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Abstra
t

This paper presents some new results on relaxations and restri
tions of word-order within dependen
y

grammar (DG). The notions of dependen
y and word-order are separated in order to obtain an in�nite

s
ale of 
lasses of gradually relaxed languages, starting with the 
ontext-free 
lass. A linguisti
ally

motivated type of grammars, the proper DGs, is de�ned. At the end, the paper dis
usses the relevan
e

of degree of word-order relaxation for parsing 
omplexity.

1 Introdu
tion and basi
 notions

This paper is a substantially shortened version of the te
hni
al report [3℄, where all the details (in
l.

motivations, formal ba
kground, proofs, et
.) are to be found. This te
hni
al report is a 
ontinuation

of papers [1℄, [2℄ (linguisti
 issues) and [4℄ (formal 
onsiderations).

The notion of word-order relaxation within a dependen
y grammar (DG) means that besides the

usual (proje
tive) interpretations of a dependen
y grammar other (non-proje
tive) interpretations are

also 
onsidered. A possible approa
h is put forward in the following de�nitions.

De�nitions. A dependen
y grammar (DG) is a tuple G = (T;N; S

t

; P ), where T is the set of

terminals, N is the set of nonterminals, V = N [ T , S

t

� N is the set of starting symbols, and P is

the set of rewriting rules in the following forms:

a) A!

X

BC, where A 2 N , B;C 2 V , X 2 fL;Rg b) A! B, where A 2 N , B 2 V .

The letter L (R) in the subs
ripts of the rules of the type a) means that the �rst (se
ond) symbol

on the right-hand side of the rule is 
onsidered dominant, and the other dependent.

If a rule has only one symbol on its right-hand side, we 
onsider this symbol to be dominant.

For a redu
tion, a rule is applied as follows: the dependent symbol (if any) is deleted and the

dominant one is rewritten by the symbol o

urring on the left-hand side. The rules A !

L

BC,

A !

R

BC 
an be applied for a redu
tion of a string z for any of the o

urren
es of symbols B;C in

z, where B pre
edes C in z (not ne
essarily immediately).

The redu
tion history is re
orded in a DR-tree (delete-rewrite-tree). For a grammar G and a string

w, this tree is obtained by interpreting the rules of the grammar as lo
al trees (trees of depth one)

from whi
h the DR-tree is then 
ombined, 
f. Fig. 1. The dire
tion of the edge 
onne
ting the node

with its mother re
e
ts the nature of the daughter: if the daughter is dominant, the edge is verti
al,

if it is dependent, the edge is oblique.

The notion of DR-tree Tr over a string 
an be understood also as a derivation of a dependen
y

tree (D-tree) dT (Tr). Su
h a D-tree is a
hieved by 
ollapsing ea
h stri
tly verti
al path (sequen
e



of verti
al edges) into a single node marked by the terminal symbol from the bottom of this path,

and by keeping the oblique edges inta
t (this means that all edges in any D-tree are oblique) For a


larifying example, 
f. Fig.1. Note that both kinds of trees 
an 
ontain 
rossing edges. Note also

that the number of 
rossings in a D-tree must be less than or equal to the number of 
rossings in the

respe
tive DR-tree; in fa
t, it is even possible to have a DR-tree with 
rossing bran
hes indu
ing a

D-tree without any 
rossing.
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The left part of Fig.1. displays a DR-tree Tr parsed by G for the input senten
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The right part of Fig. 1. displays the D-tree dTr 
ontra
ted from Tr.

De�nitions. For the purpose of de�nition of 
overage, let us �rst asso
iate ea
h terminal symbol

within a string with a number marking its position 
ounted from left, and 
all this number the

horizontal index of the terminal symbol.

For any node u of a tree Tr, we shall de�ne its 
overage Cov(u,Tr) as the set of horizontal indi
es

of all terminal nodes from whi
h a bottom-up path leads to u.

Let there be a node u of a DR-tree (D-tree) Tr su
h that Cov(u; T r) = fi

1

; i

2

; : : : ; i

n

g, i

1

<

i

2

: : : i

n�1

< i

n

, 1 � j < n and i

j+1

� i

j

> 1. We say that the pair (i

j

; i

j+1

) forms a gap in the

Cov(u; T r) (or that the Cov(u; T r) 
ontains the gap (i

j

; i

j+1

)).

Let Tr be a DR-tree (D-tree), u be a node of Tr, and Cov(u; T r) its 
overage. The symbol DR-

Ng(u; T r) (D-Ng(u; T r)) represents the number of gaps in Cov(u; T r).

DR-Ng(Tr) (D-Ng(Tr)) denotes the maximum from fDR-Ng(u,Tr); u 2 Trg (fD-Ng(u,Tr); u 2 Trg).

We say that DR-Ng(Tr) (D-Ng(Tr)) is the node-gaps 
omplexity of Tr.

A tree is proje
tive if the number of gaps of any its node is equal to 0 (zero). If this is not so, the

tree is non-proje
tive. In order to measure non-proje
tivity we use the measures DR-Ng or D-Ng.

Example 2. We sti
k to the DR-tree Tr from the previous example. The 
overages of non-terminal

nodes are (in the top-down order) as follows: f1; 2; 3; 4; 5; 6; 7; 8g, f2; 3; 4; 5; 6; 7; 8g,f2; 3; 4; 6; 7; 8g

f2; 4; 6; 7; 8g, f2; 4; 7; 8g, f4; 7; 8g, f4; 8g, f8g. Hen
e DR-Ng(Tr) = 2, be
ause the number of gaps in

the 
overages does not ex
eed 2, and, e.g., f2; 4; 6; 7; 8g 
ontains the gaps (2; 4); (4; 6).



Observation. It holds that any D-tree whi
h is 
ontra
ted from a proje
tive DR-tree is a proje
tive

D-tree, but there are 
ertain types of non-proje
tive DR-trees whi
h are 
ontra
ted into proje
tive

D-trees. Some of them are linguisti
aly inadequate. This observation leads to the following de�nition.

De�nition. A DG G is 
alled a properDG if for any proje
tive D-tree dTr generated by G there

exists a proje
tive DR-tree Tr generated by G su
h that dTr = dT (Tr).

Example 3. Let us 
hoose a DG G

Ll

in the following way: G

Ll

= (T;N; fCg; P ), where T =

fa; b; 
; dg, N = fA;B;Cg, P = fA!

L

Bb;B !

L

C
;C !

L

Aa;C ! dg.

We have shown in [4℄ that G

Ll

is not a proper grammar. Namely it generates only proje
tive (very

simple) D-trees of depth 1, and on the other hand it generates a language, whi
h is not 
ontext-free,

thus it generates an in�nite set of words 
orresponding to nonproje
tive DR-trees.

The previous de�nition embodies a substantial empiri
al 
laim, namely that all DGs of a natural

language have to fall into the 
lass proper grammars - i.e. the 
laim that grammars whi
h lie outside

this 
lass are not linguisti
ally adequate.

Se
ond, as said above, we need me
hanisms for expressing language-parti
ular 
onstraints on word-

order, in parti
ular 
onstraints on number of gaps within a subtree (or lo
al subtree) headed by word

of a 
ertain 
ategory. These 
onstraints 
an be expressed easily as follows:

De�nitions. Let G = (T;N; P; S) be a DG, and Cs be a set of gap restri
tors, i.e. pairs of the

shape [A; i℄, where A 2 N and i 2 Nat[f0g. Then we say that the pair G

Cs

= (G;Cs) is a restri
ted

DG (RsD-grammar, RsDG ), and if G is a proper grammar we say that G

Cs

= (G;Cs) is a restri
ted

proper DG (prop-RsDG). Any pair [A; i℄ 2 Cs expresses the 
onstraint that only su
h DR-trees are

well-formed a

ording to the RsD-grammar G

Cs

in whi
h the value of the measure DR-Ng of any of

their 
overing subtrees with the root-symbol A is less or equal to i.

Let i 2 (Nat [ f0g [ f�g) and let us assume that � is greater than any natural number. Then, for

a (�xed) Cs and for a (�xed) string w we de�ne the following:

DR-T (w;G

Cs

; i) is the set of DR-trees generated by G over w su
h that the value of the measure

DR-Ng does not ex
eed i for them, and at the same time the 
onstraints from Cs are met for them

(in the above sense). For i = � only the 
onstraints Cs are imposed on the set of DR-trees generated

by G over w.

DR-L(G

Cs

; i) = fwj DR-T (w;G

Cs

; i) 6= ;g.

DR-L(i) denotes the 
lass of languages DR-L(G

Cs

; i), for all RsDG's G

Cs

.

DR-prop-L(i) denotes the 
lass of languages DR-L(G

Cs

; i), for all proper RsDG's G

Cs

.

For D-trees, the 
lasses D-L(i) and D-prop-L(i) 
an be de�ned in a similar way.

Mind here the important di�eren
e in the nature of the two kinds of 
onstraints. The �rst kind

is a 
onstraint whi
h has to hold for the a tree globally (i.e. for all nodes of the tree). The gap

restri
tors are 
onstraints whi
h hold only for any (
overing, indu
ed) subtree of a node whi
h is of


ertain 
ategory. We need to use both types of 
onstrains in order to a
hieve the results on hierar
hy.

De�nition. Let CF

+

be the set of 
ontext free languages without empty string. Let us take

L 2 CF

+

and k 2 f0g[Nat. We shall say that L has the degree of DR-relax-ability k (DRL(L) = k)

if there exists a RsDG GS su
h that

a) DR-L(GS; 0) = L, and

b) DR-L(GS; i) 62 DR-L(i � 1), for i 2 f1; 2; :::; kg, and DR-L(GS; k) = DR-L(GS; k + j) for any

j 2 Nat.

We shall also say that the grammar GS has the degree of DR-relax-ability k (DRS(GS) = k).



2 Results

Propositions. The following holds:

a) CF

+

= DR-L(0) = DR-prop-L(0)

b) For any j 2 Nat there exists a prop-RsDG Gp

j

su
h that j = DRS(Gp

j

).


) DR-L(0) � DR-L(1) � ::: � DR-L(n)::: � DR-L(�)

d) DR-prop-L(0) � DR-prop-L(1) � ... � DR-prop-L(n)... � DR-prop-L(�).

The proposition b) was shown in [3℄. The propositions 
) and d) are 
onsidered as its 
onsequen
es

there. The proposition 
) was shown independently already in [4℄ by using a sequen
e of improper

grammmars similar to the grammar from Example 3.

The previous 
onsiderations are 
onne
ted with parsing 
omplexity through the 
on
ept of 
overage.

Some results 
on
erning this topi
 are given in the following:

Proposition. Let us denote Nat

+

= f0g [ Nat. To any RsDG GS there exists a (sequential)

algorithm Am 
omputing for any string w an i 2 Nat

+

, su
h that i is the smallest element of Nat

+

for whi
h w 2 DR-L(GS; i), or, if su
h an i does not exist, returning a message about the fa
t that

w 62 L(GS; �). Moreover, for a given i 2 Nat

+

Am re
ognizes the membership w 2 L(GS; i) in a

polynomial time, where the degree of the polynomial in
reases with i.

Consequen
es. There exists a sequential algorithm su
h that for any i 2 Nat

+

and any L 2 DR-

L(i), the algorithm re
ognizes L in a polynomial time, where the degree of the polynomial in
reases

with i. There exists a sequential algorithm re
ognizing any L 2D-prop-L(0) in a polynomial time.

Remark. We believe that there exists an i 2 Nat

+

for whi
h there does not exist an algorithm

re
ognizing every language from D-L(i) in a polynomial time. We have even the suspi
ion, due to the

results from [4℄, that this i 
an be equal to 0. Further we 
onje
ture that there exists a sequential

algorithm re
ognizing any L 2D-prop-L(i) for any natural i in a polynomial time. We will try to

prove this in the future.
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