
A Transformational-based Learner for Dependency Grammars in
Discharge Summaries

David A. Campbell M. Phil., Stephen B. Johnson Ph.D.
Department of Medical Informatics, Columbia University

Abstract
NLP systems will be more portable
among medical domains if acquisition
of semantic lexicons can be
facilitated. We are pursuing lexical
acquisition through the syntactic
relationships of words in medical
corpora. Therefore we require a
syntactic parser which is flexible,
portable, captures head-modifier pairs
and does not require a large training
set. We have designed a dependency
grammar parser that learns through a
transformational-based algorithm.
We propose a novel design for
templates and transformations which
capitalize on the dependency structure
directly and produces human-readable
rules. Our parser achieved a 77%
accurate parse training on only 830
sentences. Further work will evaluate
the usefulness of this parse for lexical
acquisition.

1 Introduction

Natural Language is a vital medium in
medicine. Health care providers rely on medical
narratives for recording, representing and
sharing complex medical information such as
the description of images, explanation of test
results, or the summary of a patient’s hospital
visit. Natural Language Processing (NLP) tools
have been applied to medical narrative for a
variety of applications, such as triggering
clinical alerts (Friedman, 1997) and document
classification (Wilcox, 2000).

The effort required to create and maintain
NLP systems in the medical setting can be
prohibitive. Most language processors require a
domain-specific semantic lexicon to function
and, so far, these lexica have been created
manually. The time and cost involved in
creating these knowledge structures put limits
on the extensibility and portability of NLP
systems (Hripcsak, 1998). One solution to this

bottleneck is to use machine learning to assist in
categorizing lexemes into semantic classes.
Such a tool could reduce the difficulty in porting
NLP systems from one domain to another.

2 Dependency Grammars

One approach to semantic categorization is
the use of syntactic features (Kokkinakis, 2001).
This is based on the assumption that lexemes
that share similar syntactic relations to other
lexemes in the corpus will be semantically
similar (Dorr, 2000). The idea of clustering
words based on syntactic features has been well
investigated in general language (Pereira, 1993;
Li, 1998) However, (Harris, 1991) states that
the syntactic relationships are more well-defined
and have less variation in scientific languages
(sublanguages), such as the ones used in medical
texts. Identifying word classes using syntactic
relationships should be simpler and potentially
more useful in these types of languages.

Dependency grammars (Hudson, 1991)
generate parses where words in a sentence are
related directly to the word which is its syntactic
head. Each word, except for the root has exactly
one head, and the structure is a tree. The
analysis does not generate any intermediate
syntactic structures. Figure 1 shows an example
of a sentence with a dependency grammar parse.
There has been interest in learning dependency
grammars from corpora. Collins (Collins, 1996)
used dependencies as the backbone for his
probabilistic parser and there has been work on
learning both probabilistic (Carroll, 1992; Lee,
1999; Paskin, 2001) and transformation based
dependency grammars (Hajic, 1997).

There are a number of attributes of
dependency grammars which make them ideal
for our goal of investigating medical
sublanguage. First, the semantics of a word are
often defined by a feature space of related
words. The head-dependent relationships
generated by a dependency parse can be used as
the relationship for acquisition. Second,
dependency grammars may be a better fit for
parsing medical text. Medical text is frequently

 Association for Computational Linguistics.
 the Biomedical Domain, Philadelphia, July 2002, pp. 37-44.
 Proceedings of the Workshop on Natural Language Processing in

include telegraphic omissions, run-on structures,
improper use of conjunctions, left attaching
noun modifiers etc (Sager, 1981). In many
cases, many traditional phrase structures are
absent or altered, making a phrase structure
parse using traditional production rules difficult.
A dependency grammar may still capture useful
syntactic relationships when an accurate phrase
grammar parse is not possible. In this way, a
dependency parse may be compared to a
shallow parse, in that it can return a partial
analysis. However, even with a shallow parser,
we would still interested in the dependency
relationships inside the chunks. Third, the
syntactic grammar of medical English,
specifically regarding discharge summaries, is
simpler overall (Campbell, 2001). We are not
interested so much in the labeling of
intermediate syntactic structures, such as noun
phrases and prepositional phrases. Dependency
grammars may allow us to capitalize on the
relative syntactic simplicity of medical language
without the overhead of generating and
identifying structures which will not be used.

Figure 1. Dependency grammar parse of the
sentence “In general she was sleeping quietly.”

The dependency grammar used in this

experiment did not allow crossing dependencies
(projectivity). Crossing dependencies are ones
where the parent and child of a relationship are
on opposite sides of a common ancestor.

3 Transformational Based
Learning

Transformational Based Learning (TBL) has
been applied to numerous language learning
problems, including part-of-speech tagging
(Brill, 1994) , and parsing (Florian, 1998). It
also has been used for learning dependency
grammars (Hajic, 1997). In general, TBL
algorithms generate smaller rule sets and require
less training material than probabilistic
approaches. Brill produced a part-of-speech

tagger which was comparable in accuracy to
other tagging methods.

In language, the general paradigm for TBL is
to generate logical rules which apply
transformations to the text. The training text is
first annotated with the goal state. In this case,
the sentences would be assigned a dependency
parse. An initial state annotator is then applied
to an unannotated copy of the text. For
example, a right branching dependency tree was
used in our experiment as the initial state
(compare figure 1 and figure 2). The goal of
TBL is to then generate rules which transform
the naïve training state into the goal state. In
order to do so, the TBL algorithm will have
templates which describe the environment in the
training corpus where a transformation can
occur. The algorithm also has a scoring
function which allows the comparison of the
training state to the goal state. After iterating
through the training corpus and testing all
combinations of templates and transformations,
the paired template and transformation which
has the highest score becomes a rule. In other
words, the best rule is the one which results in a
corpus closest to the goal state after applying the
transformation at the locations indicated by the
template. This best rule is applied to the
training corpus to produce a refined corpus. The
process is then repeated, using the refined
corpus as the training corpus, until no more
positively scoring rules are produced. The final
product is an ordered set of rules which can be
applied to any unannotated corpus.

Figure 2. The initial dependency parse of the

sentence “In general she was sleeping quietly.”

TBL is a good choice for learning a
dependency grammar of medical language.
Assigning dependency heads is a task that is
similar to part-of-speech tagging; each word in
the text has exactly one dependency head,
represented by the index of the head word.
Transformations to this representation consist of

.

was/VBD

general/JJ

she/PN sleeping/VBG

quietly/RB

In/IN

.
was/VBD

general/JJ

she/PN

quietly/RB

sleeping/VBG

In/IN

changing a word’s dependency head from one
word to another.

4 The Learning Algorithm

4.1 Template Design

In TBL, transformations occur when a
specific environment in the text is found. These
environments, or triggers, are defined by the
proximal relationship of two or more parts of
speech within a sentence. For example, in
Brill’s early work with POS tagging, one trigger
was the existence of another specific POS tag
immediately preceding the one to be
transformed. The triggers, therefore, compose
the ‘if’ component of the ‘if-then’
transformational rules.

When considering what triggers would be
appropriate for dependency grammars, it was
noted that many arcs in the grammar span a
number of words. For example, the arc between
a verb and the head of a noun phrase may span
many words, especially in medical narratives
where noun phrases can be especially lengthy.
In previous attempts to parse language using
TBL templates, the triggers have been tokens in
the vicinity of the token to be transformed.
While this has been successful for POS tagging,
where the context necessary to correctly
transform the tag may be found within two or
three surrounding tokens, the distance of some
dependency relationships can be much greater.
In order to capture long distance relationships
explicitly in a trigger, it would be necessary to
expand the vicinity to be searched.

In the case of a dependency grammar parse,
words are related to each other not only through
their left-to-right arrangement, but also through
the dependency tree. We sought to design
triggers that take advantage of the dependency
tree itself. Using the dependency relationships
directly in the trigger is in the spirit of TBL
where learning must change the triggering
environments in the corpus from one iteration to
the next. For example, in the case of POS tag
learning, newly learned POS tags are used in
subsequent iterations of the algorithm as
triggers. Similarly, by using the dependency
relationship directly in the trigger, we would
expect the learner to capitalize on parse
improvements through the learning process.

Each trigger used in this experiment had six
parameters, which defined the vicinity around a
target token, summarized in figure 3. Triggers
can search using solely word distance, tree
distance, or a combination of both. Any
template can have multiple triggers, requiring
multiple criteria to be met before considered
true.

Figure 3. Trigger design and examples

The parameters of direction and distance are

self-explanatory. Scope defines whether or not
the triggering token must be exactly at the
location defined by the distance, or within that
distance. The third setting for scope is a special
case. If the scope is set to all the template will
search all tokens in the direction set, regardless
of distance (e.g. if the tree direction is set to left
and the scope is set to all, the trigger will match
all tokens to the left, regardless of distance).

Trigger parameters

1. Word distance
2. Word direction (left, right, either)
3. Word scope (exactly at, within, all)
4. Tree distance
5. Tree direction (parent, child, either)
6. Tree scope (exactly at, within, all)

Example 1.

Trigger:

W-dist = 2 W-dir = right W-scp = within
T-dist = 1 T-dir = child T-scp = within

Example 2

Trigger:

W-dist = 2 W-dir = right W-scp = ex. at.
T-dist = 2 T-dir = par T-scp = ex. at

x

1

2

x

2

2

Two examples of triggers are given in figure 3.
In both cases the triggers are searching for
elements near token x which meet the correct
criteria. In the first example, the trigger criteria
will be met by any token within the shaded area
of the tree, those tokens which are either one or
two tokens to the right of x and are descendents
of x with a tree distance of one. The second
trigger will match a single token, shown as a
black circle, that is exactly two tokens to the
right of x and is also an ancestor of tree distance
two.

4.2 Transformations

The second principal component of a TBL
rule is the transformation, which defines a
change to the structure of the sentence. For
example, in the case of POS tagging, the
transformation would be to change POS tag x to
POS tag y. When TBL has been applied to
parsing, the transformations have been on
bracketed parse trees and have added or deleted
brackets in a balanced method. Where the
transformations seem intuitive for POS tagging,
they are not as transparent for parsing. A rule
for POS tagging may read, “If tag x is DT and
tag y immediately to the right is VB, change tag
y to NN.” (see figure 4) This makes sense, for
we do not expect verbs to immediately trail
determiners, and transforming the verb to a noun
would likely correct an error. A rule for parsing
may read “If a bracket is immediately left of
NN, delete a bracket to the left of the NN.” This
rule will combine a phrase which has a noun as
the left-most component with the phrase which
covers it. While this makes some sense, as
many phrases do not have nouns as their left-
most component, there are also many phrases
which do. The linguistic motivation behind the
transformation is not immediately obvious.

We wanted to give our transformations
the intuitive readability of the rules seen in the
POS tagging rules. In the case of our
dependency grammar, we wanted our
transformations to describe changes made
directly to the tree. We considered four ways in
which one token in the tree could be moved in
relation to another outlined in figure 5. All four
of the transformations decompose to the first
transform. These transformations make intuitive
sense for dependency grammars. We want to
identify tokens in the text which are in the

incorrect tree configuration and transform the
tree by changing the dependency relationships.
For example, the transformations “Make a noun
the child of a verb” or “Make adjectives siblings
of each other” are both readable in English and
are linguistically reasonable.

Figure 4. Examples of applying

transformations in POS tagging and parsing

Some transformations are disallowed in the

special case that the root node is involved. The
root node has no parent and can have no siblings
and therefore transformations which would
create these circumstances are not allowed. The
shape of the dependency tree is restricted in
other ways as described above, in that the trees
have no crossing dependencies. These
restrictions are not enforced by the
transformations and it is possible that they could
generate trees that violate these restrictions.

4.3 Rule Scoring

At every iteration, it is necessary to evaluate the
goodness of the parse that results from the
application of all tested rules. The rule which
produces the best parse for that iteration is the
one that is chosen and applied before continuing
on to the next iteration. A number of measures
for measuring parsing accuracy have been
established, including bracketing sensitivity and
specificity. Parsing accuracy for dependency

Part-of-speech rule application

Before: The/DT fly/VB on/IN the/DT wall/NN

Apply Rule: If VB right of DT change VB to NN

After: The/DT fly/NN on/IN the/DT wall/NN

Bracketed-tree rule application

Before:

(((The/DT (fly/NN on/IN)) the/DT) wall/NN)

Apply Rule: If ‘(‘ left of NN delete ‘(‘ on left

After

(((The/DT fly/NN on/IN) the/DT) wall/NN)

grammars is often measured as a function of the
number of tokens which have the correct
ancestors, or dependency accuracy. Keeping
our goal of generating word-modifier pairs for
subsequent machine learning, we chose an
aggressive scoring function, counting only
correct parent-child relationships. This also
keeps the scoring function as simple as possible.

Dependency grammar transformations

1. Make x the child of y

2. Make x the parent of y

3. Make x the sibling of y keeping x’s

parent

4. Make x the sibling of y keeping y’s

parent

Figure 5. The four basic transformations

4.4 The Algorithm

The general design of TBL algorithms has
been well described (Brill, 1994). The essential
components, outlined above, include the
template design, the transformations used, and
the scoring system. The initial state of the

dependency tree is the right branching tree
shown in figure 2. To improve efficiency, we
use the indexed TBL method outlined by
Ramshaw and Marcus (Ramshaw, 1994). Rules
have pointers to the sentences to which they
apply, and similarly each sentence has pointers
to the rules which have applied to it in the past.
Rules are held on a heap based on their score,
allowing the best rule to be found immediately
after each iteration. The rule is applied to the
list of sentences to which it points, and this list
is used in the next iteration so no sentences
which have not been modified need be seen.

5 Methods

A corpus of 1000 sentences (16,949 words)
of text from medical discharge summaries was
split into a training set of 830 sentences (13,954
words) and a test set of 170 sentences (2,995
words). The entire corpus was first POS tagged
using a tagger trained specifically for discharge
summaries (Campbell, 2001). The corpus was
then hand parsed with a dependency grammar,
and the TBL learner was allowed to learn rules
on the training set. The sentences in the corpus
were not restricted by length. Three sets of
increasingly complex templates were used to
learn rules, summarized in figure 6.

Figure 6. Three template sets used

Corpus score = # correct dependencies

Template Set #1
1. Word distance:
2. Word direction:
3. Word scope:
4. Tree distance:
5. Tree direction:
6. Tree scope:

1, 2, or 3
left, right, or either
exactly at, within, or all
not used
not used
not used

Template Set #2
1. Word distance:
2. Word direction:
3. Word scope:
4. Tree distance:
5. Tree direction:
6. Tree scope:

all of set 1, and . . .
not used
not used
not used
1, 2, or 3
child, parent or either
exactly at, within, or all

Template Set #3
1. Word distance:
2. Word direction:
3. Word scope:
4. Tree distance:
5. Tree direction:
6. Tree scope:

all of set 1, 2, and. . .
1,2 or 3
left, right, or either
exactly at, within, or all
1, 2, or 3
child, parent or either
exactly at, within, or all

x y y x

x y
y

x

x

y z

x

z y

y

x w

x

w

y y

of dependencies in corpus

6 Results

The three template sets generated three rule
sets, each of which was evaluated on the 170
sentence test set. Each template set was trained
with increasing amounts of the training corpus
to measure the effect of the training set size on
the learner’s accuracy. Chart 1 shows the
improvement in accuracy gained through larger
training sets. The best dependency accuracy and
number of rules generated for each template set
is reported in table 1.

Table 1. Results for three template sets used

Table 2. Effect of sentence length on accuracy

To measure the effect of sentence length on
parsing accuracy, the best parser rules were re-
tested on two subsets of the test sets. The first
subset contained sentences with a length less
than ten words and the second contained
sentences of length less than twenty. The
resulting accuracy of the parser on these
sentences is summarized in table 2. The top ten
rules acquired with the third template set are
reported in table 3.

7 Discussion and Further Work

For all sets of templates, the learner produced a
rule-based parser with dependency accuracy
exceeding 75% when sentence length was not
restricted. For the best parser generated,
limiting the sentence length to 20 and 10 words
improved the parsing accuracy to 80.1% and

87.6%. Little difference among the template
sets was found, although the use of tree-based
templates gave slightly better performance.
Although we expected the inclusion of tree
based templates to improve the performance of
the parser by a greater extent than observed, it is
significant that the learner was reasonably
successful with only word-order information.
The strongest syntactic dependencies in medical
language may be local and the addition of the
tree-oriented templates is not very significant.
However, when the tree information is available,
the learner does use it, as can be seen by the
number of rules using tree information in the
three sets shows (table 1). For the third template
set, 46% of the rules learned incorporated tree
information.

Base POS {POS of current token}
Trig. POS {POS to be found by trigger}
W/T Dis {# of tokens trigger is from base}
W Dir {1 = right, -1 = left, 0 = either }
T Dir {1 = par, -1 = child, 0 = either }
W/T Scp {1 = at, 2 = within, 3 = all}
Xf {1 = make child, 2 = make par}

Table 3. First 5 rules learned by template set 3

The rules generated are easily translated into

English and make good linguistic sense. The
first rule in Table 2 reads “If this is a singular
noun (Base POS = NN) and there is a
preposition (Trg POS = IN) within (W. scp = 2)
three tokens (W. dis = 3) to the left (W. dir =-1)
then make the preposition the parent of the
noun.” This is the type of rule we would expect
to see, as it begins forming prepositional
phrases attaching to prepositions on the left.
The third rule uses information in the
dependency tree, reading “If this is a simple past
verb and there is a singular noun that is the
grandparent, make that noun the child of the
verb.”

Template
Set

Rules
tested

Parser
Rules

Tree
Rules

Parse
acc.

Set 1 48K+ 424 0 76.5%

Set 2 93K+ 498 127 77.0%

Set 3 187K+ 541 249 77.0%

Test set Sentence
length

Total
Sents.

Avg.
Length

Parse
acc.

1 n <= 10 61 7.1 87.6%

2 n <= 20 127 11.4 80.1%

Full all n 200 17.9 77.0%

Base
POS

Trg.
POS

W
Dis

W
Dir

W
Scp

T
Dis

T
Dir

T
Scp

Xf

1 NN IN 3 -1 2 0 0 0 2

2 IN NN -1 1 2 0 0 0 2

3 VBD NN 0 0 0 2 1 1 1

4 JJ NN 2 1 2 0 0 0 2

5 VBD VBN 3 1 2 0 0 0 1

0.65

0.7

0.75

0.8

0 100 200 300 400 500 600 700 800 900

Training set size (sentences)

D
ep

en
d

en
cy

 a
cc

u
ra

cy
Template Set 1
Template Set 2
Template Set 3

Chart 1. Effect of training set size on dependency accuracy for three template sets

The greatest drawback to this approach is

the computing requirements. The consequence
of the complex template design used is a large
number of rules which need to be kept in
memory. The third template set generated over
187,000 rules which need to be stored in
memory. Of these, only 240 rules were kept in
the rule set. Because each rule needs to store a
list of pointers back to the sentences to which it
applied, the size of a rule grows with the size of
the training set. It will be crucial to incorporate
rule pruning in the future to allow larger training
sets and more complex templates.

Although the results shown here are for
training on a specific corpus of discharge
summaries, the learning algorithm itself is
domain independent. We foresee generating
parsers on a number of medical corpora,
including radiology reports, pathology reports
and progress notes. Therefore, we require a
flexible solution that would not demand
reengineering the parser for every new domain.
The learning algorithm described here could be
used on any general corpus where the sentences
can be given a dependency parse. We intend to
evaluate the algorithm on more general corpora
in the future.

Overall, the results are very encouraging.
Keeping in mind our goal of gathering head-
modifier pairs for machine learning, a 77%
accurate parse is approaching an acceptable
parse (Sekine, 1992). The results also show that
limiting the sentence length can improve the
accuracy of the parser. If our sole desire is the
generation of head-modifier pairs, using a large
number of shorter sentences may be equivalent
to using fewer longer ones. We also believe that
the parser may be improved through
lexicalization, but that remains future work.

The ability to generate a good parser from
such a small training set is important in the

medical domain. Previous work has shown that
different medical domains have to be treated as
separate languages for successful NLP
(Friedman, 1995). Therefore, it is likely that
any medical domain we wish to parse will
require its own training set for the parser. If
extensive training set preparation was required,
then we are simply trading one difficult task for
another: the task of manually creating and
maintaining a semantic lexicon with the task of
hand dependency-parsing large amounts of text.
Although the task of hand-parsing 1,000
sentences of discharge summaries is not trivial,
it is reasonable and manageable and does not
require extensive medical knowledge. The
shift-reduce parser described by (Hermjakob,
1997) also requires relatively few training
examples but requires semantic features that
may require medical knowledge to construct
and assign. Although we do not propose here a
specific application for a dependency grammar
in a medical domain, we believe it will be
valuable for future clustering, disambiguation
and indexing applications.

8 Conclusions

Natural language processors in the medical
domain will be more flexible and portable with
assisted lexicon design. The syntactic
dependencies in a dependency grammar may be
useful for the lexical acquisition necessary to
make this possible. We have investigated using
transformational-based learning as a technique
for learning a dependency grammar in a medical
corpus. To better learn dependency grammars
we used a template design which uses the
structure of the parse tree explicitly and
transformations that operated directly on the
trees. Training on a set of 830 sentences of
parsed medical discharge summaries gave a best

parser with 77% accuracy. The inclusion of tree
information in the template design slightly
improved the parser. The rules produced were
intuitive and understandable, and the limited
amount of training material will allow the
technique to be used on other medical domains
without extensive manual parsing. Further work
will test the utility of head-dependency
relationships for machine learning semantic
classes.

References

Brill, E. (1994). A report of recent progress in
transformation-based error-driven learning. In
Proceedings of the Twelfth National
Conference on Artificial Intelligence,
Princeton, NJ.

Campbell, D.A., Johnson, S.B. (2001).
Comparing Syntactic Complexity in Medical
and non-Medical Corpora. In Proc AMIA
Annu Fall Symp. 90-94.

Carroll, G., Charniak, E. (1992). Two
experiments on learning probabilistic
dependency grammars from corpora. In
Workshop Notes for Statistically-Based NLP
Techniques, AAAI. 1-13.

Collins, M. (1996.). A new statistical parser
based on bigram lexical dependencies. In
Proceedings of the 34th Annual Meeting of
ACL. 184-191.

Dorr, B. J., Jones, D. (2000). Acquisition of
Semantic Lexicons: Using Word Sense
Disambiguation to Improve Precision, in
Evelyn Viegas (Ed), Breadth and Depth of
Semantic Lexicons, Kluwer Academic
Publishers: Norwell, MA, 79-98.

Florian, R., Brill, E. (1998). Transformation
Based Parsing. Ph.D. Qualifier Project,
Computer Science Department, Johns Hopkins
University.

Friedman, C. (1997). Towards a comprehensive
medical language processing system: methods
and issues. In Proc AMIA Annu Fall Symp.
595-9.

Friedman C, et. al (1995). Architectural
requirements for a multipurpose natural
language processor in the clinical
environment. In Proc 19th Annu SCAMC.
347-51.

Hajic, J. and K. Ribarov (1997). Rule-Based
Dependencies. Workshop on Empirical
Learning of Natural Language Processing
Tasks, Prague, Czech Republic.

Harris, Z. (1991). A Theory of Language and
Information. Oxford University Press:
Oxford.

Hermjakob U. & Mooney R.J. (1997) Learning
Parse and Translation Decisions From
Examples With Rich Context, Proc. of ACL-
EACL Conf. 482-489.

Hripcsak, G., G. Kuperman, et al. (1998).
Extracting Findings from Narrative Reports:
Software Transferability and Sources of
Physician Disagreement. Methods Inf Med 37.
1-7.

Hudson, Richard. (1991). English Word
Grammar. Blackwell: Cambridge, Mass.

Kokkinakis D. (2001), Syntactic Parsing as a
Step for Automatically Augmenting Semantic
Lexicons, In Proceedings of the 39th ACL and
the 10th EACL, Toulouse, France. Student
Workshop. 13-18.

Lee, S. and K.-S. Choi (1999). A Reestimation
Algorithm for Probabilistic Dependency
Grammars. Natural Language Engineering
5(3). 251-270.

Li H. and Abe N.(1998). Word clustering and
disambiguation based on co-occurrence data.
In Proceedings of COLING - ACL'98. 749-
755

Paskin, M. (2001). Grammatical Bigrams. In T.
Dietterich, S. Becker, and Z. Gharahmani eds.,
Advances in Neural Information Processing
Systems 14. MIT Press: Cambridge, MA.

Pereira F., Tishby, N., Lee, L (1993).
Distributional clustering of English words. In
30th Annual Meeting of the ACL, 183-190.

Ramshaw, L. A., Marcus, M. P. (1994).
Exploring the statistical derivation of
transformational rule sequences for part-of-
speech tagging. In Proceedings of the
Balancing Act Workshop on Combining
Symbolic and Statistical Approaches to
Language, Association for Computational
Linguistics. 86-95.

Sager N. (1981). Natural Language Information
Processing: A Computer Grammar of English
and its Applications. Addison-Wesley:
Reading, Massachusetts.

Sekine, S. et. al (1992) Automatic Learning for
Semantic Collocation. In 3rd Conf. on Applied
Natural Language Processing :Trent - Italy.

Wilcox, A, Hripcsak G. (2000). Medical Text
Representations for Inductive Learning. Proc
AMIA Symp. 923-7.

