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its behavior on a whimsical toy example. By experimenting

with different i_nputs, one can help stude_nts deve_lop inFuitic_ms Figure 1: User has double-clicked on cell D29.
about HMMs in particular and Expectation Maximization in

general. The spreadsheet and a coordinated follow-up assign-

ment are available. drawings. This makes them effective for both class-

’ room presentation and individual study.
1 Why Teach from a Spreadsheet: This paper describes a lesson plan that was cen-

Algorithm animations are a wonderful teaching tooltered around a live spreadsheet, as well as a subse-
They are concrete, visual, playful, sometimes intefduent programming assignment in which the spread-
active, and remain available to students after the legheet served as a debugging aid. The materials are
ture ends. Unfortunately, they have mainly been limavailable for use by others.

ited to algorithms that manipulate easy-to-draw data Students were especially engaged in class, appar-
structures. ently for the following reasons:

Numerical algorithms can be “animated” by R
spreadsheets. Although current spreadsheets do not
provide video, they can show “all at once” how a
computation unfolds over time, displaying interme-® Live interactive demo. The students were eager
diate results in successive rows of a table and on 0 guess what the algorithm would do on partic-
graphs. Like the best algorithm animations, they ularinputs and test their guesses.
let the user manipulate the input data to see whaé A whimsical toy example.
changes. The user can instantly and graphically seg

the effect on the whole course of the computation.
Spreadsheets are also transparent. In Figure 1, tfe NOvel use of spreadsheets. Several students who

user has double-clicked on a cell to reveal its un- thought of them as mere bookkeeping tools were
derlying formula. The other cells that it depends on  @wed by this, with one calling it *the coolest-ass
are automatically highlighted, with colors keyed to  SPreadsheet ever.”

the references in the formula. There is no program
ming language to learn: spreadsheet programs are
aimed at the mass market, with an intuitive desigit is possible to teach from a live spreadsheet by us-
and plenty of online help, and today’s undergrading an RGB projector. The spreadsheet’'s zoom fea-
uates already understand their basic operation. Aare can compensate for small type, although under-
adventurous student can even experiment with modraduate eyes prove sharp enough that it may be un-
ifying the formulas, or can instrument the spreadnecessary. (Invite the students to sit near the front.)
sheet with additional graphs. Of course, interesting spreadsheets are much too

Finally, modern spreadsheet programs such &sg to fit on the screen, even with a “View / Full

Microsoft Excel support visually attractive layoutsScreen” command. But scrolling is easy to follow
with integrated comments, color, fonts, shading, ani it is not too fast and if the class has previously

Striking results (“It learned it!") that could be im-
mediately apprehended from the graphs.

The departure from the usual class routine.

How to Teach from a Spreadsheet?



been given a tour of the overall spreadsheet layoof-speech tagging.

(by scrolling and/or zooming out). Split-screen fea- Even with such preparation, however, the
tures such as hide rows/columns, split panes, aridrward-backward algorithm can be difficult for be-
freeze panes can be moderately helpful; so can cominning students to apprehend. It requires them to
mands to jump around the spreadsheet, or switch bigsink about all of the above ideas at once, in com-
tween two windows that display different areas. Ibination, and to relate them to the nitty-gritty of the
is a good idea tanemorize key sequences for suchlgorithm, namely

commandgather than struggle with mouse menus

or dialog boxes during class. ¢ the two-pass computation of mysteriougndg

probabilities

3 The Subject Matter ¢ the conversion of these prior path probabilities to

o _ posterior expectations of transition and emission
Among topics in natural language processing, counts

the forward-backward or Baum-Welch algorithm
(Baum, 1972) is particularly difficult to teach.Just as important, students must develop an under-
The algorithm estimates the parameters of &tanding of the algorithm’s qualitative properties,
Hidden Markov Model (HMM) by Expectation- which it shares with other EM algorithms:
Maximization (EM), using dynamic programming
to carry out the expectation steps efficiently.

HMMs have long been central in speech recog-
nition (Rabiner, 1989). Their application to part- ® alternates expectation and maximization steps

of-speech tagging (Church, 1988; DeRose, 1988} maximizesp(observed training data) (i.e., total

kicked off the era of statistical NLP, and they have probability of all hidden paths that generate those
found additional NLP applications to phrase chunk- data)

ing, text segmentation, word-sense disambiguation‘
and information extraction.

The algorithm is also important to teach for ped- _
agogical reasons, as the entry point to a family of* cannot escape zeroes or symmetries, so they
EM algorithms for unsupervised parameter estima- Should be avoided in initial conditions
tion. Indeed, it is an instructive special case of (1)e uses the states as it sees fit, ignoring the sugges-
the inside-outside algorithm for estimation of prob- tive names that we may give them (e.g., part of
abilistic context-free grammars; (2) belief propa- speech tags)
gation for training singly-connected Bayesian net-
works and junction trees (Pearl, 1988; Lauritzen,
1995); (3) algorithms for learning alignment mod-
els such as weighted edit distance; (4) general finite- The spreadsheet lesson was deployed in two 50-
state parameter estimation (Eisner, 2002). minute lectures at Johns Hopkins University, in an

Before studying the algorithm, students shouléhtroductory NLP course aimed at upper-level un-
first have worked with some if not all of the keydergraduates and first-year graduate students. A sin-
ideas in simpler settings. Markov models can bgle lecture might have sufficed for a less interactive
introduced througm-gram models or probabilistic presentation.
finite-state automata. EM can be introduced through The lesson appeared in week 10 of 13, by which
simpler tasks such as soft clustering. Global optitime the students had already been exposed to most
mization through dynamic programming can be inef the preparatory topics mentioned above, includ-
troduced in other contexts such as probabilistic CKYng Viterbi decoding of a part-of-speech trigram tag-
parsing or edit distance. Finally, the students shoulging model. However, the present lesson was their
understandsupervisedraining and Viterbi decod- first exposure to EM or indeed to any kind of unsu-
ing of HMMs, for example in the context of part- pervised learning.

e performs unsupervised learning (what is this and
why is it possible?)

finds only a local maximum, so is sensitive to
initial conditions

may overfit the training data unless smoothing is
used
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11 p(l.) 07 o1 If today is cold (C) or You also guess (still Figure 2) that if today is cold,
112 p@.) 02 02 hot (H). how many tomorrow is probably cold, and if today is hot, to-
13 p@3l...) 01 0.7 cones did | prob. eat? . .
|14 p©L) 08 01 05 If today Is cold of hot, morrow is probably hot. @: How does this setup
115  pHIl...) 0.1 08 05 what will tomorrow resemble part-of-speech taggiﬁg?
16 p(STOP|...) 041 0.1 0 probably be?

We also have some boundary conditions. | only
kept this diary for a while. If | was more likely to
start or stop the diary on a hot day, then that is use-
Weather States that Best Explain Ice Cream Conn% ful information and it should go in the tableQ(Is

—=—p(H)

there an analogy in part-of-speech taggfgFor
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Figure 2: Initial guesses of parameters.

/\ /\ simplicity, let's guess that | was equally likely to
f \/ \ start or stop on a hot or cold day. So the first day |
started writing was equally likely (50%) to be hot or

/ cold, and any given day had the same chance (10%)

of being the last recorded day, e.g., because on any

T —'+'\-‘“\ /')“‘- day | wrote (regardless of temperature), | had a 10%

o \_“hhj _ chance of losing my diary.
T oo T T 5 The Trellis and o3 Decoding
Figure 3: Diary data and reconstructed weather. [The notatiorp; (H) in this paper stands for the prob-

ability of Hon dayi, given all the observed ice cream
data. On the spreadsheet itself the subsarijst
clear from context and is dropped; thus in Figure 3,
[While the spreadsheet could be used in many ways(H) denotes the conditional probabiligy(H), not a

the next several sections offer one detailed lessqgiior. The spreadsheet likewise omits subscripts on
plan. Questions for the class are included; subses(H) andg;(H).]

guent points often depend on the answers, which are

led here in footnotes. S ‘ s of th Scroll down the spreadsheet and look at the lower
concealed nere In Tootnotes. Some fragments ot tig . Figure 3, which shows a weather reconstruc-
full spreadsheet are shown in the figures.]

tion under the above assumptions. It estimates the
The situation: You are climatologists in the yearelative hot and cold probabilities for each day. Ap-
2799, studying the history of global warming. Youparently, the summer was mostly hot with a cold
can't find any records of Baltimore weather, but yowspell in the middle; we are unsure about the weather
do find my diary, in which | assiduously recordedon a few transitional days.
how much ice cream | ate each day (see Figure 3). We will now see how the reconstruction was ac-
What can you figure out from this about the weathecomplished. Look at the trellis diagram on the
that summer? spreadsheet (Figure 4). Consistent with visual intu-
Let's simplify and suppose there are only twaition, arcs (lines) represent days and states (points)
kinds of days:C (cold) andH (hot). And let's sup- represent the intervening midnights. A cold day is
pose you have guessed some probabilities as showapresented by an arc thandsin a C state? (So
on the spreadsheet (Figure 2). mbigram tag generation model with t&dsndH.
Thus, you guess that on cold days, | usually ateach tag independently generates a word (1, 2, or 3); the word
only 1 ice cream cone: my probabilities of 1, 2,°h‘)zj/i?j:f°”ditri°r;]ed I((’j”ktr*l‘ev\t/"it%-t ences tend to start wih
or 3 cones were 70%, 20% and 10%. That addcﬁeterr'nine{;‘sg(‘?ﬂidser?éiJ with cp))eriog}s.six tZg;?:g (tahat gn?]lswith a
up to 100%. On hot days, the probabilities wereleterminer should be penalized becap&stop | Det ) ~ 0.

reversed—I usually ate 3 ice creams. So other thin%_s $These conventions are a compromise between a traditional
L if K | ate 3 ice creams. the odds ar iew of HMMs and a finite-state view used elsewhere in the
equal, It you know ! Eourse. (The two views correspond to Moore vs. Mealy ma-

7 to 1 that it was a hot day, but if | ate 2 ice creamsshines.) In the traditional view, states would represent days and

4 The Ice Cream Climatology Data



The dynamic programming computation of .. (B is similar but works back from Stop.) J K L M N (o} P Q R S T u
R . . |26 p(=>C) p(=H) p(=C.1) p(=C,2) p(=C.3) p(—=H,1) p(=H.2) p(=H,3) p(C—-C) p(H-C) p(C—H) p(H—H)
Day 1: 2 cones Day 2: 3 cones Day 3: 3 cones 27 0129 0871 0 0129 0 0 0871 0 HNAOBNA  HNA#NA
0=0.10.08+0.10.01  =0.008*0.08+0.063*0.01 2% 0023 0977 0 0 0028 0 0 0977 0021 0003 0109 0868
a=0.1 =0.009 =0.00135 129 0011 0983 0 0 0.011 0 0 0989 0006 0005 0.017 0972
2O @ PCIOPGIO) © PCICIBEO) - ©Q 60| TOTAL{|14.679 18321 9.931 3212 1537 1069 7788 9463 12855 1695 1599 1585
qumg\?d\ - o 0.8"0.1=0.08 _ __ 08'0.1=0.08 <
Pl 020,
) T D, oSS T, s
TP 250 7Y 0N 25 TS oA . . . .
~~—g’é§{g,,)»p(2/w 0057 Fn " 0,057 a0 ) Figure 5: Computing expected counts and their totals.
50251~ p(HIHYP(EIH) = ~p(HHYPEIH) N N
- @ 0.8'0.7=0.56 ® 0.8'0.7=0.56 ~ @ i
0=0.1 0=0.1"0.07+0.1'0.56  =0.009*0.07+0.0630.56
=0.063 =0.03591

Stop in which day 3 is hot? It is shown in col-
Figure 4: Then-3 trellis. umn H of Figure 1.Q: Why is column | of Figure 1
constant at 9.13e-19 across roWs®: What does
that column tell us about ice cream or weathér?

Now the class may be able to see how to complete
the reconstruction:

each arc effectively inherits th€ or H label of its
terminal state.)

Q: According to the trellis, what is tha priori
probability that the first three days of summer are j,(qay 3 hot | 2,3,3,...) = 2lday 3 hot.2.3.3,...)

H,H,C and | eat 2,3,3 cones respectively (as | did)? P233,-)
. _ az(H)-83(H) _ 9.0€-19
Q: Of the 8 ways to account for the 2,3,3 cones, = &;C53;C tas(HBs(H) ~ 9.8€21+9.06-19
which is most probabl€? Q: Why do all 8 paths
have low probabilities? which is 0.989, as shown in cell K29 of Figure 5.

Recall that the Viterbi algorithm computes, attigure 3 simply graphs column K.
each state of the trellis, themaximumprobability
of any path fromStart . Similarly, definex at a
state to be theotal probability ofall paths to that Ngrice that the lower line in Figure 3 has the same
state fromStart . Q: How would you compute it genera| shape as the upper line (the original data),
by dynamic programming?Q: Symmetrically, how 1t is smoother. For example, some 2-ice-cream
would you computes at a state, which is defined to days were tagged as probably cold and some as
be the total probability of all paths ®top ? probably hot.Q: Why?2 Q: Since the first day has

Thea and/3 values are computed on the spreads jce creams and doesn't follow a hot day, why was
sheet (Figure 1).Q: Are there any patterns in the j; {a3gged as ho#$ Q: Why was day 11, which has
values? only 1 ice cream, tagged as h&t?

Now for some important questions: Whatis e can experiment with the spreadsheet (using
the total probability of all paths fronStart 10 the Undo command after each experime@)What

would bear emission probabilities suchy&8 | H). In Figure 4, do you predict will happen to Figure 3 if we weaken
as in finite-state machines, this role is played by the arcs (Whichgi_ o

also carry transition probabilities sucha@ | ©)); this allows A: By the distributive lawgs (H) - 83(H).

o and 3 to be described more simply as sums of path probabili- '°A: It is the total probability of all paths that go through
ties. But we persist in a traditional labeling of the stateslas  ther CorHon a given day. But all paths do that, so this is simply

6 Understanding the Reconstruction

C so that thex3 notation can refer to them. the total probability of all paths! The choice of day doesn’t mat-
4A: Consult the pattStart — H — H — C, which has ter.
probability (0.5-0.2)-(0.8-0.7)-(0.1-0.1) = 0.1-0.56-0.01 = 1A Itis the probability of my actual ice cream consumption:

0.00056. Note that the trellis is specialized to these data. ~ p(2,3,3,...) = > . p(@,2,3,3,...) = 9.13e-19, whered
°A: HHH gives probability0.1 - 0.56 - 0.56 = 0.03136.  ranges over al®® possible weather state sequences such as
(Starting withC would be as cheap as starting wihbut then  HH,C,.... Each summand is the probability of a trellis path.
getting fromCto Hwould be expensive.) 127 Figure 2 assumed a kind of “weather inertia” in which
®A: It wasa priori unlikely that I'd eat exactly this sequence a hot day tends to be followed by another hot day, and likewise
of ice creams. A priori there were many more than 8 possiblefor cold days.
paths, but this trellis only shows the paths generating the actual *Because an apparently hot day follows it. (See footnote 5.)
data 2,3,3.) We’'ll be interested in thelative probabilities of It is the 3 factors that consider this information from the future,

these 8 paths. and makex; (H) - 51 (H) > a1(C) - 51(C).
"A: In terms of« at the predecessor states: just replace A: Switching from hot to cold and backiCH has proba-
“max” with “+” in the Viterbi algorithm. bility 0.01, whereas staying hotHH has probability 0.64. So

8A: o probabilities decrease going down the column, And although the fact that | ate only one ice cream on day 11 favors
probabilities decrease going up, as they become responsible foby 7 to 1, the inferred “fact” that days 10 and 12 are hot favors
generating more and more ice cream data. Hby 64 to 1.
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Figure 6: With (a) no inertia, and (b) anti-inertia.

or remove the “weather inertia” in Figure 2?Q:

What happens if we try “anti-inertia®®

So now that we “know” which days are hot and
which days are cold, we should really update our
probabilities to 0.2 and 0.4, not 0.2 and 0.2. After
all, our initial probabilities were just guesses.

Q: Where does the learning come from—isn’t this
circular? Since our reconstruction was based on the
guessed probabilities 0.2 and 0.2, why didn't the re-
construction perfectly reflect those guesd@s?

Scrolling rightward on the spreadsheet, we find
a table giving the updated probabilities (Figure 7).
This table feeds into a second copy of the forward-
backward calculation and graphQ: The second
graph ofp;(H) (not shown here) closely resembles
the first; why is it different on days 11 and 2¢?

The updated probability table was computed by
the spreadshee@: When it calculated how often |

cisive (consider day 11), it is influentialQ: What

it counted day 27 as a hot day or a cold d&y?

do you predict will happen if the distribution of ice
creams is the same on hot and cold day€» What
if we alsochangep(H | Start ) from 0.5 to 038

8 Reestimating Transition Probabilities

Notice that Figure 7 also updated the transition prob-
abilities. This involved counting the 4 kinds of days
distinguished by Figure & e.g., what fraction oH

We originally assumed (Figure 2) that | had a 20% 1°a: The reconstruction of the weather underlying the ob-
chance of eating 2 cones on either a hot or a cokgrved data was @eompromisebetween the guessed probabili-

: : P : ties (Figure 2) and the demands of the actual data. The model
day. But if our reconstruction is right (Figure 3), Iin Figure 2 disagreed with the data: it would not have predicted

actuallyate 2 cones on 20% of cold days but 40+%nat 2-cone days actually accounted for more than 20% of all

7 Reestimating Emission Probabilities

of hot days.

'°A: Changingp(C | C) = p(H | C) = p(C | H) = p(H |
H) = 0.45 cancels the smoothing effect (Figure 6a). The lowehas little effect: their temperature is mainly reconstructed from

line now tracks the upper line exactly.

18A: Settingp(C | H) = p(H| C) = 0.8 andp(C | C) =
p(H| H) = 0.1, rather than vice-versa, yields Figure 6b.
YA: The ice cream data now gives us no information aboug¢ream days.

the weather, sp;(H) = p;(C) = 0.5 on every dayi.

days, or that they were disproportionately likely to fall between
3-cone days.
20A: These days fall between hot and cold days, so smoothing

the number of ice creams. 1 ice cream is now better evidence of
a cold day, and 2 ice creams of a hot day. Interestingly, days 11
and 14 can now conspire to “cool down” the intervening 3-ice-

2IA: Half of each, sincg»7(H) ~ 0.5! The actual compu-

18A: pi(H) = 0, but p;(H) increases toward an asymptotetation is performed in Figure 5 and should be discussed at this
of 0.5 (the “limit distribution”). The weather is more likely to point.

switchto hot than to cold if it was more likely cold to begin

with; sop; (H) increases if itis< 0.5.

ZNotice howp(H — C) andp(C — H) spike when the

weather changes, on day 14 agitherday 27 or 28.
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Figure 8: Second-order weather reconstruction.

w

days were followed byH? Again, fractional counts "
were used to handle uncertainty. e e m @ r 0w ko omm RN BB B

Q: Does Figure 3 (first-order reconstruction)? lterations
contain enough mformatl(_m to construct Figure %igure 9: An initial poor reconstruction that will be improved
(second-order reconstructioR§? by reestimation.

Continuing with the probabilities from the end of
footnote 23, suppose we incregggd | Start ) to
0.7.Q: What will happen to the first-order grapif?
Q: What if we switch from anti-inertia back to iner-

tia (Figure 9)%°

correct answer (Figure 11)!

Thus, starting from an uninformed probability ta-
ble, the spreadsheet learned sensible probabilities
(Figure 11) that enabled it to reconstruct the weather.

@ I?}thls last case, whar: do yc;)u E,rl_e%ggw'” hap-rpe 3.p graph shows how the reconstruction im-
pen when we reestimate the probabilities? proved over time.

This reestimation (Figure 10) slightly improved' 1,4 only remaining detail is how the transition

the reconstruction. [Defer discussion of what *im-, o hapijities in Figure 8 were computed. Recall that

proved” means: the.class_ still assumes that good rey get Figure 3, we asked what fraction of paths
constructions look like Figure 3.JQ: Now what? o ssaq through each state. This time we must ask
A: Perhaps we should do it again. And again, ang fraction of paths traversed each ai@: How
again. .. Scrolling rightward past 10 successive reegs compute this?) Just as there were two possible
timations, we see that this arrives at the intuitivel;gtates each day, there are four possible arcs each day.

2A: No. A dramatic way to see this is to make the dis-and the graph reflects their relative probabilities.
tribution of ice cream distribution the same on hot and cold

days. This makes the first-order graph constantat 0.5 asin fod Reestimation Experiments
note 17. But we can still get a range of behaviors in the second-

order graph; e.g., if we switch from inertia to anti-inertia as imwe can check whether the algorithm still learns from

footnote 16, then we switch from thinking the weather is un- . .
known but constant to thinking it is unknown but oscillating.  Other initial guesses. The following examples appear

24p: p;(H) alternates and converges to 0.5 from both sides. on the spreadsheet and can be copied over the table
#°A: pi(H) converges to 0.5 from above (cf. footnote 18), asf initial probabilities. (Except for the pathologi-
shownin Figure 9. lly symmetric third they all learn the sam
BA: The first-order graph suggests that the early days grally symmetric case, they all lea € same
summer were slightly more likely to be hot than cold. Sincestructure.)
we ate more ice cream on those days, the reestimated probabili-
ties (unlike the initial ones) slightly favor eating more ice creaml. No weather inertia, but more ice cream on hot
on hot days. So the new reconstruction based on these proba- initi i -
bilities has a very shallow “U” shape (bottom of Figure 10), indaL'The model initially behaves as in foot
which the low-ice-cream middle of the summer is slightly less 2’A: The total probability of all paths traversing — r is
likely to be hot. a(q) xp(qg — r) = B(r).
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Figure 10: The effect of reestimation on Figure 9.

note 15, but over time it learns that weather doe
have inertia.

2. Inertia, but only a very slight preference for more
ice cream on hot days. The(H) graph is ini-
tially almost as flat as in footnote 17. But over
several passes the model learns that | eat a |
more ice cream on hot days.

3. A completely symmetric initial state: no inertia,
and no preference at all for more ice cream on hc
days. Q: What do you expect to happen undel
reestimation?®

10 Iterations
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0-10 lterations

4. Like the previous case, but break the symmetryigure 11: Nine more passes of forward-backward reestimation
by giving cold days a slight preference to eafn Figures 9-10. Note that the final graph is even smoother than

more ice cream (Figure 12). This initial state is
almostperfectly symmetricQ: Why doesn’t this

Figure 3.

case appear to learn the same structure as the pre-

vious ones?® pl.IC)  pl.|H)  pl.|START)
1.0 0.3 0.4

The final case does not converge to quite the san EEQ: g 03 03
result as the othersC and H are reversed. (It is 3l 0.4 0.3

28A: Nothing changes, since the situation is too symmetrid
As HandC behave identically, there is nothing to differentiate RIS 045 0.45 0.5
them and allow them to specialize. p(Hl..} 0.45 0.45 0.5

2A: Actually it does; it merely requires more iterations to|p(=TOP[...1 0.1 0.1 0

converge. (The spreadsheet is only wide enough to hold 10 iter-
ations; to run for 10 more, just copy the final probabilities back
over the initial ones. Repeat as necessary.) It learns both inerti
and a preference for more ice cream on cold days.

gigure 12: Breaking symmetry toward the opposite solution.



Every lteration of Forward-Backward Is Guaranteed to forward-backward reestimation converges to a local
Increase P{Observations) . . A .
maximum of likelihood. We have already discov-

g d: T ered two symmetric local maxima, both with per-
S 44 plexity of 2.827 per day: the model might u€go

* 35 1 represent cold and to represent hot, or vice versa.
F.. 0 ] Q: How much better is 2.827 than a model with no
5 2 H - temporal structure’?

=T H Remember that maximizing the likelihood of the
é 05 M || training data can lead to overfittin@: Do you see
B any evidence of this in the final probability tabfé?

o1 2 3 4 5 6 7 8 9 10

lterations of Forward-Backward

Q: Is there a remedy?

Jd1 A Trick Ending

Figure 13: If T is the sequence of 34 training observation
(33 days plusStop ), thenp(T') increases rapidly during rees- . . .
timation. To compress the range of the graph, we don't ploYVe get very different results if we slightly mod-

p(T) but rather perplexity per observatiea 1/ %/p(T) = ify Figure 12 by puttingp(1 | H) = 0.3 with
2~ (os2 p(T)/34, p(2 | H) = 0.4. The structure of the solution is

nowHthat is used for the low-ice-cream midsummevery different (Figure 14). In fact, the final param-
days.) Should you care about this difference? A8ters now show anti-inertia, giving a reconstruction
climatologists, you might very well be upset that thesimilar to Figure 6bQ: What went wrong®
spreadsheet reversed cold and hot days. But $hce In the two previous local maxima meant “low
andH are ultimately just arbitrary labels, then perice-cream day” or “high ice-cream dayQ: Accord-
haps the outcome is equally good in some sensi@g to Figure 14, what dod$mean here? Q: What
What does itmeanfor the outcome of this unsuper- does the low value gf(H | H) mean?°
vised learning procedure to be “good”? The dataset SO we see that there are actually two kinds of
is just the ice cream diary, which makes no referencgructure coexisting in this dataset: days with a lot
to weather. Without knowing the true weather, howlittle) ice cream tend to repeat, and days with 2 ice
can we tell whether we did a good job learning it? creams tend not to repeat. The first kind of structure
did a better job of lowering the perplexity, but both

10 Local Maximization of Likelihood 31A: A model with no temporal structure is a unigram model.

. ; : A good guess is that it will have perplexity 3, since it will be
The answer: A QOOd model IS_One that predlcts thgompletely undecided between the 3 kinds of observations. (It
dataset as accurately as possible. The dataset acitihappens that they were equally frequent in the dataset.) How-
ally has temporal structure, since | tended to havver if we prevent the learning of temporal structure (by setting

| iods of hiah dl . the initial conditions so that the model is always in stater is
ong perioas or high and low Ice cream COnsumpé\lways equally likely to be in stat&dandH), we find that the

tion. That structure is what the algorithm discov-perplexity is 3.314, reflecting tHeur-way unigram distribution
ered, regardless of whether weather was the cauggl) = 7(2) = p(3) = 11/34, p(Stop )=1/34.

. . . A: p(H | Start ) — 1 because we become increasingly
The stateCor Hdistinguishes between the two kmdssure that the training diary started on a hot day. But this single

of periods and tends to persist over time. training observation, no matter how justifiably certain we are of

So did this learned model predict the dataset well® Might not generalize taextsummer's diary. -
A: Smoothing the fractional counts. Note: If a prior is used

It Wa_s not always sure abOUt_the_ state sequendg, smoothing, the algorithm is guaranteed to locally maximize
but Figure 13 shows that the likelihood of the obthe posterior (in place of the likelihood).

Served dataset (Summed over a” poss|b|e state Se§4A This is a third local maximum of likelihood, unrelated
to the others, with worse perplexity (3.059). Getting stuck in

quences) increased on every iteratioQ: How is poor local maxima is an occupational hazard.

this found?°) 35A: Husually emits 2 ice creams, where@sever does. So
That behavior is actually guaranteed: repeatefdstands fora2-ice-cream day. .

- A: That 2 ice creams are rarely followed by 2 ice creams.
%1t is the total probability of paths that explain the data, i.e.Looking at the dataset, this is true. So even this local maximum

all paths in Figure 4, as given by column | of Figure 1; seesuccessfully discovered some structure: it discovered (to my

footnote 10. surprise) that when | make up data, | tend not to repeat 2’s!



HM | HO | HP | HQ
10 ol G pl.H)  pl..|START)
11 pi1l.) 0417 0.222
12 pi2l.) 1.1e07 0778
13 i3,y 0.583 4709
14| p(C].) 0.463 0.717 0
15| pHl..) 0537 0.212 1.0
16 |p(STOPL..7 0O 0.071 0
Weather States that Best Explain Ice Cream Consumption

[X]

=
2

65 Iterations

[AAN J ] AN/
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Figure 14: A suboptimal local maximum.

Furthermore, students could check their ice cream
output against the spreadsheet, and track down basic
bugs by comparing their intermediate results to the
spreadsheet’s. They reported this to be very useful.
Presumably it helps learning when students actually
find their bugs before handing in the assignment, and
when they are able to isolate their misconceptions
on their own. It also made office hours and grading
much easier for the teaching assistant.

13 Availability

The spreadsheet (in Microsoft Excel) and assign-
ment are available ahttp://www.cs.jhu.
edu/"jason/papers/#tnlp02

Also available is a second version of the spread-
sheet, which uses the Viterbi approximation for de-
coding and reestimation. The Viterbi algorithm is
implemented in an unconventional way so that the
two spreadsheets are almost identical; there is no
need to follow backpointers. The probability of the

are useful.Q: How could we get our model to dis- P€st path through statéon day 3 isus(H) - v3(H),
coverboth kinds of structure (thereby lowering the Whereu andv are computed like: and 5 but maxi-
perplexity further)®’

Q: We have now seen three locally optimal mo

mizing rather than summing path probabilities. The

4 Viterbi approximation treatgs(H) as 1 or O accord-

els in which theH state was used for 3 different N9 to whetherus(H) - v3(H) equalsmax(y3(C) -

things—even though we namedHfor “Hot.” What
does this mean for the application of this algorithm

to part-of-speech taggingéf?

12 Follow-Up Assignment

v3(C), u3(H) - v3(H)).
Have fun! Comments are most welcome.
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