
A Flexible Framework for Developing
Mixed-Initiative Dialog Systems

Judith HOCHBERG, Nanda KAMBHATLA, Salim ROUKOS

IBM T.J. Watson Research Center
Yorktown Heights, NY 10598, USA

{judyhoch, nanda, roukos}@us.ibm.com

Abstract

We present a new framework for rapid
development of mixed-initiative dialog
systems. Using this framework, a developer
can author sophisticated dialog systems for
multiple channels of interaction by
specifying an interaction modality, a rich
task hierarchy and task parameters, and
domain-specific modules. The framework
includes a dialog history that tracks input,
output, and results. We present the
framework and preliminary results in two
application domains.

1 Introduction

Developing a mixed-initiative dialog system is a
complex task. The developer must model the
user’s goals, the “results” (domain objects)
retrieved, and the state of the dialog, and
generate the system response at each turn of the
dialog. In mixed-initiative systems, as opposed
to directed dialog systems, users can influence
the dialog flow, and are not restricted to
answering system questions in a prescribed
format (e.g. Walker 1990, Chu-Carroll 2000).

Compounding these challenges, dialog
applications have evolved from simple look-up
tasks to complex transactional systems like
telephony banking and stock trading (Zadrozny
et al. 1998), and air travel information systems.
These systems increasingly cater to multiple
channels of user interaction (telephone, PDA,
web, etc.), each with its own set of modalities.
To simplify the development of such systems,
researchers have created frameworks that
embody core dialog functionalities.

In MIT’s framework, a developer creates a
dialog system by specifying a dialog control
table comprising actions and their triggering
events. The developer has great freedom in

designing this table, but must specify basic
actions such as prompting for missing
information. As a result, these tables can
become quite complex – the travel system
control table contains over 200 ordered rules.
MIT has applied this framework to both weather
and travel (Zue et al. 2000, Seneff and Polifroni
2000).

In IBM’s form-based dialog manager, or
FDM (Papineni et al. 1998), a developer defines
a set of forms that correspond to separate tasks
in the application, such as finding a flight leg.
The forms have powerful built-in capabilities,
including mechanisms that trigger various types
of prompts, and allow the user to specify
inheritance and other relationships between
tasks. Just as in the MIT framework, domain-
specific modules perform database queries and
other backend processes; the forms call
additional developer-defined modules that affect
the dialog state and flow. FDM has supported
dialog systems for air travel (Papineni et al.
1999, Axelrod 2000) and financial services
(IBM 2001, IBM 2002). The University of
Colorado framework also has a form-based
architecture (Pellom et al. 2001), while CMU
and Bell Labs’ frameworks allow the
specification of deep task hierarchies (Wei and
Rudnicky 2000, Potamianos et al. 2000).

Our goal is to design a framework that is
both powerful, embodying much dialog
functionality, and flexible, accommodating a
variety of dialog domains, modalities, and styles.
Our new framework goes beyond FDM in
building more core functionality into its task
model, yet provides a variety of software tools,
such as API calls and overwritable functions, for
customizing tasks. The framework allows
developers to specify a wide range of
relationships among tasks, and provides a focus
model that respects these relationships. To
support the task framework we introduce a

 Philadelphia, July 2002, pp. 60-63. Association for Computational Linguistics.
 Proceedings of the Third SIGdial Workshop on Discourse and Dialogue,

dialog history component that remembers input,
output, and cumulative task results. Section 2 of
this paper describes the framework, and section
3 some applications. In section 4 we discuss
future plans and implications.

2 The HOT framework

Our framework’ s moniker is HOT, which stands
for its three components: dialog History, domain
Objects, and Task hierarchy. It is implemented
as a Java library. In this section, we describe the
HOT framework. We assume the existence of an
application specific natural language parser that
brackets and labels chunks of text corresponding
to domain specific attributes, and a natural
language generation module for generating
prompts from abstract specifications.

2.1 Task hierarchy

A task defines a unit of work for a dialog
system. The HOT framework enables the
specification of tasks that are organized as a
hierarchy (e.g. Fig. 1). The terminal tasks in the
hierarchy (UserID, Fund, and Shares) derive
canonical values of domain attributes (such as
fund symbol) from parsed portions of user input.
The RootTask specifies methods for managing
the dialog, e.g. for disambiguating among
different sub-tasks in case of ambiguous user
input. All other tasks perform scripted actions
using the output produced by other non-terminal
or terminal tasks: generate a user profile, a share
transaction, or a price quote.

The task hierarchy constitutes a plan for the
dialog. It remains to be seen whether it can also
be used for planning domains in which task
input can come either from a user or from an
external process such as an environmental
monitor, as in [Allen at al. 2001].

The framework allows developers to easily
specify five different relationships among tasks
in a hierarchy. Many of these will be
exemplified in Section 3.
1. Subtasking: UserID is a subtask of Login

because Login needs the user’ s ID to log the
user in.

2. Ordering: Login precedes all other tasks, but
Buy, Sell, and Price are unordered.

3. Cardinality: Login is executed only once per
session, and UserId, Fund, and Shares are
executed only once per parent task.
However, Buy, Sell, and Price can be
executed multiple times.

4. Inheritance: Buy and Sell can potentially
inherit a fund name from Price and vice
versa.

5. Subdialog: The user can carry out certain
subdialogs, such as a Price query within a
Buy task.

2.2 Focus model

At each turn of the dialog, we automatically
score the user’ s input to infer the task that the
user wants to work on. Only a non-terminal task
can receive focus. As in FDM, scoring is
primarily based on the number of matches
between attributes in the parsed user input,
different task attributes, and the last system
prompt. The developer can specify the
appropriate system behavior if the inferred user
focus conflicts with task relationships, e.g. if a
user wants to Buy but has not yet Logged in. In
the absence of such conflicts, the framework
triggers execution of the inferred task. If the
task completes without ending a turn, the focus
model returns focus to a previously started task
if possible, or else defaults to the developer’ s
preference for what to do next.

2.3 Task functionality

Within RootTask, a developer can specify the
modalities of interaction and the specific
backends used, create an initial task layout, and
set some dialog parameters. Developers must
specify how they want RootTask to respond to
various focus situations. For example, if no
tasks are eligible for focus, this may represent an
error condition in one application, but the
expected end of a dialog in another application.

For all other tasks, task functionality can be
divided into operations that happen before and
after the task calls its backend process

Root

UserID Fund
Name

Login

Number
of Shares

Buy PriceSell

Fund
Name

Number
of Shares

Fund
Name

Figure 1: A task hierarchy for a simple

mutual fund application.

(accessing a database, the Internet, or other
information channel) to create a result. Pre-
backend functionality involves assessing, and
possibly confirming with the user, the
parameters to be sent to the backend. Post-
backend functionality acts on different backend
outcomes: for example, informing the user of a
result, confirming a result, or requesting further
constraints. Because the framework already
defines these functionalites, the developer’ s role
is to define the backend and its result, and to
choose the pre-defined functionalities that apply.

As tasks execute, they post communicative
intentions – dialog acts (e.g., “Inform”,
“Confirm”) and the domain objects they concern
(e.g., flights) – to the dialog history. A separate
NLG module generates the text of the system
response based on these communicative
intentions and the specific modalities in use.

2.4 Dialog History

The dialog history provides developers with an
organized way to store system data regardless of
the application domain. We store the user input
(attribute-value pairs), the system response
(communicative intentions), and the cumulative
results for each dialog turn. The developer can
additionally store the user input at various stages
of processing. Results can be generic objects
(e.g., a String representing a fund name) or
complex, domain-specific objects. The results
are tagged with a core set of status indicators
that developers can add to. The dialog history
also serves as a task stack, since the current
result from each task indicates the task’ s status.

The dialog history is reminiscent of BBN’ s
state manager (Stallard 2000), but the latter also
includes many dialog management
responsibilities that we reserve to tasks.

3 Applications

We are currently implementing the HOT
framework described above. In this section, we
describe two sample applications built using this
framework as implemented so far.

3.1 Mutual Funds

We built a mutual funds application, using the
framework to create a task hierarchy and to add
task relationships such as ordering and
inheritance, as described in section 2.1. We
customized the tasks by writing backend

methods and specifying confirmation strategies,
the domain attributes of interest to each task, and
domain-specific result objects (UserProfile and
ShareTransaction). Figure 2 shows an actual
dialog with this application.

The dialog flows through a combination of
developer specifications and the HOT
framework, with the framework doing most of
the work. In turn 1, only Login is specified as
active, so the framework generates an initial
prompt for it. In turn 2, the framework scores
the input and executes both UserID and Signin.
It informs the user of Login’ s success (as
specified), then issues a general prompt because
Login enabled all other tasks when it finished
(as specified). In turn 3, the framework issues
an error message because of the conflict between
Login’ s cardinality of 1 and the user’ s input. In
turn 4, the fund name lookup finds an
ambiguous result; the framework looks to the
developer to specify what type of prompt to
issue in response. In turn 5, the framework
correctly interprets the user’ s selection, and
requests fund name confirmation (as specified).
In turn 6, Sell runs its Number of Shares
subtask. In turn 7, the user performs an
authorized Price subdialog from within Sell.
Price inherits the fund name from Sell, executes
the task, and returns focus to Sell. In turn 8, the
framework requests confirmation prior to

 User System
1 Welcome to HOT-DM.

User ID?
2 1677 Greetings Judy Hochberg!

How may I help you?
3 I want to sign

in again.
Sorry, you can only sign in once.
How may I help you?

4 I want to sell
Watson fund

Watson Yorktown fund or
Watson Hawthorne fund?

5 the first one Is Watson Yorktown the fund
you want to sell?

6 yes How many shares?
7 can you tell

me what the
price is

The price of Watson Yorktown
is $100.2 per share
How many shares?

8 I want to sell
30 shares

Do you want to sell 30 shares of
Watson Yorktown fund?

9 yes i do Transaction #1: sold 30 shares of
Watson Yorktown fund at
$100.2 per share on 2/18/2002
How may I help you?

Figure 2: A dialog with a mutual funds application
built using the HOT framework.

executing the sale (as specified). In turn 9, note
that the Sell backend accesses the dialog history
to determine the correct transaction number.

3.2 Travel

We have developed a travel information dialog
system using the HOT framework. For this
application, we reused several components of
the IBM DARPA Communicator system. The
system accepts either standard text input or text
from instant messaging from a mobile platform.
Figure 3 shows a screen shot of a dialog on a
“ Palm” (PDA) interface to the travel system.

4 Discussion

We have presented a new framework for
developing mixed-initiative dialog systems. This
framework, dubbed HOT, enables developers to
rapidly develop dialog systems by specifying
tasks, their relationships, and relevant domain
objects. We are currently implementing this
framework as a toolkit and have developed two
sample applications in two different modalities.

The new framework departs from other
frameworks in the range of functionality that it
covers. Its task model triggers not only
informational prompts and confirmations, but
also customizable responses to task problems of
different sorts, such as underspecification. The
task relationships modeled are likewise quite

rich, including subdialog and inheritance.
Finally, the dialog history provides a generic
specification of output semantics, a way to track
task status, and uniform access to dialog results
of varying complexity. Our future goal is
continue to build functionality, especially in
NLG, without sacrificing flexibility.

References

J. Allen, G Ferguson, and Amanda Stent (2001) An
architecture for more realistic conversational
systems. Proc. Intelligent User Interfaces.

S. Axelrod, (2000) Natural Language Generation in
the IBM Flight Information System. Proc. ANLP-
NAACL Workshop on Conversational Systems.

J. Chu-Carroll (2000) MIMIC: An Adaptive Mixed
Initiative Spoken Dialogue System for Information
Queries. Proc ANLP.

IBM (2001) http://www-3.ibm.com/software/speech/
news/20010609trp.html

IBM (2002) http://www-3.ibm.com/software/speech/
enterprise/dcenter/demo_2.html

K. Papineni, S. Roukos, and T. Ward (1999) Free-
Flow Dialog Management Using Forms. Proc.
Eurospeech, pp. 1411-1414.

B. Pellom, W. Ward, J. Hansen, K. Hacioglu, J.
Zhang, X. Yu, and S. Pradhan (2001) University of
Colorado Dialog Systems for Travel and
Navigation. Proc. HLT.

A. Potamianos, E. Ammicht, and H-K. Kuo (2000)
Dialogue Management in the Bell Labs
Communicator System. Proc. ICSLP.

S. Seneff and J. Polifroni (2000) Dialogue
Management in the Mercury Flight Reservation
System. Proc. Satellite Dialogue Workshop,
ANLP-NAACL.

D. Stallard (2000) Talk’N’Travel: A Conversational
System for Air Travel Planning. Proc ANLP.

M. Walker (1990) Mixed Initiative in Dialogue: An
Investigation into Discourse Segmentation. Proc.
ACL90, pp. 70-78.

X. Wei and A. Rudnicky (2000) Task-based dialog
management using an agenda. Proc
ANLP/NAACL Workshop on Conversational
Systems, pp. 42-47.

V. Zue, S. Seneff, J. Glass, J. Polifroni, C. Pao, T.
Hazen, and L. Hetherington (2000) JUPITER: A
Telephone-Based conversational Interface for
Weather Information. IEEE Trans. Speech and
Audio Proc., 20/Y, pp. 100-112.

W. Zadrozny, C. Wolf, N. Kambhatla, and Y. Ye,
1998. Conversation Machines for Transaction
Processing. PROC AAAI/IAAI, pp. 1160-1166. Figure 3: A dialog in a “ Palm” interface to

an air travel dialog system.

