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Abstra
t

We brie
y review the inside-outside and EM algorithm for probabilisti
 
ontext-free grammars. As a

result, we formally prove that inside-outside estimation is a dynami
-programming variant of EM. This is

interesting in its own right, but even more when when 
onsidered in a theoreti
al 
ontext sin
e the well-

known 
onvergen
e behavior of inside-outside estimation has been 
on�rmed by many experiments but

apparently has never been formally proved. However, being a version of EM, inside-outside estimation

also inherits the good 
onvergen
e behavior of EM. Therefore, the as yet imperfe
t line of argumentation


an be transformed into a 
oherent proof.

1 Inside-Outside Estimation

The modern inside-outside algorithm was introdu
ed by [4℄ who reviewed an algorithm proposed

by [1℄ and extended it to an iterative training method for probabilisti
 
ontext-free grammars enabling

the use of unrestri
ted free text. In the following, y

1

: : : y

N

are numbered (but unannotated) senten
es.

De�nition: Inside-outside re-estimation formulas for probabilisti
 
ontext-free grammars in Chom-

sky normal form are given by (see [4℄, but see also [1℄ for the spe
ial 
ase N = 1):
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The key variables of this de�nition are so-
alled 
ategory and rule 
ounts: C

w

(A) :=

1

P

P

n
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P

n

t=s

e(s; t; A) � f(s; t; A); C

w

(A! a) :=

1

P

P

1�t�n; w

t

=a

e(t; t; A) � f(t; t; A); and C

w

(A!

BC) :=

1

P

P

n�1

s=1

P

n

t=s+1

P

t�1

r=s

p(A ! BC)e(s; r; B)e(r + 1; t; C)f(s; t; A) whi
h are 
omputed for

ea
h senten
e w := w

1

: : : w

n

with so-
alled inside and outside probabilities: An inside probability

is de�ned as the probability of 
ategory A generating observations w

s

: : : w

t

, i.e. e(s; t; A) := p(A)

�

w

s

: : : w

t

): In determining a re
ursive pro
edure for 
al
ulating e, two 
ases must be 
onsidered:

� (s = t): Only one observation is emitted and therefore a rule of the form A! w

s

applies: e(s; s; A) =

p(A! w

s

); if (A! w

s

) 2 G (and 0, otherwise).

� (s < t): In this 
ase we know that rules of the form A ! BC must apply sin
e more

than one observation is involved. Thus, e(s; t; A) 
an be expressed as follows: e(s; t; A) =

P

(A!BC)2G

P

t�1

r=s

p (A! BC) � e(s; r; B) � e(r + 1; t; C):

The quantity e 
an therefore be 
omputed re
ursively by determining e for all sequen
es of length

1, then 2, and so on. The senten
e probability P := p(S )

�

w) is a spe
ial inside probability.

The outside probabilities are de�ned as follows: f(s; t; A) = p (S )

�

w

1

: : : w

s�1

Aw

t+1

: : : w

n

) :



The quantity f(s; t; A) may be thought of as the probability that A is generated in the re-write

pro
ess and that the strings not dominated by it are w

1

: : : w

s�1

to the left and w

t+1

: : : w

n

to the right. In this 
ase, the non-terminal A 
ould be one of two possible settings C !

B A or C ! A B, hen
e: f(s; t; A) =

P

B; C2G

�

P

s�1

r=1

f(r; t; C) � p(C ! BA) � e(r; s� 1; B) +

P

n

r=t+1

f(s; r; C) � p(C ! AB) � e(t+ 1; r; B)

�

and f(s; t; A) =

(

1 if A = S

0 else

: After the inside

probabilities have been 
omputed bottom-up, the outside probabilities 
an therefore be 
omputed

top-down. Unfortunately, no 
onvergen
e proofs of inside-outside estimation were given by [1℄ and [4℄.

2 EM for Probabilisti
 Context-Free Grammars

The EM algorithm was introdu
ed by [3℄ as iterative maximum likelihood estimation for parameter-

ized probability models p(y) using a sample ~p(y) of in
omplete data types y whi
h are de�ned

via a symboli
 analyzer X(y) dealing with 
omplete data types x. It is known, that EM

generalizes ordinary maximum likelihood estimation and monotoni
ally in
reases the log-likelihood

L(p) :=

P

y

~p(y) � log

P

x2X(y)

p(x): Furthermore, the limit point of a 
onvergent parameter sequen
e

is a stationary point (i.e. lo
al minimum, saddle point or maximum) of the log likelihood [3℄. More-

over, both the parameter sequen
e and the asso
iated sequen
e of log likelihood values 
onverge (in

some 
ases to lo
al maxima), if some weak 
onditions are ful�lled [6℄.

Applying EM to probabilisti
 
ontext-free grammars, the grammati
al senten
es y are viewed

as in
omplete and their syntax trees x as 
omplete. The required symboli
 analyzer is given by a

parser 
omputing all trees x 2 T (y) for a senten
e y. Via these non-probabilisti
 EM 
omponents, the

probability model for the senten
es is de�ned as p(y) :=

P

x2T (y)

p(x) :=

P

x2T (y)

Q

r

p(r)

f

r

(x)

; where

f

r

(x) is the frequen
y of rule r o

uring in x, and parameterization is given by rule probabilties

p(r). The key variables of EM re-estimation are 
onditional expe
ted frequen
ies (relying on the


onditional probability p(xjy) :=

p(x)

p(y)

) for rules r and 
ategories A: p(:jy) [ f

r

℄ :=

P

x2T (y)

p(xjy) �

f

r

(x) and p(:jy) [ f

A

℄ :=

P

x2T (y)

p(xjy) � f

A

(x); where f

A

(x) :=

P

r2G

A

f

r

(x) is the frequen
y of


ategory A o

uring in x, and G

A

is the set of grammar rules with left-hand side A. See e.g. [5℄:

Lemma: EM re-estimation formulas for probabilisti
 
ontext-free grammars are given by:

p̂(r) =

~p [ p(:j:) [ f

r

℄ ℄

~p [ p(:j:) [ f

A

℄ ℄

=

P

y

~p(y) � p(:jy) [ f

r

℄

P

y

~p(y) � p(:jy) [ f

A

℄

(r 2 G; A = lhs(r)) :

3 Inside-Outside as Dynami
 EM

In this se
tion, the well-known 
onvergen
e properties of the inside-outside algorithm, whi
h have been

unfortunately omitted in the original literature ([1℄, [4℄), will be formally proven. For this purpose, we

will show that the inside-outside algorithm is a dynami
-programming variant of the EM algorithm

for 
ontext-free grammars. This property is also well-known in sto
hasti
 linguisti
s, but to the best

of our knowledege all mentioned properties have not been formally proven till now.

Theorem: For a 
ontext-free grammar in Chomsky normal form, let p̂(r) be re-estimated rule

probabilities resulting from one single step of the inside-outside algorithm using the 
urrent rule

probabilities p(r). Then: (i) The log likelihood L(:) of the training 
orpus in
reases monotoni
ally,

i.e. L(p̂) � L(p): (ii) The limit points of a sequen
e of re-estimated probabilities are stationary

points (i.e. maxima, minima or saddle points) of the log likelihood fun
tion. (iii) The inside-outside



algorithm is a dynami
-programming variant of the EM algorithm, i.e. p̂(r) 
orresponds to p̂

EM

(r)

resulting from one single EM iteration (using also p(r) as 
urrent rule probabilities).

Proof: (i) and (ii) follow using both (iii) and the 
onvergen
e properties of EM. (iii): The empiri
al

distribution of the senten
es is de�ned as ~p(y) =

f(y)

N

, where f(y) is the frequen
y of y o

uring in the


orpus y

1

: : : y

N

. Thus, for ea
h rule r with left-hand side A: p̂

EM

(r) =

P

y

N

y=y

1

P

x2T (y)

p(xjy)�f

r

(x)

P

y

N

y=y

1

P

x2T (y)

p(xjy)�f

A

(x)

:

Comparing these formulas with the re-estimation formulas presented by [4℄, it follows p̂

EM

(r) = p̂(r);

if for ea
h senten
e y, for ea
h rule r and ea
h 
ategory A the following propositions 
an be shown:

C

y

(r) =

X

x2T (y)

p(xjy) � f

r

(x); and C

y

(A) =

X

x2T (y)

p(xjy) � f

A

(x) :

This is the goal of the rest of the proof, whi
h we split in two lemmas. The �rst lemma is probably

due to [2℄, where 
orresponding formulas are used, but not expli
itly proven, to present inside-outside

estimation. The lemma says that 
ategory 
ounts 
an be 
omputed by summing 
ertain rule 
ounts.

Lemma: C

y

(A) =

P

r2G

A

C

y

(r) for ea
h senten
e y and ea
h 
ategory A.

Proof: Assuming Chomsky normal form, and y = w

1

: : : w

n

:
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X
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X

r=s
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=

1

P
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�
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e(t; t; A) f(t; t; A)

+

n�1

X

s=1

n

X
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f(s; t; A)

X

B;C2G

t�1

X

r=s

p(A! BC)e(s; r; B)e(r + 1; t; C)

1

A

=

1

P

0

�

X

1�t�n

e(t; t; A) f(t; t; A) +

n�1

X

s=1

n

X

t=s+1

f(s; t; A) e(s; t; A)

1

A

=

1

P

X

1�s�t�n

e(s; t; A) f(s; t; A) = C

y

(A) :

In the fourth equation, we used the re
ursion formula of the inside probabilities. q.e.d.

It follows that the desired identities for the 
ategory 
ounts 
an be 
al
ulated (by summation

over all rules with the same left-hand side) using the identities for the rule 
ounts, sin
e C

y

(A) =

P

A!�

C

y

(A ! �); and per de�nition f

A

(x) =

P

A!�

f

A!�

(x) : Thus, the proof of the theorem is


ompleted, as on
e as the following 
entral lemma has been proven. It states that the 
ounts of the

inside-outside algorithm 
an be identi�ed with the expe
ted rule frequen
ies of the EM algorithm.

Lemma: For ea
h senten
e y and ea
h rule r: C

y

(r) =

P

x2T (y)

p(xjy) � f

r

(x) = p(:jy) [ f

r

℄ :

Proof: The se
ond equation is simply the de�nition of the expe
tation. Assuming Chomsky normal

form, two 
ases must be 
onsidered. First, the rule has the form A! B C:

For a given senten
e y = w

1

: : : w

n

and given three spans (s; r; B), (r + 1; t; C), (s; t; A) with 1 �

s � r < t � n, let X

(s;t;A)(s;r;B)(r+1;t;C)

be the parse forest 
orresponding to the following deriva-

tion: S )

�

w

1

: : : w

s�1

A w

t+1

: : : w

n

) w

1

: : : w

s�1

B C w

t+1

: : : w

n

)

�

w

1

: : : w

r

C w

t+1

: : : w

n

)

�



w

1

: : : w

n

: Let f

(s;t;A)(s;r;B)(r+1;t;C)

(x) :=

(

1 if x 2 X

(s;t;A)(s;r;B)(r+1;t;C)

0 else

be the 
hara
ter-

isti
 fun
tion interpreting X

(s;t;A)(s;r;B)(r+1;t;C)

as a simple subset of the set of all possible syntax

trees T (y) of the senten
e y. Thus, the frequen
y f

A!BC

(x) of the rule A ! B C o

urring in the

syntax tree x 2 T (y) 
an be 
omputed as follows:

f

A!BC

(x) =

X

1�s�r<t�n

f

(s;t;A)(s;r;B)(r+1;t;C)

(x) :

Using the linear properties of the expe
ted frequen
ies p(:jy) [ : ℄ ; it follows:

p(:jy) [ f

A!BC

℄ = p(:jy)

2

4

X

1�s�r<t�n

f

(s;t;A)(s;r;B)(r+1;t;C)

3

5

=

X

1�s�r<t�n

p(:jy)

�

f

(s;t;A)(s;r;B)(r+1;t;C)

�

=

X

1�s�r<t�n

X

x2T (y)

p(xjy) � f

(s;t;A)(s;r;B)(r+1;t;C)

(x)

=

1

p(y)

X

1�s�r<t�n

X

x2T (y)

p(x) � f

(s;t;A)(s;r;B)(r+1;t;C)

(x)

=

1

p(y)

X

1�s�r<t�n

X

x2X

(s;t;A)(s;r;B)(r+1;t;C)

p(x)

=

1

p(y)

X

1�s�r<t�n

p(X

(s;t;A)(s;r;B)(r+1;t;C)

)

=

1

P

X

1�s�r<t�n

f(s; t; A) � p(A! BC) � e(s; r; B) � e(r + 1; t; C)

= C

y

(A! B C) :

The se
ond 
ase, for rules of the form A ! a, follows analogously with spans (s; s; A) and (s; s; a).

Here, the details are omitted, but see [5℄ q.e.d.
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