Figure 2; ovals 
represent hidden states that correspond to diacri-
tisized words; rectangles represent observations 
of vowel-less words; solid edges link the states 
that mark the transition through the model for 
generating the desired sentence; each edge car-
ries with it a probability mass, representing the 
probability of transitioning between the two 
hidden states connected by the edge. This tech-
nique was used for Arabic in a similar way.  

Our model consists of a set of hidden states 

nTT ,..,1  where each hidden state corresponds to 

BR^$YT 

BR^ 

    be-re-shit 

^LWHYM 

Figure 2. HMM path for the non-voweled phrase “ in the beginning god created…”   
pronounced /be-reshit bara elohim/ 

 



an observed word in our training corpus. Thus, 
each hidden state corresponds to a word contain-
ing its complete vowel pattern. From each hid-

den state iT , there is a single emission, which 

simply consists of the word in its non-voweled 
form. If we make the assumption that the prob-
ability of observing a given word depends only 
on the previous word, we can compute the prob-
ability of observing a sentence nn wwW ,...,1,1 =  

by summing over all of the possible hidden 
states that the HMM traversed while generating 
the sentence, as denoted in the following equa-
tion.  

)1|()(
1,1

,1 � ∏
+

−=
nT

n TiTip
i

Wp   

 
These probabilities of transitions through the 
states of the model are approximated by bigram 
counts, as described below. Note that the symbol 
“#” in the figure serves to “anchor”  the initial 
state of the HMM and facilitate computation. 
Thereafter, the hidden states actually consist of 
vowel-annotated bigrams. The probability of 
any possible path in our model that generates 
this phrase can be computed as follows:  
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This equation decomposes into the following 
maximum likelihood probability estimations, 
denoted by p̂ ,  in which c(word) denotes the 
number of instances that word had occurred in 
the training set and c(word1, word2) denotes the 
number of joint occurrences of word1 and 
word2 in the training set.  
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In order to be able to compute the likelihood of 
each bigram, we kept a look-up table consisting 
of counts for all individual and joint occurrences 
in the training set. We implemented the Viterbi 
algorithm to find the most likely path transitions 
through the hidden states that correspond to the 
observations. The likelihood of observing the 

sentence nW ,1  while traversing the hidden state 

path nT ,1  is taken to be ),( ,1,1 nn TWp . We  ig-

nore the normalizing factor )( ,1 nWp . More 

formally, the most likely path through the model 
is defined as  
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5.1 Dealing with Sparse Data 

Because our bigram model is trained from a 
finite corpus, many words are bound to be miss-
ing from it. For example, in the unigram model, 
we found that as many as 16% of the Hebrew 
words in the test set were not present. The 
amount of unseen bigrams was even higher, as 
much as 20 percent. This is not surprising, as we 
expect some unseen bigrams to consist of words 
that were both seen before individually. We did 
not specifically deal with sparse data in the uni-
gram base line model.  

As many of the unseen unigrams were non 
ambiguous, we would have liked to look up the 
missing words in a vowel-annotated dictionary 
and copy the vowel pattern found in the diction-
ary. However, as noted in Section 2, morphol-
ogy in both Hebrew and Arabic is non-
concatenative. Since dictionaries contain only 
the root form of verbs and nouns, without a 
sound morphological analyzer we could not 
decipher the root. Therefore, proceeded as fol-
lows: We employed a technique proposed by 
Katz (1987) that combines a discounting method 
along with a back-off method to obtain a good 
estimate of unseen bigrams. We use the Good-
Turing discounting method (Gale & Sampson 
1991) to decide how much total probability mass 
to set aside for all the events we haven’ t seen, 
and a simple back-off algorithm to tell us how to 
distribute this probability. Formally, we define  
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Here, dP  is the discounted estimate using the 

Good-Turing method, p is a probability esti-
mated by the number of occurrences and )1(wα  
is a normalizing factor that divides the unknown 

if c(w2,w1)>0  

if c(w2,w1)=0  



probability mass of unseen bigrams beginning 
with w1.  
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In order to compute Pd we create a separate 

discounting model for each word in the training 
set. The reason for this is simple: If we use only 
one model over all of the bigram counts, we 
would really be approximating )1,2( wwPd . 

Because we wish to estimate )1|2( wwPd , we 

define the discounted frequency counts as fol-
lows: 

)2,1(
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where cn  is the number of different bigrams in 

the corpus that have frequency c. Following 
Katz, we estimate the probability of unseen bi-
grams to be 
 
 
p(w2|w1) ≅  
 
 

 
If the missing bigram is composed of two in-

dividually observed words, this technique allows 
us to estimate the probability mass of the unseen 
bigram. In some cases, the unseen bigram con-
sists of individual words that have never been 
seen. In other words, w2 itself is unseen and 
c(w2) cannot be computed. In this case, we es-
timate the probability for p(w2|w1) by comput-
ing p(unseen|w1). We do this by allocating some 
probability mass to unseen words, keeping a 
special count for bigrams that were seen less 
then k times.3 We allocate a separate hidden 
state for unseen words, as depicted in Figure 2.  
In this case, we do not attempt to fit any vowel 
pattern to the unseen word; the word is left bare 
of its diacritics. However, we can still assign a 
probability mass, p(unseen|w1), to prevent the 
Viterbi algorithm from computing a zero prob-

                                                      
3 k was arbitrarily set to three in our experiment. 
Alternatively, we could get a more exact estimation 
of the missing probability mass by discounting the 
unigram probabilities of w2. 

ability. We can compute the probabilities 
p(w2|unseen) in a similar manner.   

5.2 Results 

Figure 3.  Results of Bigram Model
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Figure 3 presents our results using the bigram 

HMM model, where “Hebrew 1”  measures word 
accuracy be in Hebrew, “Hebrew 2” measures 
phonetic group accuracy, and “Arabic” 
measures word accuracy in Arabic. Using the 
bigram model for Hebrew, we achieved 81% 
word accuracy and 87% phonetic group 
accuracy. For Arabic, we achieved 86% word 
accuracy. For Hebrew, the system was more 
successful in restoring the phonetic group vowel 
pattern than restoring the exact diacritics. This is 
because the number of possible vowel symbols 
in Hebrew is larger than in Arabic. However, for 
text-to-speech systems, it is sufficient to 
associate each vowel with the correct phonetic 
group. For word accuracy, most of the errors in 
Hebrew (11%) and in Arabic (8%) were due to 
words that were not found in the training corpus. 
Therefore, we believe that acquiring a 
sufficiently large modern corpus of the language 
would greatly improve performance. However, 
the number of parameters for our model is 
quadratic in the number of word types in the 
training set. Therefore, we suggest using limited 
morphological analysis to improve performance 
of the system by attempting to identify the stem 
or root of the words in the test set, as well as the 
conjugation. Since conjugation templates in 
Semitic languages have fixed vowel patterns, 
even limited success in morphological analyses 
would greatly improve performance of the 
system, while not incurring a blowup in the 
number of parameters. 

 
 
 

 p(w2)      if c(w2) > 0 

 p(unseen|w1)      if c(w2) = 0 



6  Related Work 

Performing a full morphological analysis of a 
Hebrew or Arabic sentence would greatly assist 
the vowel restoration problem. That is, if we 
could correctly parse each word in a sentence, 
we could eliminate ambiguity and restore the 
correct vowel pattern of the word according to 
its grammatical form and part of speech.  

For Arabic, a morphological analyzer, 
developed by the Xerox Research Centre Europe 
(Beesley 1998) is freely available.4 The system 
uses finite state transducers, traditionally used 
for modeling concatenative morphology. Since 
the system is word based, it cannot disambiguate 
words in context and outputs all possible 
analyses for each word. The system relies on 
handcrafted rules and lexicon that govern Arabic 
morphology.  

For Hebrew, a morphological analyzer called 
Nakdan Text exists, as part of the Rav Milim 
project for the processing of modern Hebrew 
(Choueka and Neeman 1995). Given a sentence 
in modern Hebrew, Nakdan Text restores its 
vowel diacritics by first finding all possible 
morphological analyses and vowel patterns of 
every word in the sentence. Then, for every such 
word, it chooses the correct context-dependent 
vowel pattern using short-context syntactical 
rules as well as some probabilistic models. The 
authors report 95% success rate in restoring 
vowel patterns. It is not clear if this refers to 
word accuracy or letter accuracy.5 

 Segel (1997) devised a statistical Hebrew 
lexical analyzer that takes contextual dependen-
cies into account. Given a non-voweled Hebrew 
texts as input and achieves 95% word accuracy 
on test data extracted from the Israeli daily 
Ha’aretz. However, this method requires fully 
analyzed Hebrew text to train on. Segel used a 
morphological hand-analyzed training set con-
sisting of only 500 sentences. Because there is 
currently no tree bank of analyzed Hebrew text, 
this method is not applicable to other domains, 
such as novels or medical texts.  

                                                      
4 http://www.arabic-morphology.com/ 
5 This program was demonstrated at BISFAI-95, the 
fifth Bar Ilan international symposium on Artificial 
Intelligence, but no summary or article was included 
in its proceedings, and to the best of our knowledge 
no article has been published describing the methods 
of Nakdan text.  
 

Kontorovich and Lee (2001) use an HMM 
approach to vocalizing Hebrew text. Their 
model consists of fourteen hidden states, with 
emissions for each word of the training set. 
Initially, the parameters of the model are chosen 
at random and training of the model is done 
using the EM algorithm. They achieve a success 
rate of 81%, when unseen words are discarded 
from the test set.  

 

7 Future Work 

Since most of the errors in the model can be 
attributed to missing words, we plan to address 
this problem from two perspectives. First, we 
plan to include a letter-based HMM to be used 
for fitting an unseen word with a likely vowel 
pattern. The model would be trained separately 
on words from the training set. Its hidden states 
would correspond to vowels in a language, mak-
ing this model language dependent. We also 
plan to use a trigram model for the task of vowel 
restoration, backing off to a bigram model for 
sparse trigrams.  

Second, we plan to use some degree of mor-
phological analysis to assist us with the restora-
tion of unseen words. At the very least, we could 
use a morphological analyzer as a dictionary for 
words that have unique diacritization, but are 
missing from the model. Since analyzers for 
Arabic that are commonly available  (Beesley 
1998) are word based, they output all possible 
morphological combinations of the word, and it 
is still unclear how we could choose the most 
likely parse given the context.  

Finally, since the size of our corpora is 
relatively small, we also plan to use cross 
validation to get a better estimate of the gener-
alization error. 

8 Conclusion 

In this paper, we demonstrated the use of a 
statistically based approach for vowel restora-
tion in Semitic languages. We wish to demon-
strate that HMMs are a useful tool for computa-
tional processing of Semitic languages, and that 
these models generalize to other languages.  For 
the task of vocalizing the vowels according to 
their phonetic classification, the system we have 
proposed achieves an accuracy of 87% for He-
brew. For the task of restoring the exact vowel 



pattern, we achieved an accuracy of 81% for 
Hebrew texts and 86% for Arabic texts. Thus, 
we have shown that the contextual information 
gained by using HMMs is beneficial for this 
task. 
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