AUTOMATIC GRAMMAR PARTITIONING
FOR SYNTACTIC PARSING®
Po Chui Luk*, Fuliang Weng**, and Helen Meng*
*Department of Systems Engineering and Engineering Management
The Chinese University of Hong Kong, Hong Kong, China
**Robert Bosch Corporation
Research and Technology Center, Palo Alto, CA94304
{pcluk, hmmeng}@se.cuhk.edu.hkiliang.weng@rtc.bosch.com

Abstract
This paper begins by reviewing an effort in gramrdacomposition (or grammar partitioning) for natura
language to achieve modular parsing. We then p@m@onovel automatic approach for grammar partitgyn
instead of the manual partitioning used in systdfmperiments are conducted with GLR parsing forwedl Street
Journal (WSJ) corpus in the Penn Treebank whegtesgtammar GLR parsing is impractical. Our ressiftew that
the automatic grammar partitioning method basedhenmutual information criterion fares better treamandom
partitioning method, and exhibits efficiency in giag and high parse coverage.

1 Introduction

Due to the complexity of natural language itseffe tgrammar that describes the language can be very
complex. The traditional way of using a single searand single grammar leads to inefficiency and
complication in natural language system. Usingdh@ccurrence feature in the natural languagenigrar
rules can be automatically clustered into sub-grarsrto achieve modular parsing.

Studies are related to grammar decomposition fatulaw parsing have been reported recently. Amtiip [
introduced an approach that distributes grammarapplications in multiple processors within a tiparser
framework. Zajac et al [9] presented a modular icaifon-based parsing, a monolithic grammar is
decomposed into sub-grammars by constituent cleatdn, and sub-grammars are combined to build a
parsing application. Basili et al [2] proposed adular parsing framework through the idea of gramma
stratification (verb subcategorization). Howevigit grammar decomposition is conducted manually.

Our previous work showed that grammar partitionimgps reduce the overall parsing table size when
compared to using a single grammar in Air Travébdmation Systems (ATIS) domain [4]. In this paper
we propose aautomatic grammar partitioning method for syntactic parsing based on the WS&Esees in
the Penn Treebank. We use the sub-parsers wittigragtl grammars to parse the test data in the WSJ.

2 Grammar Partitioning

2.1 Definitions and Concepts

We first review some definitions and concepts usedhe paper for easier readability, focusing on
context-free grammars (CFG)[7]. The entire gramrgrpartitioned into sub-grammars based on its
production rules. The interaction among differamb-grammars is through non-terminal sets,INeUT and
OUTPUT, and avirtual terminal technique. The virtual termineal is essentially a non-terminal, but acts as if
it were a terminal. TheypuT of a sub-grammar is a set of non-terminals thaevpeeviously parsed by other
sub-grammars. TheuTpPuT of a sub-grammar are those non-terminals that wemsed based on this
sub-grammar and used by other sub-grammars asNheir symbols.

2.2 Automatic Grammar Partitioning Method

Based on the discussion of [8], grammar partitigngan be seen as the reverse process of grammar
clustering. Our partitioning procedure begins wita set of the finest grammar partition, i.e.,hepartition
contains exactly one grammar rule. We form a pantifor every grammar rule. For instance, if a
grammar partition only contains Rule 3, tReuT set of Rule 3 is the non-termingé and theouTPUT set is

! This work is supported by Intel Corp., and it wasried out while the second author was with I@ieina Research Center.



PP-DIR. For training on the parsed sentence of Penn @rdein Figure 1, we use a calling matrix in Fig@re
to record the calling frequencies between sub-graranTheouTPuT andINPUT of the sub-grammars are in
the columns and rows of the matrix respectively. the calling matrix, the entry at romand columrj is the
frequency of sub-grammarcalling sub-grammaj. We start with sub-grammars having an emphuT set
(zero row in the calling matrix), duplicate and gethem for all of its caller sub-grammars.
2.3 Calculating M utual Information
We intend the partitioned grammars to have closeraations within each sub-grammar, but infrequent
interactions between different sub-grammars. Is haper, we use the Mutual Information of calldidea
co-occurrences between two sub-grammars to metsioseness of the interactions [3].
SupposeG; and G; are two sub-grammars in a grammar partition witlsub-grammars, the mutual
information of these two sub-grammars is defined as
MI(G,,G,) = log PG.G)) _ log— Freq(Gin,Gj) +log 3 Freq(G,.G,) (1)
P(G, ) P(* G)) = G S e
Z req(G,,GJ)ZFreq(G,,GJ)
& &

Where,Freq(G;, Gj) andP(G;,G)) are the frequency and probability®f calling G;, P(G; ») the probability
of G; being a caller, anB(*,G;) the probability ofG; bemg a callee, as shown in followmg equations.
Freq(G,,G,) Freq(G,,G ) Freq(G,.G))
PG.G)=F———  pey=2_  PG)=Z
ZFrGQ(Ginj) zFreq(Gi,Gj) ZFreq(Gi,Gj)

i,]=1 bz i,J=1

For each merge iteration, we find the maximum vati#i(G;, G)) in the calling matrix, and merge the
corresponding sub-grammars pair together to fordarger sub-grammar. For example, in Figure 1,
partition 3 (Rule 3PPDIR - #IN NP) is merged with partition 4 (Rule &P — NP NP-ADV), because they
have the highest Mutual Informatiolll(Gs Gg), in the matrix of Figure 2. The merge operatioftasated
until the process reaches the maximum number dfQiterations. To prevent partitions being too éarg
size up-bound is used for stopping merges durirgitdrations. To prevent partitions being too smiall
post-processing stage, we further merge togetteewdiny small ones that share the samepPuT set. The
grammar size is defined as follows widmgth(x) is the length of string:

|Gz § length(Aa) (2)
(A a)oP

s 1:S - NP-SBJVP
2:VP - #VBD NP PPDIR PPDIR

'NP — #PRF$ #NN
 NP-SBJ — #NNP#NNP#NNP

#NNP #NNP #NNP #VBD #PRPE #NN #TO #CD #NNS #IN  #CD  #NNS #DT #NN

3:PPDIR — #IN NP

PP-DIR 4: NP - NP NPADV

NP 5:NP-ADV — #DT#NN
6: PPDIR — #TO NP
MNP-SB] g SR
e A\ 7: NP — #HCD#NNS

8
9

bell indostries inc. incrensed its quarterly to 10 cents from seven ceénts 0 share

Figure 1: An example parse tree drawn from the W&dences and its corresponding grammar rules.

L 5a 5. MI(Gy,G;) =log[L/(2x1)] +log(9)
> 0010010103 MI(G, Gg) =log[1/(2x1)] +log(9)
4 0000101002 MI(G,, Ge) =log[ 1/(3x1)] +109(9)
5 0000000000 MI(Gy, Gg) =log[1/(3x1)] +log(9)
6 0000001001 MI(Gs Gs) =log[L/(1x1)] +log(9)
7 0000000000 MI(G,4 Gs) =log[1/(2x1)] +10g(9)
g 8 8 8 8 8 8 8 8 8 8 MI(G4 G;) =log[1/(2x2)] +10g(9)
Mi =| 1x2)] +1
> 011111211 9 (Ge, G7) =log[ 1/(1x2)] +10g(9)
Figure 2: The calling matrix of the grammar anccitenputed mutual information.



3  Composing Sub-parsersfor Multiple Grammars

In our system, each sub-grammar has its own LR{f9ipg table and GLR parser, and all the sub-psueser
composed to obtain an overall parse of the inpatesees through a lattice with multiple granulesti
(LMG), an interface to record theiPuTts and outpPuts of all sub-parsers [8]. The particular parser
composition method used is the bottom-up cascaalguyithm.

To improve the efficiency, the left-corner virtuatrminals frequencies are collected from the trgjrdata
for each sub-grammar. Given an incoming input emlgan LMG, this frequency information is used toka
the priority of invocation of sub-parsers in an Bblist. The sub-parsers that are in the N-lisstale
invoked, and all the rest sub-parsers are discardédwever, each sub-parser could end at any edgeei
LMG. To avoid creating too many new edges on tMGLfor each parser invocation, we only select one
resultant parse tree as an output parse if thepegsirns successfully.

4  Experiments

We only report the comparison between GLR parsmssdf automatic partitioned grammars and the sitzes
a randomly partitioned grammar partition. Thisiisikar to the LALR(1) case in [5], where excessloag
time is required to compute GLR parsing tablegliermonolithic Penn Treebank grammar, and therefere
single GLR parser is not included in the comparison

4.1 Automatic Grammar Partitioning by the Mutual Information Criterion (M1)

Automatic grammar clustering was trained on sesti@® to 21 of the Wall Street Journal of Penn Tae&b
which contains 41,603 sentences. There are tQ2all§96 rules extracted from the training sententhe
maximum sub-grammar size is set to 1,000. Thexdvews parameters for the iterative merge operatios:
minimum calling frequency of two sub-grammars tonferged and the maximum number of iterations. The
former is set to 4 in order to avoid sparse datal the latter to 2,000.This way, we obtained 357
sub-grammars.

4.2 Random Grammar Partitioning without any Heuristics (Random)

As a controlled experiment, we randomly cluster éxracted grammar rules into clusters. To obtain a
comparable number of clusters as the one usingntiteial information criterion, we partition the 296
rules into 351 sub-grammars with 59 rules per eludo rule duplicate in any clusters.

4.3 Parser Sizes

We used the same LR(1) parsing table generatooristict LR(1) tables for these two partitions gatex
using the above two methods. The size of the pafee a grammar partition is the sum of the nuntfer
states in all sub-parsers. The sizes for the aatiorpartitioning and the random partitioning a1 207
and 469,484 respectively. So, the former is ondg lhan half of the latter. Figure 3 show the lgisams of

the number of states and the number of statesfrule two grammar partitions. In both cases, trzrgnar
partitioned with Ml is much smaller in both measuf@umber of states, and states/rule). This clearly
indicates that using MI for grammar partitioninige toverall parsing table sizes can be much savidtice
that the smaller numbers of states and the ratipt/igood determinism of the sub-parsers.

4.4 Parsing Results

We use our multi-parser framework to parse the W&dtences in Penn Treebank's section 23. 2,403
sentences with length no more than 50 words aeetesl from section 23. The average input sentesragh

is 20.4 POS tags. For the N-best list describedeiction 3, N is set to 3 so that only the top kean
sub-parsers are used for invocation in both paniiti The parsing output of each input sentenae IsMG.
Since there may be multiple paths in the LMG, aNit algorithm is used to find the shortest pathihia
LMG to represent the sentence. Table 1 shows th&ingacoverage and speed on the test set. Fulepars
means there is a parse tree covering the wholé oppery. The experiment was performed on Intel iBent

Il 1GHz CPU, 512 Mbytes memory. There is traddwtween the parse coverage and the parsing speed.

2 If we set the maximum sub-grammar size be 500 aimiimam calling frequency be 4, the iterative meggeration
will end around 2000 iterations (no more two suargmars can be merged). To control the processimg fior merging,
the maximum number of iterations allowed is cappieP000 and the maximum grammar size is cappe@Gi. 1



The low parse coverage of random partitioned grarammaggests using leftmost frequencies is not émtag
give a good prediction. Our further experiment giilidy the changes in parsing results if increasin

MI Random
Full parse 92.1% 45.3%
Parsing speed | 4.19seconds/senterce 0.68 seconds/sentence

Table 1: The parsing results of the WSJ test dagetipn 23) in the Penn Treebank.

Histogram of no. of states Histogram of no. of statesjrule
140 200
Z 100 g 150
v i
&0 O
bS] 0 _ 5 100
g S
20 I_| I_|
o Ll lon, ‘n‘J'I‘Il‘ ] {110 o
O O & & & & & & & SRS o S O
QP & BN \00 \(,,0 1190 4’00 @g ’LQQ [\ % A & N < s < oS
no. of states N no. of states/rule

Figure 3: The histograms of number of states am@s{per rule in the partitioned grammar set.

5 Conclusions

In this paper, we have presented our automatic igrampartitioning algorithm and experimented witle th
WSJ sentences of the Penn Treebank. Grammar melekedved from the parse trees in the training.datn
our novel automatic grammar partitioning algoritiviytual Information criterion is used to clustefesito
form sub-grammars. Experimental results show thiatautomatic grammar partitioning approach camced
the parsing table size by more than 50%, comparigd a random decomposition method. When the
partitioned grammars are used for GLR parsers teepthe testing data, the results are encouragirtgvo
counts: (1) the GLR parser was impractical usimgaolithic grammar for Penn Treebank task, whilis it
quite feasible using our automatic partitioned apph; and (2) we achieved a parse coverage of 82%hd
test set with the automatic partitioning methodiohtsuggests that our parsing framework is gergiale to
unseen test data.

References

[1] Amtrup, J., “Parallel Parsing: Different Didirition Schemata for Charts”, In Proceedings o#th&VPT,
Prague, Sep 1995.

[2] Basili, R., Pazienza, M.T. and Zanzotto, F.MCustomizable Modular Lexicalized Parsing”, In
Proceedings of 6IWPT, February, 2000

[3] Church, K. and Hanks, P., “Word Association Mg Mutual Information, and Lexicography”. In
Computational Linguistics, Vol. 16, No. 1., pag@s2D, 1990.

[4] Luk, P.C., Meng, H. and Weng, F., “Grammar Riariing and Parser Composition for Natural Languag
Understanding”, In Proceedings of the ICSLP, Octop@00.

[5] Moore, R.C., “Improved Left-Corner Chart Paggifor Large Context-Free Grammars”, In Proceedofgs
6" IWPT, February 2000.

[6] Tomita, M., Efficient Parsing for Natural Lanage, Kluwer Academic Publishers, MA, 1985.

[7] Weng, F.L. and Stolcke, A. “Partitioning Grammand Composing Parsers”, In Proceedings"diMPT,
1995. For the full paper, see web page://www.speech.sri.com/people/fuliang/publicaditml

[8] Weng, F.L., Meng, H. and Luk, P.C., “Parsingattice with Multiple Grammars”, In Proceedings &t
IWPT, February 2000.

[9] Zajac, R. and Amtrup, J.W., “Modular UnificaticBased Parsers”, In Proceedings B\8/PT, February,
2000.




