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Abstra
t

Spoken utteran
es do not always abide by linguisti
ally motivated grammati
al rules. These utteran
es

exhibit various phenomena 
onsidered outside the realm of theoreti
ally-oriented linguisti
 resear
h. For a

language model that extends linguisti
ally motivated grammars with probabilisti
 reasoning, the problem

is how to feature the robustness that is ne
essary for spee
h understanding. This paper addresses the

issue of the robustness of the Data Oriented Parsing (DOP) model within a Dut
h spee
h-based dialogue

system. It presents an extension of the DOP model into a head-driven variant, whi
h allows for Markovian

generation of parse-trees. It is shown empiri
ally that the new variant improves over the original DOP

model on two tasks: the formal understanding of spee
h utteran
es, and the extra
tion of semanti
-


on
epts from \word-latti
es" output by a spee
h-re
ognizer.

1 Introdu
tion

Spee
h understanding is a 
hallenging task for probabilisti
 parsing models. The problem with spee
h

utteran
es is that they do not always abide by linguisti
 grammar rules. Spee
h utteran
es exhibit

phenomena su
h as repairs, repetitions and hesitations, all of whi
h are 
onsidered problems outside

the domain of linguisti
 resear
h. The 
hallenge for a parsing model is to deal with su
h phenomena.

A greater 
hallenge is set by real spee
h understanding tasks in noisy environments, su
h as spee
h

over the telephone. In su
h 
ases, the spee
h-re
ognizer's a

ura
y degrades and language models

might be of some use in re
overing some of the lost a

ura
y.

OVIS is a national proje
t of the Dut
h Organization for S
ienti�
 Resear
h (NWO) aiming at

building a prototype dialogue system for the domain of railway time-table information. The dialogue

in OVIS takes pla
e over the telephone. The system intera
ts through \dialogue" with a human

user aiming at providing the user with travel information. The system 
onsists of di�erent modules

in
luding a dialogue manager, a spee
h re
ognizer, a Natural Language Pro
essing (NLP) module,

and a language generation module. In spee
h understanding, we fo
us on the role of the NLP module

whi
h 
onsist of the interfa
e between the spee
h re
ognizer and the dialogue manager. The output

of the spee
h re
ognizer is pro
essed by the NLP module, and the \semanti
 
ontent" of the user's

utteran
e is extra
ted and supplied to the dialogue manager.

The OVIS system provides an interesting problem for language modeling be
ause it addresses a real

appli
ation of the pro
essing of spoken language in a noisy environment. Furthermore, the task of

language understanding in OVIS has been formalized in terms of domain dependent semanti
 
riteria

making the evaluation of language models more linked to the a
tual task. In earlier work, two language



models were 
ompared on this task [22, 21℄: a system based on a broad-
overage grammar for Dut
h,

and a system based on the Data Oriented Parsing (DOP) model.

In this paper we address the problem of robust language understanding within the OVIS domain

using the DOP model. We present a new version of the DOP model whi
h is more suitable for

the pro
essing of spoken language utteran
es than the original DOP model. Robustness in this new

version, 
alled the Tree-gram model, is the result of integrating into DOP the \Markovian" approa
h

for grammar-rule generation, as in some exiting models, e.g. [10, 8℄. We exhibit signi�
ant empiri
al

improvements, over the DOP model, in both OVIS tasks: (1) the formal understanding of spoken

utteran
es and (2) the extra
tion of the \best" semanti
 
ontent from an ambiguous word-latti
e

(also 
alled \word-graph"), output by a spee
h-re
ognizer.

The stru
ture of this paper is as follows. Se
tion 2 provides a short overview of the OVIS system, the

OVIS tree-bank and the experien
e with applying DOP within OVIS. Se
tion 3 provides a review of

the DOP model and presents the new version: the Tree-gram model. Se
tion 4 attempts a theoreti
al


omparison between the two models 
on
erning the issue of robustness. Se
tion 5 exhibits the empiri
al

results of experiments in applying DOP and the Tree-gram model to spee
h understanding within the

OVIS domain. Finally, se
tion 6 
on
ludes the paper.

2 Brief overview of OVIS

In the OVIS demonstrator system, the 
ommuni
ation with the human user takes pla
e over the

telephone through a spoken-language dialogue aiming at providing the user with travel information.

The dialogue manager in OVIS maintains an \information state" to keep tra
k of the information

extra
ted from the user's answers to questions posed by the system. This information state 
onsists

of a small number of slots that are typi
al of train travel information, e.g. origin, destination, date,

time. The semanti
 
ontent of a user's utteran
e is used for updating the slots in the information

state. Hen
e, the output of the natural language pro
essing module is exa
tly an \update expression"

spe
ifying what slots must be updated and with what values. In OVIS, these update expressions are

terms in a formal language of \update semanti
s" developed by [23℄. This update language provides

ways for expressing various updates in
luding \spee
h-a
t information" su
h as denials and 
orre
tions.

Here, we are merely interested in the fa
t that the update-language has been expressed in terms of

a formally spe
i�ed hierar
hy of the slots: for example, the slots \pla
e" and \time" provide more

spe
i�
 information over the slot \destination".

The OVIS tree-bank [13℄ 
ontains 10000 utteran
es annotated synta
ti
ally and semanti
ally. The

interesting part of the OVIS tree-bank is that the semanti
s is largely 
ompositional [5℄: the se-

manti
s of a non-terminal node is expressed in terms of the semanti
s of its 
hild-nodes; this is

expressed as a simpli�ed form of Lambda expressions, e.g. \(D1;D3)" where Di refers to the i

th


hild.

The part-of-spee
h (POS) tag labeled nodes are annotated with ground semanti
 expressions, e.g.

\(PPN-amsterdam amsterdam)" or \(PP-origin.pla
e naar)". In [5℄ a method is also des
ribed for

transforming the semanti
 expressions at every node into a label using the semanti
 hierar
hy of [23℄:

roughly speaking, the semanti
 expressions are 
ategorized a

ording to the kind of slots whi
h they

aim at �lling, e.g. pla
e expressions spe
ify a 
ategory while time expressions spe
ify another, dif-

ferent 
ategory. Cru
ially, this semanti
 
ategorization aims at labeling the grammar rules in the

tree-bank trees in su
h a way that it is possible to retain the exa
t semanti
s of the tree-bank trees

unambiguously. In this work we employ the OVIS tree-bank enri
hed with this 
ategorization s
heme.
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Figure 1: An example OVIS parse-tree.

Figure 2 exhibits an OVIS parse-tree with the 
ompositional semanti
s shown under the label of

every node. The update expression of the whole utteran
e is 
omputed 
ompositionally in a bottom-

up fashion, substituting for Di the update expression of the i

th


hild. The English equivalent of

the given utteran
e is \I do not want to travel from Amsterdam I want to travel tomorrow". The

update expression for this parti
ular parse-tree is: (user.wants.travel.[#origin.pla
e.town.amsterdam℄;

user.wants.travel.tomorrow), where the operator \[#A℄" denotes the denial of A, \A;B" denotes the


on
atenation of update expressions A and B and \A.B" denotes that B is a more spe
i�
 slot than A

or that B is the update value for slot A

The present paper addresses the problem of applying the Data Oriented Parsing (DOP) model [15, 2℄

to the understanding of utteran
es and word-graphs that are output by a spee
h re
ognizer [14℄ in the

OVIS domain. In earlier experiments [22℄, the DOP model s
ored signi�
antly worse than a 
omplex

hybrid system whi
h 
ombines a broad 
overage grammar for Dut
h, a word trigram model and a

smart 
on
ept spotting strategy [21℄. Our resear
h revealed three sour
es of problems with DOP: la
k

of robustness, weak lexi
alization and a biased probability estimation method. Among these three

problems, the fo
us here is on robustness.

In [18℄ we extend the DOP model with 
apabilities similar to the so 
alled Markov-Grammar models

e.g. [10, 8℄. The new model, 
alled the Tree-gram model, is 
apable of generating parse-trees that the

original DOP model is not 
apable of generating, possibly enhan
ing robustness. Furthermore, the

model allows for head-driven parsing, albeit the implementation des
ribed in [18℄ is not head-lexi
alized

in the sense argued for by e.g. [10, 8℄. Hen
e, the problem with the Tree-gram model, just like DOP,

is that it does not 
ondition the model parameters on lexi
al information, i.e. word-o

urren
e.

The question is whether this kind of "weakly lexi
alized" model 
onstitutes any improvement on the

original DOP model ? Next we show that the Tree-gram model signi�
antly improves on the results

of the DOP model, in parsing and interpretation of spee
h utteran
es as well as word-graphs. We

show that on parsing and interpretation of spee
h utteran
es, the model a
hieves results that 
ome

very 
lose to those exhibited by the Dut
h broad 
overage grammar on the same task. Despite these



en
ouraging results, we 
on
lude this study with stressing the weakness of the unlexi
alized nature of

the DOP model and the 
urrent unlexi
alized implementation of the Tree-gram model, and spe
ulate

on future work in this dire
tion.

3 Overview of the DOP and Tree-gram models

A probabilisti
 model assigns a probability to every parse-tree given an input senten
e S, thereby

distinguishing one parse

T

�

= argmax

T

P (T jS)

= argmax

T

P (T; S)

P (S)

= argmax

T

P (T; S):

The probability P (T; S) is usually estimated from 
o-o

urren
e statisti
s of linguisti
 phenomena ex-

tra
ted from a given tree-bank. In generative models, the tree T is generated through top down

derivations that rewrite the start symbol TOP into the senten
e S. Ea
h rewrite-step involves

a \rewrite-event" together with its estimated probability of appli
ation. Next we provide a short

overview of two generative models: the DOP model and the Tree-gram model.
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Figure 2: Some subtrees: DOP de
omposition.
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3.1 The DOP model

In Data-Oriented Parsing (DOP1) e.g. [2℄, the rewrite-events are \subtrees" of the tree-bank trees: a

subtree of a given parse-tree is a multi-node 
onne
ted subgraph in whi
h every node either dominates

all its 
hildren

1

or it dominates none of them. If we view the tree-bank trees as generated by derivations

of some linguisti
 Context-Free Grammar (CFG) [1℄, then a DOP subtree 
onsists of one or more


onne
ted CFG rules that 
o-o

ur in a tree-bank tree. Hen
e, the parse-trees and senten
es whi
h

a DOP model re
ognizes are exa
tly those whi
h the original linguisti
 CFG does. The di�eren
e,

however, is in the fa
t that DOP assigns probabilities to the subtrees, whi
h 
an be seen as probabilities

of 
o-o

urren
es of CFG rules. Figure 2 shows some DOP subtrees extra
ted from the parse-tree

that is identi
al to the subtree in the top-left 
orner of the same �gure.

The probability of a subtree in DOP is estimated from its relative frequen
y in the tree-bank.

Let root(t) denote the root-label of the root of any subtree t, and let freq(x) denote the frequen
y-


ount of subtree x in the tree-bank. The probability of a subtree t is estimated by the formula:

1

Thereby preserving the dire
t dominan
e relations of the original tree-bank parse-trees.



P (tjroot(t)) =

freq(t)

P

x:root(x)�root(t)

freq(x)

. The probability of a derivation d, involving subtrees t

1

� � � t

n

,

is estimated as

P (d) =

Y

1�i�n

P (t

i

jroot(t

i

)):

A

ording to Bod [3, 4, 2℄, the probability of a parse-tree T and a senten
e S, generated respe
-

tively by the sets of derivations D(T ) and D(S), are estimated by P (T; S) =

P

d2D(T )

P (d), and by

P (S) =

P

d2D(S)

P (d). In [16℄ it is shown that the problems of disambiguation under the DOP model,


on
erning the 
omputation of the Most Probable Parse (MPP) (and the Most Probable Senten
e

(MPS) in a word-graph) are NP-
omplete, i.e. it is not possible to devise deterministi
 polynomial

algorithms to exa
tly 
ompute the MPP (or MPS from a word-graph). Here we suggest to approx-

imate the probabilities of a parse-tree T and a senten
e S as follows: P (T ) � argmax

d2D(T )

P (d),

P (S) � argmax

d2D(S)

P (d). This formulation has the advantage of being eÆ
iently solvable by a

polynomial-time algorithm, similar to the well known Viterbi-algorithm [24℄. The negative side, how-

ever, is that it still 
ontains some of the bias that the original DOP de�nition had (see [6℄) and that

it under-estimates the probabilities. However, we think that this under estimation in itself is not

harmful sin
e the exa
t values are not important as mu
h as the relative ordering between the parses

(and senten
es). We suspe
t that under some assumptions that has to do with the nature of the given

tree-bank annotation, the relative frequen
y of DOP subtrees, as in e.g. Sto
hasti
 CFGs (SCFGs),

provides a \useful" ordering over the derivation probabilities. Sin
e this is not the pla
e to elaborate

on this theoreti
al point, we seek the help of empiri
al eviden
e on this issue, as exhibited in the

experiments in se
tion 5.

3.2 The Tree-gram model

In the Tree-gram model, the set of \rewrite-rules" subsumes the CFG rules and the 
onne
ted 
om-

binations thereof that 
an be extra
ted from the tree-bank, i.e. the DOP subtrees. We refer to these

rewrite-events with the term Tree-grams (abbreviated T-grams). A T-gram extra
ted from a parse-

tree in the training tree-bank is a multi-node 
onne
ted subgraph of that parse-tree. Note that the set

of T-grams extra
ted from a tree-bank subsumes (or is equal to) the set of DOP subtrees extra
ted

from the same tree-bank; the set of T-grams in
ludes 
onne
ted subgraphs of the training parse-trees

whi
h do not retain the dire
t dominan
e relation (i.e. parent-
hild) as found in the tree-bank. Hen
e,

when extra
ting a T-gram from some node �, not ne
essarily all 
hildren of � are in
luded into the

T-gram. In the 
urrent implementation, however, we demand that the 
hildren of � that are in
luded

in the T-gram are dire
t sisters to one another, e.g. we do not allow in
luding the �rst and the

�fth 
hild if any of the se
ond, third and fourth are not in
luded also. This simpli�es the parsing

algorithms. Some example Tree-grams extra
ted from the parse-tree in �gure 3 are shown in Figure 4.

T-grams are inspired by Markov Grammars [10, 8℄: in fa
t T-grams provide a dire
t general-form

both for Markov Grammar rules (
alled bilexi
al dependen
ies) as well as DOP subtrees. Next we

des
ribe in short how T-grams are employed in the Tree-gram model. Further formal detail 
an be

found in [18℄.

We assume that for every non-leaf node � in the training tree-bank trees, one of its 
hild nodes is

spe
i�ed as being the \head-
hild": the 
hild that dominates the head-word of �. The Tree-grams

a
quired from the tree-bank trees are partitioned into three subsets, 
alled roles, a

ording to the kind

of 
hildren that the root of a Tree-gram dominates. When a Tree-gram's root dominates its head-
hild
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Figure 4: Some T-grams extra
ted from the tree in �gure 3: the supers
ript on the root label spe
i�es

the T-gram role,. e.g. the left-most T-gram is in the LEFT role. Non-leaf nodes are marked with \["

(left-STOP) and \℄" (right-STOP) to spe
ify whether they are 
omplete from the left/right or both

(the other non-
omplete nodes, i.e. from both sides, are not marked at all).
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Figure 5: A T-gram is generated by atta
hment at � in a partial parse-tree. The T-gram being

generated is marked with L (or R) to denote its role. We show a LEFT Tree-gram being generated.

(and possibly other 
hildren), the Tree-gram is in the \Head" role; when it dominates only 
hildren

whi
h are originally found (in the tree-bank tree from whi
h the Tree-gram was extra
ted) to the left

(right) of the head-
hild (e.g. left-modi�ers of the head-
hild), it is in the LEFT (RIGHT) role. In

essen
e, these roles express information about the nature of the Tree-gram with respe
t to the 
ontext

from whi
h it was extra
ted. Some example Tree-grams are shown in Figure 4.

In 
ontrast with DOP subtrees, Tree-grams allow also for a \horizontal" expansion of the parse-trees

as depi
ted in �gure 5. This horizontal expansion of parse-trees takes pla
e by 
ombining Tree-grams

labeled with the same root node in a \Markovian fashion". Formally speaking, the horizontal 
ombi-

nation of Tree-grams must have a probability of terminating. Therefore, the horizontal 
ombination of

Tree-grams is governed by a formal de�nition of when a node \terminates". The termination pro
ess

is \inherited" from the tree-bank trees: the sequen
e of 
hildren of every node in a tree-bank tree is

expli
itly marked as terminated from the left and from the right by a spe
ial symbol \STOP". To

the left of the sequen
e of 
hildren, the STOP is denoted by \[" and to the right it is denoted by \℄".

When a Tree-gram is extra
ted from a tree in the tree-bank, the STOP symbols (\[" and \℄") might

either be in
luded or they might not be in
luded with the non-leaf nodes of the Tree-gram. For any

non-leaf node in a Tree-gram, if both STOP symbols are in
luded along with its 
hildren, the node is


alled 
omplete. When STOP is absent from either the left or right hand sides of a node (or both),

the node is in
omplete. In the latter 
ase, the partial parse-trees that the node dominates may be

extended with additional Tree-grams as des
ribed next (hen
e, non-terminal leaf nodes are always

in
omplete allowing substitution as in DOP). See �gure 4 for examples.

Tree-gram rewrite pro
esses, i.e. derivations, start from the start-symbol TOP, whi
h is an in-


omplete non-terminal. At ea
h rewrite-step, an in
omplete node � is sele
ted and rewritten by a

suitable Tree-gram as follows. When � is a leaf node labeled with a non-terminal A, it is rewritten

by a HEAD Tree-gram with a root labeled A (mu
h like rewriting takes pla
e in DOP, i.e. \verti
al



expansion"); when a non-leaf node � is labeled with a non-terminal A and it is in
omplete, it may

be rewritten with LEFT and RIGHT Tree-grams that have roots also labeled A. The latter rewriting

allows horizontal expansion of the parse-tree at node � (see Figure 5). The rewrite pro
ess terminates

when the resulting parse-tree 
onsists entirely of 
omplete nodes.

The 
onditioning 
ontext (or history) h

t

in the probability P (tjh

t

) of a Tree-gram t, 
onsists of the

label of the root-node of t (i.e. root(t)), the role of t (i.e. HEAD, LEFT or RIGHT) and the following

spe
i�
 information:

� A HEAD Tree-gram's probability is further 
onditioned on the POS tag of the head-word of the

root node of t.

� A LEFT (RIGHT) Tree-gram's probability is further 
onditioned on

{ the label of the head-sister of its root-node, and on

{ the label of the sister to the right (resp. left) of the root-node in the original tree-bank tree,

thereby yielding a 1

st

-order Markovian pro
ess.

Our 
onditioning 
ontext is similar to those used in e.g. [8℄. Just like in DOP, the probability of a

Tree-gram derivation d involving the sequen
e of T-grams t

1

; � � � ; t

n

is estimated by

P (d) =

n

Y

i=1

P (t

i

jh

t

i

):

As we argued for DOP earlier, we approximate the probabilities of a parse-tree and a senten
e as the

highest probability of any of their derivations.

4 A theoreti
al 
omparison on robustness

Formally speaking, both models assign probabilities to 
ontext-free languages. However, as Bod

shows [2℄, the probability distribution assigned to the members of the set of parse-trees generated

by a DOP model 
annot always be generated by a Sto
hasti
 Context-Free Grammar (SCFG) [11℄.

For a given tree-bank, the set of senten
es a

epted (or generated) by the Tree-gram model a
quired

from that tree-bank is a superset of (or equal to) the set a

epted by the DOP model a
quired from

the same tree-bank. The same relation applies between the respe
tive sets of parse-trees generated

by both models. Hen
e, the Tree-gram model, just like \Markov-grammars", generates senten
es and

parse-trees that 
annot be generated the DOP model or by the linguisti
 grammar that underlies the

annotation of the tree-bank.

The question of 
ourse is: how do the distributions over derivations, parse-trees and senten
es

generated by both models 
ompare to one another ? The empiri
al estimation of probabilities from

a tree-bank makes this 
omparison 
ompli
ated due to problems of bias in the 
urrent method of

probability estimation whi
h both models su�er from [6℄. However, if we restri
t the subtrees and

Tree-grams that are a
quired from the tree-bank by formal means (i.e. restri
tions on depth or width

of a subtree/Tree-gram { see se
tion 5), then one 
an already sense that both models will assign a

\similar" relative ordering to the derivations that they generate. This 
an be seen only intuitively

by the fa
t that all subtrees of the DOP model are in
luded as HEAD Tree-grams in the Tree-gram

model with the same relative frequen
y (up to a �ner 
onditioning 
ontext in Tree-grams). In any


ase, the Tree-gram model, at least theoreti
ally, allows for a more \subtle" model than the DOP



system Mat
h Pre
. Re
all

DOP 93.0 94.0 92.5

Tgram 94.5 95.0 95.6

DBCG 95.7 95.7 96.4

Table 1: Results on utteran
es

system WA SA Mat
h Pre
. Re
all

DOP 72.2 71.8 77.2 82.0 77.3

Tgram 79.6 74.0 81.4 85.2 84.3

Tgram - DOP +7.4 +2.2 +4.2 +3.2 +7.0

Table 2: Results on word-graphs

model. The question is of 
ourse, does this subtlety of the Tree-gram model translate into more

robust pro
essing for spee
h understanding ? We investigate this question in the 
ontext of the OVIS

spee
h-understanding system in an empiri
al way in the next se
tion.

5 Parsing and interpretation of the OVIS domain

Before applying the Tree-gram model to the OVIS domain, it is ne
essary to spe
ify how we signify

the head-
hildren in the tree-bank trees. Given the 
ompositional semanti
s in the tree-bank, with

a few ex
eptions, every CFG rule has a semanti
 formula asso
iated with it. This formula expresses

how the semanti
s of the node is 
omposed from the semanti
s of its 
hildren using a small set of

operators, e.g. 
on
atenation \D1;D2", 
orre
tion \[!D2℄", denial \[#D3℄". Some of these operators

take a single argument, others take two arguments. We de
ided to spe
ify, the head-
hildren using

these formulae through a few rules of thumb, (e.g. take the �rst 
hild spe
i�ed in the formula, ex
ept

for a few spe
i�
 situations). This spe
i�es the head-
hildren for all tree-bank nodes unambiguously.

The Markovian nature of the Tree-gram model, allows us to apply the Katz ba
ko� smoothing

te
hnique [12, 9℄ using the 0

th

-order Markovian 
onditioning for LEFT and RIGHT Tree-grams: we

apply that to all T-grams of depth 1 only. Furthermore, we allow ba
ko� on the stop symbols \[" and

"℄" on the root-node of a T-gram of depth 1 in one of two ways: (1) we add a stop symbol \[" to the

left (\℄" to the right) of the node with a suitable ba
ko� probability, or (2) we remove these symbols,

if they are there, with a suitable ba
ko� probability. The resulting \ba
ko� T-grams" are in
luded in

the model together with the original ones. For semanti
 interpretation, all new rules generated by the

Tree-gram model are assigned a heuristi
 formula depending on the parse-tree in whi
h they o

ur;

the heuristi
 semanti
s of a new rule depends on the types of the semanti
s of the 
hild-nodes, and

aims at 
ombining these types in a

eptable ways (with respe
t to the OVIS update language).

We use the same parser for the DOP model as well as the Tree-gram model [17℄. This is a CYK [25℄

based algorithm using an optimized version of the Viterbi-algorithm with a simple pruning te
hnique.

The parser is appli
able to utteran
es as well as word-graphs (the latter extension is straightforward

- see [19, 17℄).

We trained a DOP model (with subtree depth

2

upperbound 4) and a Tree-gram model (with Tree-

gram depth

3

upperbound 5) on the same training tree-bank of 10000 utteran
es. We 
ompare the

models on a held-out set of 1000 utteran
es, whi
h was used for similar experiments in [22℄. We also

report preliminary results on a set of 500 spee
h-re
ognizer's word-graphs

4

.

2

In various experiments reported in [5, 22, 17℄, it turns out that DOP models with subtrees deeper than 4 show

worse results than a DOP model with subtree depth upperbound 4.

3

Tree-gram depth here is measured after \binarization" of the Tree-gram in a head-driven fashion. This head-driven

\binarization" transforms the 
hildren of every node as follows: the 
hildren to the left (right) of the head-
hild are

transformed into a left (resp. right) bran
hing binary tree (the head-
hild remains dire
tly under the 
urrent node).

After this pro
ess every node dominates at most three 
hildren (head-
hild and a left and right nodes added by the

pro
ess). Hen
e, Tree-gram depth is a mix of a
tual depth with the bran
hing fa
tor under the internal nodes.

4

The probability of a DOP/Tree-gram derivation of a path in an input word-graph is multiplied with the spee
h-



The semanti
 evaluation 
riteria have been developed by [20℄ following similar 
riteria suggested

in [7℄. A semanti
 expression is translated into a set of \semanti
 units"; ea
h semanti
 unit addresses

a spe
i�
 OVIS slot. Given this view on semanti
 expressions, now we 
an 
ompare the semanti
-

expression U output by a given system to the gold-standard expression G in the same way as in

Labeled Re
all and Pre
ision in synta
ti
 parsing: (1) semanti
 exa
t mat
h is the average test-set

utteran
es for whi
h U � G, (2) semanti
 re
all (pre
ision) is the average, over the test-set utteran
es,

of

jU\Gj

jGj

(resp.

jU\Gj

jUj

{ when jU j = 0, this is by de�nition zero). For word-graph parsing we also use

the word-a

ura
y (WA) and senten
e-a

ura
y (SA) measures to 
ompare the proposed utteran
e P

to the gold G: WA = 1�

d

n

, where n is the length of the G, and d is the Levenshtein distan
e between

G and P (see [22℄ for detail).

Table 1 shows the results of the Tree-gram model, the DOP model and the Dut
h broad-
overage

grammar (DBCG) on utteran
es. Clearly, the latter system is still produ
ing the best results, however

the Tree-grammodel has narrowed the gap on utteran
es for re
all from 3.9% (DOP) to 0.8% (Tgram).

For word-graphs, our results 
an not be 
ompared to those of the DBCG-based system (although we

suspe
t that the DBCG improves over the Tree-gram results) be
ause this preliminary experiment is

on a di�erent set than the �nal test-set. However, the Tree-gram model improves over DOP by at

least 7% on WA and semanti
 re
all and 4.2% on semanti
 mat
h.

Our explanation to the improvements on DOP's results is that on utteran
es the Tree-gram model

is 
apable of produ
ing parses whi
h DOP 
annot produ
e; on about 2.2% of the utteran
es, DOP

does not produ
e any parse and these utteran
es are usually some of the longer ones. Then, in a few

more 
ases, it seems that DOP produ
es only a less useful parse than the Tree-gram model. When

we inspe
ted some of the 
ases it turned out that DOP tends to assign the spe
ial label \ERROR"

(used to mark repetitions and 
orre
tions in the OVIS tree-bank) to various 
onstituents for whi
h it


ould not �nd an approximate label.

We 
an think of various reasons why the Tree-gram's results are still lagging behind those of the

DBCG results: (1) the DBCG grammar has been developed manually in an in
remental fashion

inspe
ting how the system behaves on a large 
olle
tion of over 100000 utteran
es from the OVIS

domain, while our models are trained on a relatively small training tree-bank of 10000 parse-trees,

(2) the tree-bank synta
ti
 and semanti
 annotations 
ontain minor in
onsisten
ies that disturb the

models, (3) the model probabilities are not 
onditioned on lexi
al information, and (4) in 
ontrast to

the DBCG module, we did not try to transform \informative", yet formally wrong, semanti
 formulae

output by the parser

5

.

6 Con
lusions

We have shown how the DOP model 
an be extended in a useful way for more robust parsing of spee
h

utteran
es. The present extension, 
alled the Tree-gram model, generalizes over the DOP model by

assigning non-zero probability values to some utteran
es for whi
h a DOP model assigns probability

zero. We are en
ouraged by the fa
t that the Tree-gram model has narrowed the gap with the results

re
ognizer's likelihoods that are found on the transitions in the path (after applying a simple s
aling heuristi
). This is

a kind of standard Bayesian 
ombination of the two modules.

5

It is possible to devise a few set of heuristi
 rules based on the OVIS semanti
 hierar
hy, for the 
orre
tion of su
h

\informative" formulae: these formulae usually 
onsist of multiple 
orre
t subformulae without the formally ne
essary


ombination operators. Often the operators 
an be guessed by inspe
tion of the semanti
 types of the subformulae and

the OVIS semanti
 hierar
hy.



of the Dut
h Broad-Coverage Grammar (DBCG) system: our system is automati
ally a
quired from

a tree-bank, while the DBCG took more than three years to develop. Nevertheless, it remains not


lear how fast ea
h of the two systems 
an be su

essfully adapted to a new domain of language use.

Our preliminary results on word-graphs improve 
onsiderably over DOP's results. Again this is due

to the more robust nature of the new model in 
omparison with the original DOP model. However, in

�rst inspe
tion of some of the problems, we �nd that the model still su�ers from the weak lexi
alization,

just like DOP. The gain is solely due to the fa
t that the Tree-gram model 
ould parse many more of

the word-graph paths than DOP did, thereby having more paths to 
hoose from.

We suspe
t that the fa
t that our word a

ura
y and senten
e a

ura
y are still lagging behind

those of simpler models (e.g. a word trigram model) implies that neither DOP nor the 
urrent Tree-

gram model is suÆ
iently suitable for the task of spee
h-understanding from word-graphs. As the

word-graphs be
ome larger, it be
omes harder to sele
t the 
orre
t sequen
e of words. In su
h 
ases,

word 
o-o

urren
e probabilities are at least as important as probabilities that express "grammati
al

plausibility", whi
h is taken 
are of by the 
urrent models. We think that it is ne
essary to 
ondition

the probabilities in these models on lexi
al information, possibly in a head-driven fashion similar to

the bilexi
al dependen
y models, e.g. [10, 8℄.

A
knowledgements

This work is funded by a proje
t of the Netherlands Organization for S
ienti�
 Resear
h (NWO). I

am grateful to Remko S
ha, Remko Bonnema, and Walter Daelemans for dis
ussions and support.

Some software pa
kages, whi
h were used for evaluation of the models, were developed by Gertjan

van Noord and Remko Bonnema. The preparation of the �nal version of this paper was fa
ilitated by

hardware and internet 
onne
tion by Telser Cabinas Internet (Cus
o, Peru) and mu
h understanding

from Vin
ent, Marije and Didi.

Referen
es

[1℄ A. Aho and J. Ullman. The Theory of Parsing, Translation and Compiling, volume I, II. Prenti
e-

Hall Series in Automati
 Computation, 1972.

[2℄ R. Bod. Enri
hing Linguisti
s with Statisti
s: Performan
e models of Natural Language. PhD

thesis, ILLC-dissertation series 1995-14, University of Amsterdam, 1995.

[3℄ Rens Bod. Monte Carlo Parsing. In Pro
eedings Third International Workshop on Parsing

Te
hnologies, Tilburg/Durbuy, 1993.

[4℄ Rens Bod. The Problem of Computing the Most Probable Tree in Data-Oriented Parsing and

Sto
hasti
 Tree Grammars. In Pro
eedings Seventh Conferen
e of The European Chapter of the

ACL, Dublin, Mar
h 1995.

[5℄ R. Bonnema, R. Bod, and R. S
ha. A DOP Model for Semanti
 Interpretation. In Pro
eedings

of ACL-97, Madrid, Spain, July 1997.

[6℄ R. Bonnema, P. Buying, and R. S
ha. A new probability model for data oriented parsing. In Paul

Dekker and Gwen Kerdiles, editors, Pro
eedings of the 12th Amsterdam Colloquium, Amsterdam,



The Netherlands, de
ember 1999. Institute for Logi
, Language and Computation, Department

of Philosophy.

[7℄ M. Boros, W. E
kert, F. Gallwitz, G. Gorz, G. Hanrieder, and H. Niemann. Towards under-

standing spontaneous spee
h: Word a

ura
y vs. 
on
ept a

ura
y. In Pro
eedings of the Fourth

International Conferen
e on Spokenm Language Pro
essing (ICSLP 96), Philadelphia, 1996.

[8℄ E. Charniak. A maximum-entropy-inspired parser. In Report CS-99-12, Providen
e, Rhode

Island, 1999.

[9℄ S. Chen and J. Goodman. An empiri
al study of smoothing te
hniques for language modeling.

In Te
hni
al report TR-10-98, Harvard University, August 1998.

[10℄ M. Collins. Three generative, lexi
alized models for statisti
al parsing. In Pro
eedings of the 35th

Annual Meeting of the ACL and the 8th Conferen
e of the EACL, pages 16{23, Madrid, Spain,

1997.

[11℄ F. Jelinek, J.D. La�erty, and R.L. Mer
er. Basi
 Methods of Probabilisti
 Context Free Grammars,

Te
hni
al Report IBM RC 16374 (#72684). Yorktown Heights, 1990.

[12℄ S.M. Katz. Estimation of probabilities from sparse data for the language model 
omponent of a

spee
h re
ognizer. IEEE Transa
tions on A
ousti
s, Spee
h and Signal Pro
essing, 35(3), 1987.

[13℄ K. Sima'an / R. S
ha, R. Bonnema, and R. Bod. Disambiguation and Interpretation of Word-

graphs using Data Oriented Parsing. Probabilisti
 Natural Language Pro
essing in the NWO

priority Programme on Language and Spee
h Te
hnology, Amsterdam, November 1996.

[14℄ M. Oeder and H. Ney. Word graphs: An eÆ
ient interfa
e between 
ontinuous-spee
h re
ognition

and language understanding. In ICASSP Volume 2, pages 119{122, 1993.

[15℄ R. S
ha. Language Theory and Language Te
hnology; Competen
e and Performan
e. In

Q.A.M. de Kort and G.L.J. Leerdam, editors, Computertoepassingen in de Neerlandistiek,

Almere: LVVN-jaarboek (
an be obtained from http://www.hum.uva.nl/
omputerlinguistiek

/s
ha/IAAA/rs/
v.html#Linguisti
s), 1990.

[16℄ K. Sima'an. Computational Complexity of Probabilisti
 Disambiguation by means of Tree Gram-

mars. In Pro
eedings of COLING'96, volume 2, pages 1175{1180, Copenhagen, Denmark, August

1996.

[17℄ K. Sima'an. Learning EÆ
ient Disambiguation. A PhD dissertation. ILLC dissertation series

1999-02 (Utre
ht University / University of Amsterdam), Amsterdam, Mar
h 1999.

[18℄ K. Sima'an. Tree-gram Parsing: Lexi
al Dependen
ies and Stru
tual Relations. In Pro
eedings

of the 38

th

Annual Meeting of the Asso
iation for Computational Linguisti
s (ACL'00), pages

53{60, Hong Kong, China, 2000.

[19℄ G.J. van Noord. The interse
tion of �nite state automata and de�nite 
lause grammars. In

Pro
eedings of ACL-95, 1995.

[20℄ G.J. van Noord. Evaluation of OVIS2 NLP 
omponents. In Te
hni
al Report #46, NWO Priority

Programme Language and Spee
h Te
hnology, 1997.



[21℄ G.J. van Noord, G. Bouma, R. Koeling, and MJ Nederhof. Robust Grammati
al Analysis for

spoken dialogue systems. Journal of Natural Language Engineering, 5 (1):45{93, 1999.

[22℄ G. Veldhuijzen van Zanten, G. Bouma, K. Sima'an, G.J. van Noord, and R. Bonnema. Evaluation

of the NLP Components of the OVIS2 Spoken Dialogue System. In I. S
huurman F. van Einde

and N. S
helkens, editors, Pro
eedings of Computational Linguisti
s In the Netherlands 1998,

1999.

[23℄ Gert Veldhuijzen van Zanten. Semanti
s of update expressions. Te
hni
al report 24, NWO

Priority Programme Language and Spee
h Te
hnology, http : ==odur:let:rug:nl : 4321=, 1996.

[24℄ A. Viterbi. Error bounds for 
onvolutional 
odes and an asymptoti
ally optimum de
oding

algorithm. IEEE Trans. Information Theory, IT-13:260{269, 1967.

[25℄ D.H. Younger. Re
ognition and parsing of 
ontext-free languages in time n

3

. Inf.Control,

10(2):189{208, 1967.


