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Abstract 
NLP systems will be  more portable 
among medical domains if acquisition 
of semantic lexicons can be 
facilitated.  We are pursuing lexical 
acquisition through the syntactic 
relationships of words in medical 
corpora.  Therefore we require a 
syntactic parser which is flexible, 
portable, captures head-modifier pairs 
and does not require a large training 
set.  We have designed a dependency 
grammar parser that learns through a 
transformational-based algorithm.  
We propose a novel design for 
templates and transformations which 
capitalize on the dependency structure 
directly and produces human-readable 
rules.  Our parser achieved a 77% 
accurate parse training on only 830 
sentences.  Further work will evaluate 
the usefulness of this parse for lexical 
acquisition. 

1 Introduction 

Natural Language is a vital medium in 
medicine.  Health care providers rely on medical 
narratives for recording, representing and 
sharing complex medical information such as 
the description of images, explanation of test 
results, or the summary of a patient’s hospital 
visit.  Natural Language Processing (NLP) tools 
have been applied to medical narrative for a 
variety of applications, such as triggering 
clinical alerts (Friedman, 1997) and document 
classification (Wilcox, 2000). 

The effort required to create and maintain 
NLP systems in the medical setting can be 
prohibitive.  Most language processors require a 
domain-specific semantic lexicon to function 
and, so far, these lexica have been created 
manually.  The time and cost involved in 
creating these knowledge structures put limits 
on the extensibility and portability of NLP 
systems (Hripcsak, 1998). One solution to this 

bottleneck is to use machine learning to assist in 
categorizing lexemes into semantic classes.  
Such a tool could reduce the difficulty in porting 
NLP systems from one domain to another. 

2 Dependency Grammars 

One approach to semantic categorization is 
the use of syntactic features (Kokkinakis, 2001).  
This is based on the assumption that lexemes 
that share similar syntactic relations to other 
lexemes in the corpus will be semantically 
similar (Dorr, 2000).  The idea of clustering 
words based on syntactic features has been well 
investigated in general language (Pereira, 1993; 
Li, 1998)  However, (Harris, 1991) states that 
the syntactic relationships are more well-defined 
and have less variation in scientific languages  
(sublanguages), such as the ones used in medical 
texts.  Identifying word classes using syntactic 
relationships should be simpler and potentially 
more useful in these types of languages.   

Dependency grammars (Hudson, 1991) 
generate parses where words in a sentence are 
related directly to the word which is its syntactic 
head.  Each word, except for the root has exactly 
one head, and the structure is a tree.  The 
analysis does not generate any intermediate 
syntactic structures.  Figure 1 shows an example 
of a sentence with a dependency grammar parse.  
There has been interest in learning dependency 
grammars from corpora.  Collins (Collins, 1996) 
used dependencies as the backbone for his 
probabilistic parser and there has been work on 
learning both probabilistic (Carroll, 1992; Lee, 
1999; Paskin, 2001) and transformation based 
dependency grammars (Hajic, 1997).   

There are a number of attributes of 
dependency grammars which make them ideal 
for our goal of investigating medical 
sublanguage.  First, the semantics of a word are 
often defined by a feature space of related 
words.  The head-dependent relationships 
generated by a dependency parse can be used as 
the relationship for acquisition.  Second, 
dependency grammars may be a better fit for 
parsing medical text.  Medical text is frequently 
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include telegraphic omissions, run-on structures, 
improper use of conjunctions, left attaching 
noun modifiers etc (Sager, 1981). In many 
cases, many traditional phrase structures are 
absent or altered, making a phrase structure 
parse using traditional production rules difficult.  
A dependency grammar may still capture useful 
syntactic relationships when an accurate phrase 
grammar parse is not possible.  In this way, a 
dependency parse may be compared to a 
shallow parse, in that it can return a partial 
analysis.  However, even with a shallow parser, 
we would still interested in the dependency 
relationships inside the chunks.  Third, the 
syntactic grammar of medical English, 
specifically regarding discharge summaries, is 
simpler overall (Campbell, 2001).  We are not 
interested so much in the labeling of 
intermediate syntactic structures, such as noun 
phrases and prepositional phrases.  Dependency 
grammars may allow us to capitalize on the 
relative syntactic simplicity of medical language 
without the overhead of generating and 
identifying structures which will not be used. 

 
 
 
 
 
 
 

Figure 1.  Dependency grammar parse of the 
sentence “In general she was sleeping quietly.” 

 
The dependency grammar used in this 

experiment did not allow crossing dependencies 
(projectivity).  Crossing dependencies are ones 
where the parent and child of a relationship are 
on opposite sides of a common ancestor.   

3 Transformational Based 
Learning 

Transformational Based Learning (TBL) has 
been applied to numerous language learning 
problems, including part-of-speech tagging 
(Brill, 1994) , and parsing (Florian, 1998).  It 
also has been used for learning dependency 
grammars (Hajic, 1997).  In general, TBL 
algorithms generate smaller rule sets and require 
less training material than probabilistic 
approaches.  Brill produced a part-of-speech 

tagger which was comparable in accuracy to 
other tagging methods.   

In language, the general paradigm for TBL is 
to generate logical rules which apply 
transformations to the text.  The training text  is 
first annotated with the goal state.  In this case, 
the sentences would be assigned a dependency 
parse.  An initial state annotator is then applied 
to an unannotated copy of the text.  For 
example, a right branching dependency tree was 
used in our experiment as the initial state 
(compare figure 1 and figure 2).  The goal of 
TBL is to then generate rules which transform 
the naïve training state into the goal state.  In 
order to do so, the TBL algorithm will have 
templates which describe the environment in the 
training corpus where a transformation can 
occur.  The algorithm also has a scoring 
function which allows the comparison of the 
training state to the goal state.  After iterating 
through the training corpus and testing all 
combinations of templates and transformations, 
the paired template and transformation which 
has the highest score  becomes a rule.  In other 
words, the best rule is the one which results in a 
corpus closest to the goal state after applying the 
transformation at the locations indicated by the 
template.  This best rule is applied to the 
training corpus to produce a refined corpus.  The 
process is then repeated, using the refined 
corpus as the training corpus, until no more 
positively scoring rules are produced.  The final 
product is an ordered set of rules which can be 
applied to any unannotated corpus. 

 
 
 
 
 
 
 
 
 
Figure 2.  The initial dependency parse of the 

sentence “In general she was sleeping quietly.” 
 

TBL is a good choice for learning a 
dependency grammar of medical language.  
Assigning dependency heads is a task that is 
similar to part-of-speech tagging; each word in 
the text has exactly one dependency head, 
represented by the index of the head word.  
Transformations to this representation consist of 
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changing a word’s dependency head from one 
word to another. 

4     The Learning Algorithm 

4.1 Template Design 

In TBL, transformations occur when a 
specific environment in the text is found.  These 
environments, or triggers, are defined by the 
proximal relationship of two or more parts of 
speech within a sentence.  For example, in 
Brill’s early work with POS tagging, one trigger 
was the existence of another specific POS tag 
immediately preceding the one to be 
transformed.  The triggers, therefore, compose 
the ‘if’ component of the ‘if-then’ 
transformational rules.    

When considering what triggers would be 
appropriate for dependency grammars, it was 
noted that many arcs in the grammar span a 
number of words.  For example, the arc between 
a verb and the head of a noun phrase may span 
many words, especially in medical narratives 
where noun phrases can be especially lengthy.  
In previous attempts to parse language using 
TBL templates, the triggers have been tokens in 
the vicinity of the token to be transformed.  
While this has been successful for POS tagging, 
where the context necessary to correctly 
transform the tag may be found within two or 
three surrounding tokens, the distance of some 
dependency relationships can be much greater.  
In order to capture long distance relationships 
explicitly in a trigger, it would be necessary to 
expand the vicinity to be searched.   

In the case of a dependency grammar parse, 
words are related to each other not only through 
their left-to-right arrangement, but also through 
the dependency tree.  We sought to design  
triggers that take advantage of the dependency 
tree itself.  Using the dependency relationships 
directly in the trigger is in the spirit of TBL 
where learning must change the triggering 
environments in the corpus from one iteration to 
the next.  For example, in the case of POS tag 
learning, newly learned POS tags are used in 
subsequent iterations of the algorithm as 
triggers.  Similarly, by using the dependency 
relationship directly in the trigger, we would 
expect the learner to capitalize on parse 
improvements through the learning process. 

Each trigger used in this experiment had six 
parameters, which defined the vicinity around a 
target token, summarized in figure 3.  Triggers 
can search using solely word distance, tree 
distance, or a combination of both.  Any 
template can have multiple triggers, requiring 
multiple criteria to be met before considered 
true. 

Figure 3.  Trigger design and examples 

 
The parameters of direction and distance are 

self-explanatory.  Scope defines whether or not 
the triggering token must be exactly at the 
location defined by the distance, or within that 
distance.  The third setting for scope is a special 
case.  If the scope is set to all the template will 
search all tokens in the direction set, regardless 
of distance (e.g. if the tree direction is set to left 
and the scope is set to all, the trigger will match 
all tokens to the left, regardless of distance).  

 
Trigger parameters 
 

1.  Word distance 
2.  Word direction (left, right, either) 
3.  Word scope (exactly at, within, all) 
4.  Tree distance 
5.  Tree direction (parent, child, either) 
6.  Tree scope (exactly at, within, all) 
 

Example 1. 
 
 
 
 
 
 
 
Trigger: 

W-dist = 2  W-dir = right  W-scp = within 
T-dist  = 1   T-dir  = child  T-scp = within  

 
Example 2 
 
 
 
 
 
 

 
Trigger: 

W-dist = 2  W-dir = right  W-scp = ex. at. 
T-dist  = 2   T-dir  = par   T-scp  =  ex. at 

x 

1 

2 

x 

2 

2 



Two examples of triggers are given in figure 3.  
In both cases the triggers are searching for 
elements near token x which meet the correct 
criteria.  In the first example, the trigger criteria 
will be met by any token within the shaded area 
of the tree, those tokens which are either one or 
two tokens to the right of x and are descendents 
of x with a tree distance of one.  The second 
trigger will match a single token, shown as a 
black circle, that is exactly two tokens to the 
right of x and is also an ancestor of tree distance 
two.   

4.2 Transformations 

The second principal component of a TBL 
rule is the transformation, which defines a 
change to the structure of the sentence.  For 
example, in the case of POS tagging, the 
transformation would be to change POS tag x to 
POS tag y.  When TBL has been applied to 
parsing, the transformations have been on 
bracketed parse trees and have added or deleted 
brackets in a balanced method.  Where the 
transformations seem intuitive for POS tagging, 
they are not as transparent for parsing.  A rule 
for POS tagging may read, “If tag x is DT and 
tag y immediately to the right is VB, change  tag 
y to NN.” (see figure 4)  This makes sense, for 
we do not expect verbs to immediately trail 
determiners, and transforming the verb to a noun 
would likely correct an error.  A rule for parsing 
may read “If a bracket is immediately left of 
NN, delete a bracket to the left of the NN.”  This 
rule will combine a phrase which has a noun as 
the left-most component with the phrase which 
covers it.  While this makes some sense, as 
many phrases do not have nouns as their left-
most component, there are also many phrases 
which do.    The linguistic motivation behind the  
transformation is not immediately obvious. 
 

We wanted to give our transformations 
the intuitive readability of the rules seen in the 
POS tagging rules.  In the case of our 
dependency grammar, we wanted our 
transformations to describe changes made 
directly to the tree.  We considered four ways in 
which one token in the tree could be moved in 
relation to another outlined in figure 5.  All four 
of the transformations decompose to the first 
transform. These transformations make intuitive 
sense for dependency grammars.  We want to 
identify tokens in the text which are in the 

incorrect tree configuration and transform the 
tree by changing the dependency relationships.  
For example, the transformations “Make a noun 
the child of a verb” or “Make adjectives siblings 
of each other” are both readable in English and 
are linguistically reasonable. 

 
Figure 4. Examples of applying 

transformations in POS tagging and parsing 
 
Some transformations are disallowed in the 

special case that the root node is involved.  The 
root node has no parent and can have no siblings 
and therefore transformations which would 
create these circumstances are not allowed.  The 
shape of the dependency tree is restricted in 
other ways as described above, in that the trees 
have no crossing dependencies.  These 
restrictions are not enforced by the 
transformations and it is possible that they could 
generate trees that violate these restrictions. 

4.3 Rule Scoring 

At every iteration, it is necessary to evaluate the 
goodness of the parse that results from the 
application of all tested rules.  The rule which 
produces the best parse for that iteration is the 
one that is chosen and applied before continuing 
on to the next iteration.  A number of measures 
for measuring parsing accuracy have been 
established, including bracketing sensitivity and 
specificity.  Parsing accuracy for dependency 

Part-of-speech rule application 
 

Before:  The/DT fly/VB on/IN the/DT wall/NN 
 
Apply Rule: If VB right of DT change VB to NN 

 
After:    The/DT fly/NN on/IN the/DT wall/NN 

 
Bracketed-tree rule application 

 
Before: 
 
 

(((The/DT (fly/NN on/IN)) the/DT) wall/NN) 
 

Apply Rule:  If ‘(‘ left of NN delete ‘(‘ on left 
 
After 
 

(((The/DT fly/NN on/IN) the/DT) wall/NN) 



grammars is often measured as a function of the 
number of tokens which have the correct 
ancestors, or dependency accuracy.  Keeping 
our goal of generating word-modifier pairs for 
subsequent machine learning, we chose an 
aggressive scoring function, counting only 
correct parent-child relationships.  This also 
keeps the scoring function as simple as possible. 
 

 
 
 

Dependency grammar transformations 
 
1.  Make x the child of y 
 
 
 
 
 
2.  Make x the parent of y 
 
 
 
 
3.  Make x the sibling of y keeping x’s 

parent 
 
 
 
 
 
 
4. Make x the sibling of y keeping y’s 

parent 
 
 
 
 
 

 
Figure 5.  The four basic transformations 

4.4 The Algorithm 

The general design of TBL algorithms has 
been well described (Brill, 1994).  The essential 
components, outlined above, include the 
template design, the transformations used, and 
the scoring system.  The initial state of the 

dependency tree is the right branching tree 
shown in figure 2.  To improve efficiency, we 
use the indexed TBL method  outlined by 
Ramshaw and Marcus (Ramshaw, 1994).  Rules 
have pointers to the sentences to which they 
apply, and similarly each sentence has pointers 
to the rules which have applied to it in the past.  
Rules are held on a heap based on their score, 
allowing the best rule to be found immediately 
after each iteration.  The rule is applied to the 
list of sentences to which it points, and this list 
is used in the next iteration so no sentences 
which have not been modified need be seen. 

5 Methods 

A corpus of 1000 sentences (16,949 words) 
of text from medical discharge summaries was 
split into a training set of 830 sentences (13,954 
words) and a test set of 170 sentences (2,995 
words).  The entire corpus was first POS tagged 
using a tagger trained specifically for discharge 
summaries (Campbell, 2001).  The corpus was 
then hand parsed with a dependency grammar, 
and the TBL learner was allowed to learn rules 
on the training set.  The sentences in the corpus 
were not restricted by length.  Three sets of 
increasingly complex templates were used to 
learn rules, summarized in figure 6. 

 
Figure 6. Three template sets used 

Corpus score =  # correct dependencies 
 

Template Set #1 
1.  Word distance: 
2.  Word direction: 
3.  Word scope:  
4.  Tree distance:  
5. Tree direction:  
6. Tree scope:  

 
1, 2, or 3 
left, right, or either 
exactly at, within, or all 
not used 
not used 
not used 

Template Set #2  
1.  Word distance:  
2.  Word direction:  
3.  Word scope:  
4.  Tree distance: 
5. Tree direction:  
6. Tree scope:  

all of set 1, and . . . 
not used 
not used 
not used 
1, 2, or 3 
child, parent or either 
exactly at, within, or all 

Template Set #3  
1.  Word distance:  
2.  Word direction:  
3.  Word scope: 
4.  Tree distance:  
5. Tree direction:  
6. Tree scope:  

all of set 1, 2, and. . .  
1,2 or 3 
left, right, or either 
exactly at, within, or all 
1, 2, or 3 
child, parent or either 
exactly at, within, or all 
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6 Results 

The three template sets generated three rule 
sets, each of which was evaluated on the 170 
sentence test set.  Each template set was trained 
with increasing amounts of the training corpus 
to measure the effect of the training set size on 
the learner’s accuracy.  Chart 1 shows the 
improvement in accuracy gained through larger 
training sets.  The best dependency accuracy and 
number of rules generated for each template set 
is reported in table 1.  

 
 
Table 1.  Results for three template sets used 

 
Table 2.  Effect of sentence length on accuracy 
 
 
To measure the effect of sentence length on 
parsing accuracy, the best parser rules were re-
tested on two subsets of the test sets.  The first 
subset contained sentences with a length less 
than ten words and the second contained 
sentences of length less than twenty.  The 
resulting accuracy of the parser on these 
sentences is summarized in table 2.  The top ten 
rules acquired with the third template set are 
reported in table 3. 

7 Discussion and Further Work 

For all sets of templates, the learner produced a 
rule-based parser with dependency accuracy 
exceeding 75% when sentence length was not 
restricted.  For the best parser generated, 
limiting the sentence length to 20 and 10 words 
improved the parsing accuracy to 80.1% and 

87.6%.  Little difference among the template 
sets was found, although the use of tree-based 
templates gave slightly better performance.  
Although we expected the inclusion of tree 
based templates to improve the performance of 
the parser by a greater extent than observed, it is 
significant that the learner was reasonably 
successful with only word-order information.  
The strongest syntactic dependencies in medical 
language may be local and the addition of the 
tree-oriented templates is not very significant.  
However, when the tree information is available, 
the learner does use it, as can be seen by the 
number of rules using tree information in the 
three sets shows (table 1).  For the third template 
set, 46% of the rules learned incorporated tree 
information. 
 

 
Base POS {POS of current token} 
Trig. POS      {POS to be found by trigger} 
W/T Dis {# of tokens trigger is from base} 
W Dir  {1 = right, -1 = left, 0 = either } 
T Dir  {1 = par, -1 = child, 0 = either } 
W/T Scp {1 = at, 2 = within, 3 = all} 
Xf   {1 = make child, 2 = make par} 

 
Table 3. First 5 rules learned by template set 3 

  
The rules generated are easily translated into 

English and make good linguistic sense.  The 
first rule in Table 2 reads “If this is a singular 
noun (Base POS = NN) and there is a 
preposition (Trg POS = IN) within (W. scp = 2) 
three tokens (W. dis = 3) to the left (W. dir =-1) 
then make the preposition the parent of the 
noun.”  This is the type of rule we would expect 
to see, as it begins forming prepositional  
phrases attaching to prepositions on the left.  
The third rule uses information in the 
dependency tree, reading “If this is a simple past 
verb and there is a singular noun that is the 
grandparent, make that noun the child of the 
verb.” 

Template 
Set 

Rules 
tested 

Parser  
Rules 

Tree 
Rules 

Parse 
acc. 

Set 1 48K+ 424 0 76.5% 

Set 2 93K+ 498 127 77.0% 

Set 3 187K+ 541 249 77.0% 

Test set Sentence 
length 

Total 
Sents. 

Avg.  
Length 

Parse 
acc. 

1 n <= 10 61 7.1 87.6% 

2 n <= 20 127 11.4 80.1% 

Full all n 200 17.9 77.0% 

 
 

Base 
POS 

Trg. 
POS 

W 
Dis 

W 
Dir 

W 
Scp 

T  
Dis 

T  
Dir 

T  
Scp 

Xf 
 

1 NN IN 3 -1 2 0 0 0 2 

2 IN NN -1 1 2 0 0 0 2 

3 VBD NN 0 0 0 2 1 1 1 

4 JJ NN 2 1 2 0 0 0 2 

5 VBD VBN 3 1 2 0 0 0 1 
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Chart 1. Effect of training set size on dependency accuracy for three template sets 

 
The greatest drawback to this approach is 

the computing requirements.  The consequence 
of the complex template design used is a large 
number of rules which need to be kept in 
memory.  The third template set generated over 
187,000 rules which need to be stored in 
memory.  Of these, only 240 rules were kept in 
the rule set.   Because each rule needs to store a 
list of pointers back to the sentences to which it 
applied, the size of a rule grows with the size of 
the training set.  It will be crucial to incorporate 
rule pruning in the future to allow larger training 
sets and more complex templates. 

Although the results shown here are for 
training on a specific corpus of discharge 
summaries, the learning algorithm itself is 
domain independent.  We foresee generating 
parsers on a number of medical corpora, 
including radiology reports, pathology reports 
and progress notes.  Therefore, we require a 
flexible solution that would not demand 
reengineering the parser for every new domain.  
The learning algorithm described here could be 
used on any general corpus where the sentences 
can be given a dependency parse.  We intend to 
evaluate the algorithm on more general corpora 
in the future. 

Overall, the results are very encouraging.  
Keeping in mind our goal of gathering head-
modifier pairs for machine learning, a 77% 
accurate parse is approaching an acceptable 
parse (Sekine, 1992).  The results also show that 
limiting the sentence length can improve the 
accuracy of the parser.   If our sole desire is the 
generation of head-modifier pairs, using a large 
number of shorter sentences may be equivalent 
to using fewer longer ones.  We also believe that 
the parser may be improved through 
lexicalization, but that remains future work. 

The ability to generate a good parser from 
such a small training set is important in the 

medical domain.  Previous work has shown that 
different medical domains have to be treated as 
separate languages for successful NLP 
(Friedman, 1995).  Therefore, it is likely that 
any medical domain we wish to parse will 
require its own training set for the parser.  If 
extensive training set preparation was required, 
then we are simply trading one difficult task for 
another: the task of manually creating and 
maintaining a semantic lexicon with the task of 
hand dependency-parsing large amounts of text.  
Although the task of hand-parsing 1,000 
sentences of discharge summaries is not trivial, 
it is reasonable and manageable and does not 
require extensive medical  knowledge.  The 
shift-reduce parser  described by (Hermjakob, 
1997) also requires relatively few  training 
examples but requires semantic features that 
may require  medical knowledge to construct 
and assign.  Although we do not propose here a 
specific application for a dependency grammar 
in a medical domain, we believe it will be 
valuable for future clustering, disambiguation  
and indexing applications.   

8 Conclusions 

Natural language processors in the medical 
domain will be more flexible and portable with 
assisted lexicon design.  The syntactic 
dependencies in a dependency grammar may be 
useful for the lexical acquisition necessary to 
make this possible.  We have investigated using 
transformational-based learning as a technique 
for learning a dependency grammar in a medical 
corpus.  To better learn dependency grammars 
we used a template design which uses the 
structure of the parse tree explicitly and 
transformations that operated directly on the 
trees.  Training on a set of 830 sentences of 
parsed medical discharge summaries gave a best 



parser with 77% accuracy.  The inclusion of tree 
information in the template design slightly 
improved the parser.  The rules produced were 
intuitive and understandable, and the limited 
amount of training material will allow the 
technique to be used on other medical domains 
without extensive manual parsing. Further work 
will test the utility of head-dependency 
relationships for machine learning semantic 
classes. 
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