HOW MUCH WILL A RE-BASED PREPROCESSOR HELP A
STATISTICAL PARSER?

Daniel Zeman
Centrum komputac¢ni lingvistiky
Univerzita Karlova
Malostranské nameésti 25, CZ-11800 Praha, Czechia

zeman@ufal .ms.mff.cuni.cz

Abstract

The present paper describes experiments on combining a statistical parser with a preprocessor built of regular expres-
sions. While the syntactic structure of a sentence may be very complex and will never be fully covered by such simple
machine, there are phenomena such as noun phrases and simple coordinations that do quite well. Even these “chunks”
may theoretically be unlimitedly complex but we show that in reality they rarely do. So a shallow parser based on regular
expressions can be built to preprocess the input text and solve the simple chunks without introducing too many errors.
We discuss one implementation of such preprocessor that is very easy to write and covers roughly 20% of input words
with an accuracy of over 90%. Then we describe two ways of combining the preprocessor with a parser and show that the
performance of the parser improves both in speed and accuracy.

1. Introduction

The goal of the work reported on in this paper was to improve performance of a statistical parser. The idea
was that there were very simple phenomena in the language that could be captured by a simple tool — where
the second “simple” concerns programming effort as well as computational complexity. Combining such a
tool with the parser would eventually speed up the parsing process. Morcover, the hope was that it would
increase the parsing precision as well because the precision of the preprocessor was pretty high. The question
was how much the preprocessor would increase the overall precision: due to its low recall it was expectable
that most of structures it would recognize would also be found by the parser.

There is a body of related work on chunking but due to the limited space it cannot be thoroughly discussed
here. So we only mention Nenadi¢ (1998, 2000), seeming to us to be most close to our approach (see later).

The parser works in a dependency framework. Its task is, for each input word to find another word from
the same sentence that is its governor. Thus the dependency trees produced by the parser contain no nonter-
minals; rather, every node except of the root corresponds to a word of the sentence. There is no grammar
(context-free or other) generating directly the dependency trees. While parsers employing probabilistic con-
text-free grammars can be used only indirectly in this framework (see Collins et al., 1999, for an example),
there is a more straightforward way similar to n-gram language modeling. It differs from the n-grams in that
it collects statistics about pairs of dependent nodes rather than n-tuples of neighboring words. The parsed lan-
guage material is Czech; our data come from the Prague Dependency Treebank (PDT, see Bohmova et al.).

The preprocessor is implemented fully as a set of regular expressions in Perl'. While the parser can be
trained on any language (as long as there is a dependency treebank), the preprocessor benefits from some
properties of Czech (but it can be applied to other similar — ¢.g. Slavic — languages). It exploits the fact that
the governing and the dependent node often neighbor in the sentence and agree in gender, number, case etc.
This property simplifies recognizing of base noun phrases and other patterns.

2. The Preprocessor

We used regular expressions to model the local syntax of coordinations, simple noun phrases and other sim-
ple small chunks of sentences. The method is closely related to /ocal grammars that have been applied to a
similar task for a similar language (Serbo-Croatian; see Nenadi¢ and Vitas 1998, Nenadi¢ 2000).

! Nevertheless, the regular expressions are applied in a way that the resulting machine may be context-free rather than
finite state.



The preprocessor is written in Perl (see Wall et al., 1996). There is a procedure that scans the corpus and
repeatedly applies a set of regular expressions (RE’s) to each sentence. The RE’s can be easily modified and
new RE’s can be added. Every RE describes a local configuration that signalizes a dependency between two
chunks of the input. A chunk is a word or a sequence of chunks that has been recognized by a previous appli-
cation of an RE (and replaced by a representative word).

For instance, a coordination of adjectives is defined by the following three sub expressions:

"<ESAL([MX]) (IXD) (NN

"<«1>(al|ilnebolani)<"

"<E>ANNINAZAN3"

The Perl procedure combines these sub expressions into one RE. The resulting RE finds a sequence of
words such that the description of the first word contains a match of the first sub-RE, the second word de-
scription matches the second sub-RE and so on. So in this case we are looking for a sequence of three words
where the first one has a morphological tag beginning with A (adjective), having any character at second
position (sub-part-of-speech), having known gender and number (unknown is encoded as X, which is prohib-
ited by the RE), and having known case encoded as a digit. The second word must have the lemma « (“and”™),
i (“as well as™), nebo (“or”) or ani (“nor”). The third word must again be an adjective (the tag beginning with
A) and must agree with the first one in gender, number and case. The agreement is enforced by the sub-RE’s
\1, \2, and \3. They refer to the first, the second and the third parenthesized sub-RE’s, respectively. In our
case all referred parentheses occurred in the first word’s tag, marking its gender, number and case.

The example RE would thus match for instance the coordination p#imym i neprimym (“direct as well as
indirect”; instrumental case) that has the following (simplified) representation in PDT:

<f>piimym<l>pfimy<t>AAMST7T---Al--———-

<f>i<l>i<t>IN—————————————

<f>nepifimym<l>pfimy<t>AAMS7T---N1--——-

On the other hand, the RE would not match the sequence Zlutého a cernou (“yellow / Masc. and black /
Fem.”) because the adjectives do not agree in gender:

<f>zZlutého<1>Zluty<t>AAMS4---Al-———-

<fr>a<l>a<t>J -————————————

<f>Cernou<l>Cerny<t>AAFS4---Al-———-

Two special parameters are passed to the procedure. They are interpreted as relative indices of the phrase
head and of the phrase representative (1 and 2 in our case, the first word has the index of zero).

Each RE is applied repeatedly to each sentence until all matches are found. This can also accommodate
some recursive constructions. Suppose we have an RE for adjective-noun NP’s. And suppose there is a noun
preceded by two adjectives that both modify it, e.g. velky zeleny strom (“big green tree”). First the sequence
zeleny strom is recognized and replaced by the representative noun strom. This way the words velky and
strom become neighbors and the sequence zeleny strom can be recognized in the next run.

To keep the process simple, the order in which different RE’s are applied is fixed. Nevertheless some RE’s
can be tried at several points to see whether the replacements created new material for them. To illustrate
this, let’s have two RE’s called AN (adjective-noun NP), and NaN (coordination of nouns), and let’s apply
them in the order NaN-AN-NaN. Then if the input contains the sequence cesti sportovci a slovensti sportovci
a umeélci (“Czech sportsmen and Slovak sportsmen and artists™), the first NaN reduces it to cesti sportovei a
slovensti umélci, this sequence is further reduced by the AN to sportovci a umélci, which is finally
recognized by the second NaN. This example shows that the covered constructions can be richer than one
might think. On the other hand it also reveals the main weakness of the approach: in other configurations
such as cesti hraci i Némci (“Czech players as well as the Germans”), the RE sequence AN-NaN would be
appropriate. So the method can be relatively successful only if there exists an ordering of RE’s that matches
the data in much more cases than any other ordering.

The programming simplicity and efficiency is a significant issue. The driving procedure was finished in a
few days, a regular expression can be formulated and added in a minute or two and the Perl interpreter
applies it to a corpus of 19126 sentences often in less then one minute®. On the other hand it is obvious that
one can never cover the language this way, partly because a human cannot think of all possible
configurations of the data, and partly because adding more complex patterns would make the expressions
unintelligible and unmaintainable. That’s why the preprocessor can only /elp the parser, not replace it.

% On a 266 MHz PC running Linux.



3. Combining the Regular Expressions with the Parser

There are two or three ways how to combine the two parsing tools. The first one assumes that the preproces-
sor would replace each recognized phrase by a representative word (typically by its head but coordinations —
whose head is a conjunction — should be represented by one of their members, converted to plural). The
parser then would see the preprocessed phrases neither during the training phase, nor during testing. Such
phrases become atomic items for the parser.

There is a possible drawback of this method. If the preprocessor fails to find all members of a phrase, the
error can be corrected by the parser only if the forgotten member depends on the head of the phrase. If it
ought to be nested more deeply in the phrase, its real governor is now invisible because the phrase is atomic.
This leads to the second approach where the phrase would even for the parser be a structure rather than a
monolith. The parser would get some dependencies for free but would be allowed to add new dependencies at
any place in the structure. The third approach is a special case of the second one. It applies the finite state
tool as a postprocessor to the statistical parser output, overriding all parser decisions concerning the
recognized chunks.

We refer to the three methods later in this paper as to fransparent preprocessing, non-transparent
preprocessing, and postprocessing respectively.

4. Results

We ran several experiments to evaluate the finite state tool and its contribution to the performance of the
parser. For each regular expression, we figured out its precision (measured as the number of correctly
proposed dependencies divided by the total number of proposed dependencies). The test was done on 19126
sentences of the Prague Dependency Treebank (Bohmova et al); this portion contains 346719 words
(tokens). The following table shows precision of seven different regular expressions we tested (details on
these RE’s can be found in Zeman (2001)).

Expression AaA NaN AN DA NgNg | NNg RN

Precision 99.2 95.0 98.8 86.8 91.9 95.7

We tested all described RE’s in the following order (note that NaN was applied twice):

DA-AaA-AN-NaN-NgNg-NNg-NaN-RN

Also this combined RE tool was tested on the same corpus. It proposed 69262 correct dependencies and
4424 false ones while leaving 273033 tokens unresolved. So the recall is 20.0 %, which means that the
preprocessor is able to (correctly) help in one fifth of cases. The precision of the preprocessor is 94.0 %; only
1.3 % of all dependencies are errors that the parser cannot repair.

The above results are for data where morphological tags were assigned manually. Such evaluation is
important because it shows the power of the RE’s without biasing it by errors of other components. However,
an application will hardly have manually annotated data available, so we are adding two other statistics. First,
the RE set was run on tags and lemmas assigned by a statistical tagger (Haji¢ and Hladkd, 1998). Every <t>
in RE’s was automatically replaced by <MDt [ ~>] *>; the <1> markups were treated similarly. The resulting
machine proposed 60093 good dependencies and 5001 bad dependencies, 281625 remained unresolved; the
precision was 92.3 %, the recall 17.3 %. The decrease in both the precision and the recall can be explained by
the errors the tagger does.

The last test used ambiguous morphological input. Every <t> in RE’s was automatically replaced by
<MMt>; the <1> markups were treated similarly. The resulting machine proposed 69566 good dependencies
and 8146 bad dependencies, 269007 remained unresolved; the precision was 89.5 %, the recall 20.1 %. The
preprocessor had all morphological hypotheses available, so the recall slightly increased. But occasionally it
combined two compatible hypotheses that occurred at neighboring positions but were wrong. That explains
the drop in precision.

Finally we combined the finite state tool with the parser in all the ways described in Section 3. The result-
ing systems were tested on a part of the PDT that had not been used to train the parser. This testing portion
consisted of 3697 sentences. Every word is now assigned a dependency so the precision is equal to the recall
(and we call the measure accuracy). All experiments used machine-disambiguated morphology. The follow-
ing table shows the basecline performance of the parser itself, the performance of RE’s where unresolved
words would always be attached to the root (labeled “sole RE’s™), and the performances of parser with RE




transparent preprocessor, non-transparent preprocessor and the postprocessor. Note also the times in the sec-
ond line: they demonstrate how the parsing speed increases when some chunks are preprocessed.

Parser Sole RE’s Transp. Prepr. Nontr. Prepr. Postprocessed
Accuracy (%) 53.7 30.6 55.6 57.2 56.6
Time (min) 53 less than 1 30 46 54

The speed improvement is invariant but one may ask how significant is the accuracy improvement when
the overall parser accuracy is quite low. So we also tested our RE’s in combination with a different parser
(it’s a variant of the parser described in Collins 1999). This other parser performs better but we cannot
modify its internals so we only could use the RE tool as a postprocessor. Even here the RE’s helped:

Parser Postprocessed
Accuracy (%) 66.3 68.0

5. Conclusion

We showed that a set of regular expressions helps a statistical parser both in speed and accuracy. While the
REs’ contribution to the accuracy is to be expected to decrease as the parser itself improves, it hardly ever
will damage the results because the precision of the REs is very high — higher than of any known parser for
Czech or English. At the same time the parsing is speeded up substantially which should not change with
further development of the parser. The regular expressions can be written very easily and quickly.

6. Acknowledgements

This research is being supported by the Ministry of Education of the Czech Republic project No. LNOOA063
(Center for Computational Linguistics). The data (PDT) would not be available unless the grant No.
405/96/K214, of the Grant Agency of the Czech Republic, supported the treebank design. I also want to
thank the anonymous reviewers who pointed out some unclear points in this paper.

7. References

Alena Bohmova, Jan Haji¢, Eva Haji¢ova, Barbora Hladka (in press). The Prague Dependency Treebank:
Three-Level Annotation Scenario. In: Anne Abeillé (Ed.): Treebanks: Building and Using Syntactically
Annotated Corpora. Kluwer Academic Publishers, Dordrecht, The Netherlands. See also
http://ufal. mff.cuni.cz/pdt/.

Michael Collins, Jan Haji¢, Eric Brill, Lance Ramshaw, Christoph Tillmann (1999). A Statistical Parser of
Czech. In: Proceedings of ACL 1999, pp. 505-512, College Park, Maryland.

Jan Haji¢, Eric Brill, Michael Collins, Barbora Hladka, Douglas Jones, Cynthia Kuo, Lance Ramshaw, Oren
Schwartz, Christoph Tillmann, Daniel Zeman (1998). Core Natural Language Processing Technology
Applicable to Multiple Languages. The Workshop 98 Final Report. At http://www.clsp.jhu.edu/ws98/
projects/nlp/report/. JHU, Baltimore, Maryland.

Jan Haji¢, Barbora Hladka (1998). Tagging Inflective Languages: Prediction of Morphological Categories for
a Rich, Structured Tagset. In: Proceedings of the 36" Meeting of the ACL and COLING 98, pp. 483-490.
Université de Montréal, Montréal, Québec.

Goran Nenadi¢, Dugko Vitas (1998). Using Local Grammars for Agreement Modeling in Highly Inflective
Languages. In: Proceedings of TSD 1998, pp. 91-96, Brno, Czechia.

Goran Nenadi¢ (2000). Local Grammars and Parsing Coordination of Nouns in Serbo-Croatian. In:
Proceedings of TSD 2000, pp. 57-62, Springer LNAI 1902, Brno, Czechia.

Vladimir Petkevi¢ (1999). Czech Translation of G. Orwell’s “1984°: Morphology and Syntactic Patterns in
the Corpus. In: Proceedings of TSD 2000, pp. 77-82, Marianské Lazng, Czechia.

Larry Wall, Tom Christiansen, Randal Schwartz (1996). Programming Perl. http.//www.perl.org/.

Daniel Zeman (1998). A Statistical Approach to Parsing of Czech. In: Prague Bulletin of Mathematical
Linguistics, vol. 69, pp. 29-37. Univerzita Karlova, Praha, Czechia.

Daniel Zeman (2001). Parsing with Regular Expressions: A Minute to Learn, A Lifetime to Master. In:
Prague Bulletin of Mathematical Linguistics, vol. 75. Univerzita Karlova, Praha,Czechia.




