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Abstract

This paper offers a detailed lesson plan on the forward-
backward algorithm. The lesson is taught from a live, com-
mented spreadsheet that implements the algorithm and graphs
its behavior on a whimsical toy example. By experimenting
with different inputs, one can help students develop intuitions
about HMMs in particular and Expectation Maximization in
general. The spreadsheet and a coordinated follow-up assign-
ment are available.

1 Why Teach from a Spreadsheet?

Algorithm animations are a wonderful teaching tool.
They are concrete, visual, playful, sometimes inter-
active, and remain available to students after the lec-
ture ends. Unfortunately, they have mainly been lim-
ited to algorithms that manipulate easy-to-draw data
structures.

Numerical algorithms can be “animated” by
spreadsheets. Although current spreadsheets do not
provide video, they can show “all at once” how a
computation unfolds over time, displaying interme-
diate results in successive rows of a table and on
graphs. Like the best algorithm animations, they
let the user manipulate the input data to see what
changes. The user can instantly and graphically see
the effect on the whole course of the computation.

Spreadsheets are also transparent. In Figure 1, the
user has double-clicked on a cell to reveal its un-
derlying formula. The other cells that it depends on
are automatically highlighted, with colors keyed to
the references in the formula. There is no program-
ming language to learn: spreadsheet programs are
aimed at the mass market, with an intuitive design
and plenty of online help, and today’s undergrad-
uates already understand their basic operation. An
adventurous student can even experiment with mod-
ifying the formulas, or can instrument the spread-
sheet with additional graphs.

Finally, modern spreadsheet programs such as
Microsoft Excel support visually attractive layouts
with integrated comments, color, fonts, shading, and

Figure 1: User has double-clicked on cell D29.

drawings. This makes them effective for both class-
room presentation and individual study.

This paper describes a lesson plan that was cen-
tered around a live spreadsheet, as well as a subse-
quent programming assignment in which the spread-
sheet served as a debugging aid. The materials are
available for use by others.

Students were especially engaged in class, appar-
ently for the following reasons:

• Striking results (“It learned it!”) that could be im-
mediately apprehended from the graphs.

• Live interactive demo. The students were eager
to guess what the algorithm would do on partic-
ular inputs and test their guesses.

• A whimsical toy example.

• The departure from the usual class routine.

• Novel use of spreadsheets. Several students who
thought of them as mere bookkeeping tools were
awed by this, with one calling it “the coolest-ass
spreadsheet ever.”

2 How to Teach from a Spreadsheet?

It is possible to teach from a live spreadsheet by us-
ing an RGB projector. The spreadsheet’s zoom fea-
ture can compensate for small type, although under-
graduate eyes prove sharp enough that it may be un-
necessary. (Invite the students to sit near the front.)

Of course, interesting spreadsheets are much too
big to fit on the screen, even with a “View / Full
Screen” command. But scrolling is easy to follow
if it is not too fast and if the class has previously
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been given a tour of the overall spreadsheet layout
(by scrolling and/or zooming out). Split-screen fea-
tures such as hide rows/columns, split panes, and
freeze panes can be moderately helpful; so can com-
mands to jump around the spreadsheet, or switch be-
tween two windows that display different areas. It
is a good idea tomemorize key sequences for such
commandsrather than struggle with mouse menus
or dialog boxes during class.

3 The Subject Matter

Among topics in natural language processing,
the forward-backward or Baum-Welch algorithm
(Baum, 1972) is particularly difficult to teach.
The algorithm estimates the parameters of a
Hidden Markov Model (HMM) by Expectation-
Maximization (EM), using dynamic programming
to carry out the expectation steps efficiently.

HMMs have long been central in speech recog-
nition (Rabiner, 1989). Their application to part-
of-speech tagging (Church, 1988; DeRose, 1988)
kicked off the era of statistical NLP, and they have
found additional NLP applications to phrase chunk-
ing, text segmentation, word-sense disambiguation,
and information extraction.

The algorithm is also important to teach for ped-
agogical reasons, as the entry point to a family of
EM algorithms for unsupervised parameter estima-
tion. Indeed, it is an instructive special case of (1)
the inside-outside algorithm for estimation of prob-
abilistic context-free grammars; (2) belief propa-
gation for training singly-connected Bayesian net-
works and junction trees (Pearl, 1988; Lauritzen,
1995); (3) algorithms for learning alignment mod-
els such as weighted edit distance; (4) general finite-
state parameter estimation (Eisner, 2002).

Before studying the algorithm, students should
first have worked with some if not all of the key
ideas in simpler settings. Markov models can be
introduced throughn-gram models or probabilistic
finite-state automata. EM can be introduced through
simpler tasks such as soft clustering. Global opti-
mization through dynamic programming can be in-
troduced in other contexts such as probabilistic CKY
parsing or edit distance. Finally, the students should
understandsupervisedtraining and Viterbi decod-
ing of HMMs, for example in the context of part-

of-speech tagging.
Even with such preparation, however, the

forward-backward algorithm can be difficult for be-
ginning students to apprehend. It requires them to
think about all of the above ideas at once, in com-
bination, and to relate them to the nitty-gritty of the
algorithm, namely

• the two-pass computation of mysteriousα andβ
probabilities

• the conversion of these prior path probabilities to
posterior expectations of transition and emission
counts

Just as important, students must develop an under-
standing of the algorithm’s qualitative properties,
which it shares with other EM algorithms:

• performs unsupervised learning (what is this and
why is it possible?)

• alternates expectation and maximization steps

• maximizesp(observed training data) (i.e., total
probability of all hidden paths that generate those
data)

• finds only a local maximum, so is sensitive to
initial conditions

• cannot escape zeroes or symmetries, so they
should be avoided in initial conditions

• uses the states as it sees fit, ignoring the sugges-
tive names that we may give them (e.g., part of
speech tags)

• may overfit the training data unless smoothing is
used

The spreadsheet lesson was deployed in two 50-
minute lectures at Johns Hopkins University, in an
introductory NLP course aimed at upper-level un-
dergraduates and first-year graduate students. A sin-
gle lecture might have sufficed for a less interactive
presentation.

The lesson appeared in week 10 of 13, by which
time the students had already been exposed to most
of the preparatory topics mentioned above, includ-
ing Viterbi decoding of a part-of-speech trigram tag-
ging model. However, the present lesson was their
first exposure to EM or indeed to any kind of unsu-
pervised learning.



Figure 2: Initial guesses of parameters.

Figure 3: Diary data and reconstructed weather.

4 The Ice Cream Climatology Data

[While the spreadsheet could be used in many ways,
the next several sections offer one detailed lesson
plan. Questions for the class are included; subse-
quent points often depend on the answers, which are
concealed here in footnotes. Some fragments of the
full spreadsheet are shown in the figures.]

The situation: You are climatologists in the year
2799, studying the history of global warming. You
can’t find any records of Baltimore weather, but you
do find my diary, in which I assiduously recorded
how much ice cream I ate each day (see Figure 3).
What can you figure out from this about the weather
that summer?

Let’s simplify and suppose there are only two
kinds of days:C (cold) andH (hot). And let’s sup-
pose you have guessed some probabilities as shown
on the spreadsheet (Figure 2).

Thus, you guess that on cold days, I usually ate
only 1 ice cream cone: my probabilities of 1, 2,
or 3 cones were 70%, 20% and 10%. That adds
up to 100%. On hot days, the probabilities were
reversed—I usually ate 3 ice creams. So other things
equal, if you know I ate 3 ice creams, the odds are
7 to 1 that it was a hot day, but if I ate 2 ice creams,

the odds are 1 to 1 (no information).
You also guess (still Figure 2) that if today is cold,

tomorrow is probably cold, and if today is hot, to-
morrow is probably hot. (Q: How does this setup
resemble part-of-speech tagging?1)

We also have some boundary conditions. I only
kept this diary for a while. If I was more likely to
start or stop the diary on a hot day, then that is use-
ful information and it should go in the table. (Q: Is
there an analogy in part-of-speech tagging?2) For
simplicity, let’s guess that I was equally likely to
start or stop on a hot or cold day. So the first day I
started writing was equally likely (50%) to be hot or
cold, and any given day had the same chance (10%)
of being the last recorded day, e.g., because on any
day I wrote (regardless of temperature), I had a 10%
chance of losing my diary.

5 The Trellis and αβ Decoding

[The notationpi(H) in this paper stands for the prob-
ability of Hon dayi, given all the observed ice cream
data. On the spreadsheet itself the subscripti is
clear from context and is dropped; thus in Figure 3,
p(H) denotes the conditional probabilitypi(H), not a
prior. The spreadsheet likewise omits subscripts on
αi(H) andβi(H).]

Scroll down the spreadsheet and look at the lower
line of Figure 3, which shows a weather reconstruc-
tion under the above assumptions. It estimates the
relative hot and cold probabilities for each day. Ap-
parently, the summer was mostly hot with a cold
spell in the middle; we are unsure about the weather
on a few transitional days.

We will now see how the reconstruction was ac-
complished. Look at the trellis diagram on the
spreadsheet (Figure 4). Consistent with visual intu-
ition, arcs (lines) represent days and states (points)
represent the intervening midnights. A cold day is
represented by an arc thatendsin a C state.3 (So

1A: This is a bigram tag generation model with tagsCandH.
Each tag independently generates a word (1, 2, or 3); the word
choice is conditioned on the tag.

2A: A tagger should know that sentences tend to start with
determiners and end with periods. A tagging that ends with a
determiner should be penalized becausep(Stop | Det ) ≈ 0.

3These conventions are a compromise between a traditional
view of HMMs and a finite-state view used elsewhere in the
course. (The two views correspond to Moore vs. Mealy ma-
chines.) In the traditional view, states would represent days and



Figure 4: Theα-β trellis.

each arc effectively inherits theC or H label of its
terminal state.)

Q: According to the trellis, what is thea priori
probability that the first three days of summer are
H,H,C and I eat 2,3,3 cones respectively (as I did)?4

Q: Of the 8 ways to account for the 2,3,3 cones,
which is most probable?5 Q: Why do all 8 paths
have low probabilities?6

Recall that the Viterbi algorithm computes, at
each state of the trellis, themaximumprobability
of any path fromStart . Similarly, defineα at a
state to be thetotal probability of all paths to that
state fromStart . Q: How would you compute it
by dynamic programming?7 Q: Symmetrically, how
would you computeβ at a state, which is defined to
be the total probability of all paths toStop ?

Theα andβ values are computed on the spread-
sheet (Figure 1).Q: Are there any patterns in the
values?8

Now for some important questions.Q: What is
the total probability of all paths fromStart to

would bear emission probabilities such asp(3 | H). In Figure 4,
as in finite-state machines, this role is played by the arcs (which
also carry transition probabilities such asp(H | C)); this allows
α andβ to be described more simply as sums of path probabili-
ties. But we persist in a traditional labeling of the states asHor
Cso that theαβ notation can refer to them.

4A: Consult the pathStart → H→ H→ C, which has
probability(0.5·0.2)·(0.8·0.7)·(0.1·0.1) = 0.1·0.56·0.01 =
0.00056. Note that the trellis is specialized to these data.

5A: H,H,H gives probability0.1 · 0.56 · 0.56 = 0.03136.
(Starting withC would be as cheap as starting withH, but then
getting fromC to Hwould be expensive.)

6A: It wasa priori unlikely that I’d eat exactly this sequence
of ice creams. (A priori there were many more than 8 possible
paths, but this trellis only shows the paths generating the actual
data 2,3,3.) We’ll be interested in therelative probabilities of
these 8 paths.

7A: In terms ofα at the predecessor states: just replace
“max” with “+” in the Viterbi algorithm.

8A: α probabilities decrease going down the column, andβ
probabilities decrease going up, as they become responsible for
generating more and more ice cream data.

Figure 5: Computing expected counts and their totals.

Stop in which day 3 is hot?9 It is shown in col-
umn H of Figure 1.Q: Why is column I of Figure 1
constant at 9.13e-19 across rows?10 Q: What does
that column tell us about ice cream or weather?11

Now the class may be able to see how to complete
the reconstruction:

p(day 3 hot | 2, 3, 3, . . .) = p(day 3 hot,2,3,3,...)
p(2,3,3,...)

= α3(H)·β3(H)
α3(C)·β3(C)+α3(H)·β3(H)

= 9.0e-19
9.8e-21+9.0e-19

which is 0.989, as shown in cell K29 of Figure 5.
Figure 3 simply graphs column K.

6 Understanding the Reconstruction

Notice that the lower line in Figure 3 has the same
general shape as the upper line (the original data),
but is smoother. For example, some 2-ice-cream
days were tagged as probably cold and some as
probably hot.Q: Why?12 Q: Since the first day has
2 ice creams and doesn’t follow a hot day, why was
it tagged as hot?13 Q: Why was day 11, which has
only 1 ice cream, tagged as hot?14

We can experiment with the spreadsheet (using
the Undo command after each experiment).Q: What
do you predict will happen to Figure 3 if we weaken

9A: By the distributive law,α3(H) · β3(H).
10A: It is the total probability of all paths that go throughei-

therCor Hon a given day. But all paths do that, so this is simply
the total probability of all paths! The choice of day doesn’t mat-
ter.

11A: It is the probability of my actual ice cream consumption:
p(2, 3, 3, . . .) =

∑
~w
p(~w, 2, 3, 3, . . .) = 9.13e-19, where~w

ranges over all233 possible weather state sequences such as
H,H,C,. . . . Each summand is the probability of a trellis path.

12A: Figure 2 assumed a kind of “weather inertia” in which
a hot day tends to be followed by another hot day, and likewise
for cold days.

13Because an apparently hot day follows it. (See footnote 5.)
It is theβ factors that consider this information from the future,
and makeα1(H) · β1(H)� α1(C) · β1(C).

14A: Switching from hot to cold and back (HCH) has proba-
bility 0.01, whereas staying hot (HHH) has probability 0.64. So
although the fact that I ate only one ice cream on day 11 favors
Cby 7 to 1, the inferred “fact” that days 10 and 12 are hot favors
Hby 64 to 1.



(a)

(b)

Figure 6: With (a) no inertia, and (b) anti-inertia.

or remove the “weather inertia” in Figure 2?15 Q:
What happens if we try “anti-inertia”?16

Even though the number of ice creams is not de-
cisive (consider day 11), it is influential.Q: What
do you predict will happen if the distribution of ice
creams is the same on hot and cold days?17 Q: What
if we alsochangep(H | Start ) from 0.5 to 0?18

7 Reestimating Emission Probabilities

We originally assumed (Figure 2) that I had a 20%
chance of eating 2 cones on either a hot or a cold
day. But if our reconstruction is right (Figure 3), I
actuallyate 2 cones on 20% of cold days but 40+%
of hot days.

15A: Changingp(C | C) = p(H | C) = p(C | H) = p(H |
H) = 0.45 cancels the smoothing effect (Figure 6a). The lower
line now tracks the upper line exactly.

16A: Settingp(C | H) = p(H | C) = 0.8 andp(C | C) =
p(H | H) = 0.1, rather than vice-versa, yields Figure 6b.

17A: The ice cream data now gives us no information about
the weather, sopi(H) = pi(C) = 0.5 on every dayi.

18A: p1(H) = 0, but pi(H) increases toward an asymptote
of 0.5 (the “limit distribution”). The weather is more likely to
switch to hot than to cold if it was more likely cold to begin
with; sopi(H) increases if it is< 0.5.

Figure 7: Parameters of Figure 2 updated by reestimation.

So now that we “know” which days are hot and
which days are cold, we should really update our
probabilities to 0.2 and 0.4, not 0.2 and 0.2. After
all, our initial probabilities were just guesses.

Q: Where does the learning come from—isn’t this
circular? Since our reconstruction was based on the
guessed probabilities 0.2 and 0.2, why didn’t the re-
construction perfectly reflect those guesses?19

Scrolling rightward on the spreadsheet, we find
a table giving the updated probabilities (Figure 7).
This table feeds into a second copy of the forward-
backward calculation and graph.Q: The second
graph ofpi(H) (not shown here) closely resembles
the first; why is it different on days 11 and 27?20

The updated probability table was computed by
the spreadsheet.Q: When it calculated how often I
ate 2 cones on a reconstructed hot day, do you think
it counted day 27 as a hot day or a cold day?21

8 Reestimating Transition Probabilities

Notice that Figure 7 also updated the transition prob-
abilities. This involved counting the 4 kinds of days
distinguished by Figure 8:22 e.g., what fraction ofH

19A: The reconstruction of the weather underlying the ob-
served data was acompromisebetween the guessed probabili-
ties (Figure 2) and the demands of the actual data. The model
in Figure 2 disagreed with the data: it would not have predicted
that 2-cone days actually accounted for more than 20% of all
days, or that they were disproportionately likely to fall between
3-cone days.

20A: These days fall between hot and cold days, so smoothing
has little effect: their temperature is mainly reconstructed from
the number of ice creams. 1 ice cream is now better evidence of
a cold day, and 2 ice creams of a hot day. Interestingly, days 11
and 14 can now conspire to “cool down” the intervening 3-ice-
cream days.

21A: Half of each, sincep27(H) ≈ 0.5! The actual compu-
tation is performed in Figure 5 and should be discussed at this
point.

22Notice howp(H → C) and p(C → H) spike when the
weather changes, on day 14 andeitherday 27 or 28.



Figure 8: Second-order weather reconstruction.

days were followed byH? Again, fractional counts
were used to handle uncertainty.

Q: Does Figure 3 (first-order reconstruction)
contain enough information to construct Figure 8
(second-order reconstruction)?23

Continuing with the probabilities from the end of
footnote 23, suppose we increasep(H | Start ) to
0.7. Q: What will happen to the first-order graph?24

Q: What if we switch from anti-inertia back to iner-
tia (Figure 9)?25

Q: In this last case, what do you predict will hap-
pen when we reestimate the probabilities?26

This reestimation (Figure 10) slightly improved
the reconstruction. [Defer discussion of what “im-
proved” means: the class still assumes that good re-
constructions look like Figure 3.]Q: Now what?
A: Perhaps we should do it again. And again, and
again. . . Scrolling rightward past 10 successive rees-
timations, we see that this arrives at the intuitively

23A: No. A dramatic way to see this is to make the dis-
tribution of ice cream distribution the same on hot and cold
days. This makes the first-order graph constant at 0.5 as in foot-
note 17. But we can still get a range of behaviors in the second-
order graph; e.g., if we switch from inertia to anti-inertia as in
footnote 16, then we switch from thinking the weather is un-
known but constant to thinking it is unknown but oscillating.

24A: pi(H) alternates and converges to 0.5 from both sides.
25A: pi(H) converges to 0.5 from above (cf. footnote 18), as

shown in Figure 9.
26A: The first-order graph suggests that the early days of

summer were slightly more likely to be hot than cold. Since
we ate more ice cream on those days, the reestimated probabili-
ties (unlike the initial ones) slightly favor eating more ice cream
on hot days. So the new reconstruction based on these proba-
bilities has a very shallow “U” shape (bottom of Figure 10), in
which the low-ice-cream middle of the summer is slightly less
likely to be hot.

Figure 9: An initial poor reconstruction that will be improved
by reestimation.

correct answer (Figure 11)!
Thus, starting from an uninformed probability ta-

ble, the spreadsheet learned sensible probabilities
(Figure 11) that enabled it to reconstruct the weather.
The 3-D graph shows how the reconstruction im-
proved over time.

The only remaining detail is how the transition
probabilities in Figure 8 were computed. Recall that
to get Figure 3, we asked what fraction of paths
passed through each state. This time we must ask
what fraction of paths traversed each arc. (Q: How
to compute this?27) Just as there were two possible
states each day, there are four possible arcs each day,
and the graph reflects their relative probabilities.

9 Reestimation Experiments

We can check whether the algorithm still learns from
other initial guesses. The following examples appear
on the spreadsheet and can be copied over the table
of initial probabilities. (Except for the pathologi-
cally symmetric third case, they all learn the same
structure.)

1. No weather inertia, but more ice cream on hot
days. The model initially behaves as in foot-

27A: The total probability of all paths traversingq → r is
α(q) ∗ p(q → r) ∗ β(r).



Figure 10: The effect of reestimation on Figure 9.

note 15, but over time it learns that weather does
have inertia.

2. Inertia, but only a very slight preference for more
ice cream on hot days. Thepi(H) graph is ini-
tially almost as flat as in footnote 17. But over
several passes the model learns that I eat a lot
more ice cream on hot days.

3. A completely symmetric initial state: no inertia,
and no preference at all for more ice cream on hot
days. Q: What do you expect to happen under
reestimation?28

4. Like the previous case, but break the symmetry
by giving cold days a slight preference to eat
more ice cream (Figure 12). This initial state is
almostperfectly symmetric.Q: Why doesn’t this
case appear to learn the same structure as the pre-
vious ones?29

The final case does not converge to quite the same
result as the others:C and H are reversed. (It is

28A: Nothing changes, since the situation is too symmetric.
As H andC behave identically, there is nothing to differentiate
them and allow them to specialize.

29A: Actually it does; it merely requires more iterations to
converge. (The spreadsheet is only wide enough to hold 10 iter-
ations; to run for 10 more, just copy the final probabilities back
over the initial ones. Repeat as necessary.) It learns both inertia
and a preference for more ice cream on cold days.

Figure 11: Nine more passes of forward-backward reestimation
on Figures 9–10. Note that the final graph is even smoother than
Figure 3.

Figure 12: Breaking symmetry toward the opposite solution.



Figure 13: If T is the sequence of 34 training observations
(33 days plusStop ), thenp(T ) increases rapidly during rees-
timation. To compress the range of the graph, we don’t plot
p(T ) but rather perplexity per observation= 1/ 34

√
p(T ) =

2−(log2 p(T ))/34.

nowHthat is used for the low-ice-cream midsummer
days.) Should you care about this difference? As
climatologists, you might very well be upset that the
spreadsheet reversed cold and hot days. But sinceC
andH are ultimately just arbitrary labels, then per-
haps the outcome is equally good in some sense.
What does itmeanfor the outcome of this unsuper-
vised learning procedure to be “good”? The dataset
is just the ice cream diary, which makes no reference
to weather. Without knowing the true weather, how
can we tell whether we did a good job learning it?

10 Local Maximization of Likelihood

The answer: A good model is one that predicts the
dataset as accurately as possible. The dataset actu-
ally has temporal structure, since I tended to have
long periods of high and low ice cream consump-
tion. That structure is what the algorithm discov-
ered, regardless of whether weather was the cause.
The stateCor Hdistinguishes between the two kinds
of periods and tends to persist over time.

So did this learned model predict the dataset well?
It was not always sure about the state sequence,
but Figure 13 shows that the likelihood of the ob-
served dataset (summed over all possible state se-
quences) increased on every iteration. (Q: How is
this found?30)

That behavior is actually guaranteed: repeated
30It is the total probability of paths that explain the data, i.e.,

all paths in Figure 4, as given by column I of Figure 1; see
footnote 10.

forward-backward reestimation converges to a local
maximum of likelihood. We have already discov-
ered two symmetric local maxima, both with per-
plexity of 2.827 per day: the model might useC to
represent cold andH to represent hot, or vice versa.
Q: How much better is 2.827 than a model with no
temporal structure?31

Remember that maximizing the likelihood of the
training data can lead to overfitting.Q: Do you see
any evidence of this in the final probability table?32

Q: Is there a remedy?33

11 A Trick Ending

We get very different results if we slightly mod-
ify Figure 12 by puttingp(1 | H) = 0.3 with
p(2 | H) = 0.4. The structure of the solution is
very different (Figure 14). In fact, the final param-
eters now show anti-inertia, giving a reconstruction
similar to Figure 6b.Q: What went wrong?34

In the two previous local maxima,H meant “low
ice-cream day” or “high ice-cream day.”Q: Accord-
ing to Figure 14, what doesHmean here?35 Q: What
does the low value ofp(H | H) mean?36

So we see that there are actually two kinds of
structure coexisting in this dataset: days with a lot
(little) ice cream tend to repeat, and days with 2 ice
creams tend not to repeat. The first kind of structure
did a better job of lowering the perplexity, but both

31A: A model with no temporal structure is a unigram model.
A good guess is that it will have perplexity 3, since it will be
completely undecided between the 3 kinds of observations. (It
so happens that they were equally frequent in the dataset.) How-
ever, if we prevent the learning of temporal structure (by setting
the initial conditions so that the model is always in stateC, or is
always equally likely to be in statesC andH), we find that the
perplexity is 3.314, reflecting thefour-way unigram distribution
p(1) = p(2) = p(3) = 11/34, p(Stop )=1/34.

32A: p(H | Start ) → 1 because we become increasingly
sure that the training diary started on a hot day. But this single
training observation, no matter how justifiably certain we are of
it, might not generalize tonextsummer’s diary.

33A: Smoothing the fractional counts. Note: If a prior is used
for smoothing, the algorithm is guaranteed to locally maximize
the posterior (in place of the likelihood).

34A: This is a third local maximum of likelihood, unrelated
to the others, with worse perplexity (3.059). Getting stuck in
poor local maxima is an occupational hazard.

35A: Husually emits 2 ice creams, whereasCnever does. So
Hstands for a 2-ice-cream day.

36A: That 2 ice creams are rarely followed by 2 ice creams.
Looking at the dataset, this is true. So even this local maximum
successfully discovered some structure: it discovered (to my
surprise) that when I make up data, I tend not to repeat 2’s!



Figure 14: A suboptimal local maximum.

are useful.Q: How could we get our model to dis-
coverboth kinds of structure (thereby lowering the
perplexity further)?37

Q: We have now seen three locally optimal mod-
els in which theH state was used for 3 different
things—even though we named itH for “Hot.” What
does this mean for the application of this algorithm
to part-of-speech tagging?38

12 Follow-Up Assignment

In a follow-up assignment, students applied Viterbi
decoding and forward-backward reestimation to
part-of-speech tagging.39

In the assignment, students were asked to test
their code first on the ice cream data (provided as
a small tagged corpus) before switching to real data.
This cemented the analogy between the ice cream
and tagging tasks, helping students connect the class
to the assignment.

37A: Use more states. Four states would suffice to distinguish
hot/2, cold/2, hot/not2, and cold/not2 days.

38A: There is no guarantee thatN andV will continue to dis-
tinguish nouns and verbs after reestimation. They will evolve to
make whatever distinctions help to predict the word sequence.

39Advanced students might also want to read about a mod-
ern supervised trigram tagger (Brants, 2000), or the mixed re-
sults when one actually trains trigram taggers by EM (Merialdo,
1994).

Furthermore, students could check their ice cream
output against the spreadsheet, and track down basic
bugs by comparing their intermediate results to the
spreadsheet’s. They reported this to be very useful.
Presumably it helps learning when students actually
find their bugs before handing in the assignment, and
when they are able to isolate their misconceptions
on their own. It also made office hours and grading
much easier for the teaching assistant.

13 Availability

The spreadsheet (in Microsoft Excel) and assign-
ment are available athttp://www.cs.jhu.
edu/˜jason/papers/#tnlp02 .

Also available is a second version of the spread-
sheet, which uses the Viterbi approximation for de-
coding and reestimation. The Viterbi algorithm is
implemented in an unconventional way so that the
two spreadsheets are almost identical; there is no
need to follow backpointers. The probability of the
best path through stateH on day 3 isµ3(H) · ν3(H),
whereµ andν are computed likeα andβ but maxi-
mizing rather than summing path probabilities. The
Viterbi approximation treatsp3(H) as 1 or 0 accord-
ing to whetherµ3(H) · ν3(H) equalsmax(µ3(C) ·
ν3(C), µ3(H) · ν3(H)).

Have fun! Comments are most welcome.
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