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Abstra
t

It is shown that a simple POS-tagger 
an be used to �lter the results of lexi
al analysis of a wide-


overage 
omputational grammar. The redu
tion of the number of lexi
al 
ategories not only greatly

improves parsing eÆ
ien
y, but in our experiments also gave rise to a mild in
rease in parsing a

ura
y;

in 
ontrast to results reported in earlier work on supervised tagging. The novel aspe
t of our approa
h

is that the POS-tagger does not require any human-annotated data - but rather uses the parser output

obtained on a large training set.

1 Introdu
tion

Full parsing of unrestri
ted texts on the basis of a wide-
overage 
omputational HPSG grammar

remains a 
hallenge. In our re
ent experien
e in the development of the Alpino system, dis
ussed in

se
tion 2, we found that even in the presen
e of various 
lever 
hart parsing and ambiguity pa
king

te
hniques, lexi
al ambiguity in parti
ular has an important e�e
t on parsing eÆ
ien
y.

In some 
ases, a 
ategory assigned to a word is obviously wrong for the senten
e the word o

urs

in. For instan
e, in a lexi
alist grammar the two o

urren
es of 
alled in (1) will be asso
iated with

two distin
t lexi
al 
ategories. The entry asso
iated with (1-a) will re
e
t the requirement that the

verb 
ombines synta
ti
ally with the parti
le `up'. Clearly, this lexi
al 
ategory is irrelevant for the

analysis of senten
e (1-b), sin
e no su
h parti
le o

urs in the senten
e.

(1) a. I 
alled the man up

b. I 
alled the man

An e�e
tive te
hnique to redu
e the number of lexi
al 
ategories for a given input 
onsists of the

appli
ation of hand-written rules whi
h 
he
k su
h simple 
o-o

urren
e requirements. Su
h te
hniques

have been used in similar systems, e.g. in the English Lingo HPSG system [15℄.

In this paper we extend this �ltering 
omponent using a part-of-spee
h (POS) �lter. We 
onsider

the lexi
al 
ategories assigned by the lexi
al analysis 
omponent as POS-tags, and we use standard

POS-tagging te
hniques in order to remove very unlikely POS-tags.

In earlier studies, somewhat disappointing results were reported for using taggers in parsing [29℄,

[10℄, [28℄. Our approa
h is di�erent from most previous attempts in a number of ways. These

di�eren
es are summarized as follows.

Firstly, the training 
orpus used by the tagger is not 
reated by a human annotator, but rather,

the training 
orpus is labeled by the parser itself. Annotated data for languages other than English



is diÆ
ult to obtain. Therefore, this is an important advantage of the approa
h. Typi
ally, ma
hine

learning te
hniques employed in POS-tagging will perform better if more annotated data is available.

In our approa
h, more training data 
an be 
onstru
ted by simply running the parser on more (raw)

text. In this sense, the te
hnique is unsupervised.

Se
ondly, the HPSG for Dut
h that is implemented in Alpino is heavily lexi
alist. This implies

that (espe
ially) verbs are asso
iated with many alternative lexi
al 
ategories. Therefore, redu
ing

the number of 
ategories has an important e�e
t on parsing eÆ
ien
y.

Thirdly, the tagger is not for
ed to disambiguate all words in the input (of 
ourse, this has been

proposed earlier, e.g. in [7℄). In typi
al 
ases the tagger only removes about half of the tags assigned

by the di
tionary. As we show below, the resulting system 
an be up to about twenty times as fast,

while parsing a

ura
y does not drop. For somewhat less drasti
 eÆ
ien
y gains, we observed an

in
rease in parsing a

ura
y. Parsing a

ura
y drops 
onsiderably, however, if we only use the best

tag for ea
h word (this di�ers from the 
on
lusion in [10℄).

Fourthly, whereas in earlier work evaluation was des
ribed e.g. in terms of the number of senten
es

whi
h re
eived a parse, and/or the number of parse-trees for a given senten
e, we have evaluated the

system in terms of lexi
al dependen
y relations, similar to the proposal in [8℄. This evaluation measure

presupposes the availability of a treebank, but is expe
ted to re
e
t mu
h better the a

ura
y of the

system.

We implemented a standard bigram HMM tagger in whi
h the emission probabilities are dire
tly

estimated from a labeled training 
orpus. A standard POS-tagger attempts to �nd the best sequen
e

of tags for the given input senten
e, or perhaps the n-best sequen
es of tags for small n. As we dis
uss

later, this is not appropriate for our purposes. Rather, we use an idea from 
hapter 5.7 of [13℄ by


omputing the a posteriori probability for ea
h tag. We use a threshold in order to 
ut away for every

position in the input string the most unlikely tags. The same idea is des
ribed in [10℄.

In the following se
tion we shortly des
ribe the Alpino wide-
overage parser of Dut
h, with whi
h we

performed our experiments. In se
tion 3 we des
ribe the tagger in more detail, as well as our method

to use that tagger to �lter out unlikely tags. In se
tion 4 we report on the results of experiments in

whi
h we in
lude the tagger as a �lter 
omponent of Alpino. We observed that errors introdu
ed by

the POS-�lter often were related to sub
ategorization frames of verbs. We therefore experimented

with a set-up in whi
h sub
ategorization information of verbs was hidden from the POS-�lter. In

se
tion 5 we dis
uss a number of ideas for future work.

2 Alpino: Wide-
overage Parsing of Dut
h

Alpino is a wide-
overage 
omputational analyzer of Dut
h whi
h aims at a

urate full parsing of

unrestri
ted text. The system is des
ribed in more detail in [5℄. The grammar produ
es dependen
y

stru
tures, thus providing a reasonably abstra
t and theory-neutral level of linguisti
 representation.

The dependen
y relations en
oded in the dependen
y stru
tures have been used to develop and eval-

uate both hand-
oded and statisti
al disambiguation methods.

2.1 Grammar

The Alpino grammar is an extension of the su

essful ovis grammar [26, 27℄, a lexi
alized grammar

in the tradition of Head-driven Phrase Stru
ture Grammar [19℄. The grammar formalism is 
arefully



designed to allow linguisti
ally sophisti
ated analyses as well as eÆ
ient and robust pro
essing.

In 
ontrast to earlier work on hpsg, grammar rules in Alpino are relativey detailed. However, as

pointed out in [20℄, by organizing rules in an inheritan
e hierar
hy, the relevant linguisti
 generaliza-

tions 
an still be 
aptured. The Alpino grammar 
urrently 
ontains over 250 rules, de�ned in terms of

a few general rule stru
tures and prin
iples. The grammar 
overs the basi
 
onstru
tions of Dut
h (in-


luding main and subordinate 
lauses, (indire
t) questions, imperatives, (free) relative 
lauses, a wide

range of verbal and nominal 
omplementation and modi�
ation patterns, and 
oordination) as well as

a wide variety of more idiosyn
rati
 
onstru
tions (appositions, verb-parti
le 
onstru
tions, pp's in-


luding a parti
le, np's modi�ed by an adverb, pun
tuation, et
.). The lexi
on 
ontains de�nitions for

various nominal types (nouns with various 
omplementation patterns, proper names, pronouns, tem-

poral nouns, deverbalized nouns), various 
omplementizer, determiner, and adverb types, adje
tives,

and about 100 verbal sub
ategorization types.

The formalism supports the use of re
ursive 
onstraints over feature-stru
tures (using delayed evalu-

ation, [25℄). This allowed us to in
orporate an analysis of 
ross-serial dependen
ies based on argument-

inheritan
e [4℄ and a tra
e-less a

ount of extra
tion along the lines of [3℄.

2.2 Dependen
y Stru
tures

The Alpino grammar produ
es dependen
y stru
tures 
ompatible with the 
gn-guidelines. Within

the 
gn-proje
t [18℄, guidelines have been developed for synta
ti
 annotation of spoken Dut
h [17℄,

using dependen
y stru
tures similar to those used for the German Negra 
orpus [21℄. Dependen
y

stru
tures make expli
it the dependen
y relations between 
onstituents in a senten
e. Ea
h non-

terminal node in a dependen
y stru
ture 
onsists of a head-daughter and a list of non-head daughters,

whose dependen
y relation to the head is marked. A dependen
y stru
ture for the senten
e

(2) Mer
edes

Mer
edes

zou

should

haar

her

nieuwe

new

model

model

gisteren

yesterday

hebben

have

aangekondigd

announ
ed

Mer
edes should have announ
ed its new model yesterday

is given in �gure 1. Control relations are en
oded by means of 
o-indexing (i.e. the subje
t of hebben is

the dependent with index 1). Note that a dependen
y stru
ture does not ne
essarily re
e
t (surfa
e)

synta
ti
 
onstituen
y. The dependent haar nieuwe model gisteren aangekondigd, for instan
e, does

not 
orrespond to a (surfa
e) synta
ti
 
onstituent.

2.3 Robust Parsing

The initial design and implementation of the Alpino parser is inherited from the system des
ribed in

[23℄, [26℄ and [24℄. However, a number of improvements have been implemented whi
h are des
ribed

below. The 
onstru
tion of a dependen
y stru
ture pro
eeds in a number of steps. The �rst step


onsists of lexi
al analysis. In the se
ond step a parse forest is 
onstru
ted. The third step 
onsists

of the sele
tion of the best parse from the parse forest.

Lexi
al Analysis. The lexi
on asso
iates a word or a sequen
e of words with one or more tags. Su
h

tags 
ontain information su
h as part-of-spee
h, in
e
tion as well as a sub
ategorization frame. For

verbs, the lexi
on typi
ally hypothesizes many di�erent tags, di�ering mainly in the sub
ategorization

frame.
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Figure 1: Dependen
y stru
ture example

For senten
e (2), for instan
e, the lexi
on produ
es 83 tags. Some of those tags are obviously wrong.

For example, one of the tags for the word hebben is verb(hebben,pl,part sbar transitive(door)).

The tag indi
ates a �nite plural verb whi
h requires a separable pre�x door, and whi
h sub
ategorizes

for an sbar 
omplement. Sin
e door does not o

ur anywhere in senten
e (2), this tag will not be

useful for this senten
e. A �lter 
ontaining a number of hand-written rules has been implemented

whi
h 
he
ks that su
h simple 
o-o

urren
e 
onditions hold. For senten
e (2), the �lter removes 56

tags. The remaining 27 tags are input to the bigram tagger des
ribed below. The tagger (using the

default settings) will remove 10 of these. After the �lter has applied, feature stru
tures are asso
iated

with ea
h of the remaining 17 tags. Often, a single tag is mapped to multiple feature stru
tures. The

remaining 17 �ltered tags give rise to 81 feature stru
tures.

Creating Parse Forests. The Alpino parser takes the set of feature stru
tures found during lexi
al

analysis as its input, and 
onstru
ts a parse forest: a 
ompa
t representation of all parse trees. The

Alpino parser is a left-
orner parser with sele
tive memoization and goal-weakening. It is a variant

of the parsers des
ribed in [23℄. We generalized some of the te
hniques des
ribed there to take into

a

ount relational 
onstraints, whi
h are delayed until suÆ
iently instantiated [25℄.

As des
ribed in [26℄ and [24℄, the parser 
an be instru
ted to �nd all o

urren
es of the start


ategory anywhere in the input. In 
ase the parser 
annot �nd an instan
e of the start 
ategory from

the beginning of the senten
e to the end, then the parser produ
es parse trees for 
hunks of the input.

A best-�rst sear
h pro
edure then pi
ks out the best sequen
e of su
h 
hunks.

Unpa
king and Parse Sele
tion. The motivation to 
onstru
t a parse forest is eÆ
ien
y: the

number of parse trees for a given senten
e 
an be enormous. In addition to this, in most appli
ations

the obje
tive will not be to obtain all parse trees, but rather the best parse tree. Thus, the �nal


omponent of the parser 
onsists of a pro
edure to sele
t these best parse trees from the parse forest.

In order to sele
t the best parse tree from a parse forest, we assume a parse evaluation fun
tion

whi
h assigns a s
ore to ea
h parse. In [5℄ some initial experiments with a variety of parse evaluation



fun
tions are des
ribed. In the experiments dis
ussed here, the parse evaluation fun
tion 
onsisted of

a log-linear model.

Log-linear models were introdu
ed to natural language pro
essing by [2℄ and [11℄, and applied

to sto
hasti
 
onstraint-based grammars by [1℄ and [14℄. Given a 
onditional log-linear model, the

probability of a senten
e x having the parse y is:

p(yjx) =

1

Z(x)

exp

 

X

i

�

i

f

i

(x; y)

!

Here, ea
h f

i

(x; y) is a property fun
tion whi
h will return the number of times a spe
i�
 property

i o

urs in parse y of senten
e x. Ea
h property fun
tion has an asso
iated weight �

i

(the weights

are determined in training). The partition fun
tion Z(x) will be the same for every parse of a given

senten
e and 
an be ignored, so the s
ore for a parse is simply the weighted sum of the property

fun
tions f

i

(x; y).

In the log-linear model employed in our parser, we employed several types of features 
orresponding

to grammar rules as well as some more idiosyn
rati
 features indi
ating 
omplementation / modi�-


ation, long / short distan
e dependen
ies et
. The model was trained on a small treebank of about

1300 senten
es with asso
iated dependen
y stru
tures.

A naive algorithm 
onstru
ts all possible parse trees, assigns ea
h one a s
ore, and then sele
ts the

best one. Sin
e it is too ineÆ
ient to 
onstru
t all parse trees, we have implemented the algorithm

whi
h 
omputes parse trees from the parse forest as a best-�rst sear
h. This requires that the parse

evaluation fun
tion is extended to partial parse trees. We implemented a variant of a best-�rst sear
h

algorithm in su
h a way that for ea
h state in the sear
h spa
e, we maintain the b best 
andidates,

where b is a small integer (the beam). If the beam is de
reased, then we run a larger risk of missing

the best parse (but the result will typi
ally still be a relatively `good' parse); if the beam is in
reased,

then the amount of 
omputation in
reases too.

1

3 Using a POS-tagger as a �lter

3.1 Training and test data for the POS-tagger

Re
all that the tagged training 
orpus is not annotated by humans, but rather by the parser. Thus,

we have run the parser on a large training set, and 
olle
ted the sequen
es of lexi
al 
ategories that

were used by the best parse (a

ording to the parser).

Of 
ourse, the training set thus produ
ed 
ontains errors, but sin
e the POS-tagger is used to sele
t

the best tags out of the tags suggested by the parser, it makes sense to train it on the parser's output

as well.

In our experiments dis
ussed below, we used as our 
orpus the �rst six months of 1997 of the Dut
h

newspaper `de Volkskrant', ex
ept that we kept apart some 5,783 senten
es (91,857 words) whi
h

are used for the stand-alone tests des
ribed below. The remaining 517,492 senten
es were fed to the

parser, with a time-out of 60 CPU-se
onds per senten
e, and with the robustness 
omponent disabled

(in su
h a way that only those senten
es were used for whi
h the parser found a 
omplete parse).

324,575 senten
es (4,879,085 words) were parsed su

essfully; the 
orresponding tag sequen
es are

used to train our bigram model.

1

Note that this pro
edure di�ers from best-�rst parsing (e.g. [6℄) sin
e in our 
ase only the parse sele
tion phase is

best-�rst; the 
onstru
tion of the parse-forest �nds all parses.



n tags/word a

ura
y (%)

1 1 70.9

5 1.14 74.8

15 1.36 76.7

25 1.49 77.5

50 1.69 78.4

100 1.91 79.1

200 2.11 79.7

300 2.23 80.0

1 3.32 100

Table 1: Filter results using the n-best paths approa
h

We implemented a standard bigram HMM tagger, des
ribed e.g. in 
hapter 10.2 of [16℄: an HMM

in whi
h ea
h state 
orresponds to a tag, and in whi
h emission probabilities are dire
tly estimated

from a labeled training 
orpus. For ea
h senten
e, the �lter is given as input the set of tags found by

the lexi
al analysis 
omponent of Alpino. The task of the �lter 
onsists of the removal of all unlikely

tags. We have experimented with a few te
hniques to determine whi
h tags are unlikely.

3.2 Using the most likely sequen
e

The optimal sequen
e of tags for a given senten
e is de�ned as:

^

t

1;n

=

arg max

t

1;n

P (t

1;n

jw

1;n

) =

n

Y

i=1

P (w

i

jt

i

)P (t

i

jt

i�1

)

The Viterbi algorithm is used to 
ompute this most probable tag sequen
e. In a �rst experiment, we

simply assumed that a tag is removed if it is not part of the most probable tag sequen
e. This results

in most of the tags being dis
arded, and leads to low tagging a

ura
y (�rst line of Table 1). The

table shows the average number of tags per word after the appli
ation of the �lter and the resulting

tagger a

ura
y. An a

ura
y of 70.9% suggests that it is not possible to rely on the best sequen
e.

One might wonder why the results of this tagger are so poor, whereas in the literature tagging is

supposed to obtain at least an a

ura
y level of 95%. This is 
aused by the size of the tag set (more

than 25K di�erent tags). If the tagger would simply use the most frequent tag for ea
h given word

(in isolation of its 
ontext), then we would obtain a tagger a

ura
y of about 50%. This should be


ontrasted with typi
al taggers in whi
h this base-line is reported to be around 90%.

3.3 Using the n-best sequen
es

Sin
e using only one sequen
e leads to low a

ura
y results, the set of a

epted tags is extended to

in
lude the tags that make up the n-best sequen
es. For di�erent values of n Table 1 shows the results.

A word is assumed to be tagged 
orre
tly if the 
orre
t tag is not �ltered by the tagger. An a

ura
y

level of 80%, attained by 
onsidering the 300 best taggings, is not good enough, sin
e it would still

redu
e the grammar's 
han
es of �nding the right parse too mu
h. In
reasing a

ura
y by 
onsidering

even more sequen
es will lead to more ambiguity at the same time, and makes the Viterbi algorithm

very slow. Sin
e the number of possible tag sequen
es in
reases exponentially with senten
e length,

we have also experimented with dynami
ally 
hosen values of n; these experiments were not very

su

essful either, and for longer senten
es (i.e. larger values of n) the Viterbi algorithm itself be
omes

too slow.



� tags/word a

ura
y (%)

0 1.00 86.5

1 1.10 89.8

2 1.23 92.6

3 1.37 94.6

4 1.51 96.1

5 1.66 97.0

6 1.81 97.7

7 1.97 98.3

8 2.11 98.7

1 3.32 100

Table 2: Filter results using forward-ba
kward method

3.4 Using forward and ba
kward probabilities

To in
rease a

ura
y and de
rease ambiguity, the idea of sele
ting tags based on the most likely

sequen
es must be abandoned. Instead, probabilities have to be 
omputed for individual tags, to


ompare tags that are assigned to the same word dire
tly. Thus, for ea
h word in the senten
e, we are

interested in the probabilities assigned to ea
h tag by the HMM. This is similar to the idea des
ribed

in 
hapter 5.7 of [13℄ in the 
ontext of spee
h re
ognition. The same te
hnique is des
ribed in [10℄.

The probability that t is the 
orre
t tag at position i is given by:

P (t

i

= t) = �

i

(t)�

i

(t)

where � and � are the forward and ba
kward probabilities as de�ned in the forward-ba
kward algo-

rithm for HMM-training; �

i

(t) is the total (summed) probability of all paths through the model that

end at tag t at position i; �

i

(t) is the total probability of all paths starting at tag t in position i, to

the end.

On
e we have 
al
ulated P (t

i

= t) for all potential tags, we 
ompare these values and remove tags

whi
h are very unlikely. Let s(t; i) = � log(P (t

i

= t)). A tag t on position i is removed, if there exists

another tag t

0

, su
h that s(t; i) > s(t

0

; i) + � . Here, � is a 
onstant threshold value. We report on

experiments with various values of � .

The results using forward and ba
kward probabilities to 
ompute the likeliness of individual tags

are given as Table 2, showing the average number of remaining tags per word and tagger a

ura
y

per
entages for various threshold levels � . The method is a signi�
ant improvement over the n-best

sequen
es approa
h. Considering the large number of di�erent tags in the tag set and the fa
t that

the tagger only uses bigram probabilities, the a

ura
y per
entages might 
ome a
ross as relatively

high. However, it must be noted that the tagger is not a 
ompletely self-supporting tagging system,

but a �lter that re
eives for ea
h word a set of 
andidate tags from whi
h a sele
tion has to be made.

4 In
orporating the POS-tagger in Alpino

4.1 Evaluation Pro
edure

The treebank used in the experiments with the Alpino parser is the 
dbl (newspaper) part of the

Eindhoven 
orpus [12℄, whi
h we are 
urrently annotating with dependen
y stru
tures, a

ording to

the guidelines spe
i�ed in [17℄. These dependen
y stru
tures are similar to those used in the German
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Figure 2: Stand-alone results for N-best and forward/ba
kward te
hniques

Negra 
orpus [21℄. 
dbl220 refers to the �rst 220 senten
es of the 
dbl part, whi
h are all annotated.

The average senten
e length is 20 words.

Evaluation of 
overage and a

ura
y of a 
omputational grammar usually 
ompares tree stru
tures

(su
h as re
all and pre
ision of (labelled) bra
kets or bra
keting in
onsisten
ies (
rossing bra
kets)

between test item and parser output). As is well-known, su
h metri
s have a number of drawba
ks.

Therefore, [8℄ propose to annotate senten
es with triples of the form hhead-word, dependen
y relation,

dependent head-wordi. For instan
e, for the example in (2) we obtain:

hzou su mer
edesi hzou v
 hebbeni

hhebben su mer
edesi hhebben v
 aangekondigdi

haangekondigd su mer
edesi haangekondigd obj1 modeli haangekondigd mod gistereni

hmodel mod nieuwei hmodel det haari

Dependen
y relations between head-words 
an be extra
ted easily from the dependen
y stru
tures

in our treebank, as well as from the dependen
y stru
tures 
onstru
ted by the parser. It is thus

straightforward to 
ompute pre
ision, re
all, and f-s
ore on the set of dependen
y triples. In the

experiments des
ribed below, the a

ura
y of the Alpino parser is expressed in terms of this f-s
ore.

4.2 Experiment with POS-�lter in Alpino

In Table 3 we summarize the experiments in whi
h the POS-�lter is applied as a prepro
essing 
om-

ponent in Alpino. The POS-�lter used the forward and ba
kward probabilities to �lter out unlikely

tags, as des
ribed in the previous se
tion. We experimented with various values of � . In the table, the

�rst row des
ribes the referen
e system in whi
h no POS-�lter is applied. In that 
ase, all tags are

used by the parser, and parsing is very slow. The a

ura
y is 74.79%. As 
an be 
on
luded from the

table, a threshold value of � = 2 already performs (slightly) better than the referen
e system, with a

sharp de
rease in parsing times.

4.3 Ignoring sub
ategorization information

Inspe
tion of the errors made by the �lter indi
ated problems with sub
ategorization information.

Sin
e the bigram model uses only a limited history, this information is not always used properly. By



� tags/word CPU (mse
) A

ura
y (%)

NONE 3.53 76620 74.79

0 1.05 1421 68.05

1 1.16 2341 71.88

2 1.32 4077 74.89

3 1.46 6620 75.63

4 1.62 10894 75.15

5 1.77 15702 74.94

Table 3: In
orporating the POS-�lter in Alpino: results on 
dbl220 
orpus. (CPU times are averages

per senten
e)

removing the extra information from the tags, the algorithm 
an make a better de
ision in these 
ases.

So, both in training and during the appli
ation of the �lter, we map ea
h verbal tag to its 
lass, by

removing the sub
ategorization spe
i�
ation. For instan
e, the verb hebben in (2) is assigned the

following tags:

verb(inf,aux_psp_hebben) verb(inf,pred_transitive) verb(inf,transitive)

verb(pl,aux_psp_hebben) verb(pl,pred_transitive) verb(pl,transitive)

This set is mapped to two 
lasses, verb(inf) and verb(pl). If the tagger �nds that a 
lass is too

unlikely, then all tags that were mapped to that 
lass are removed. Similarly, if a 
lass survives the

�lter, then all tags whi
h were mapped to that 
lass will be available during parsing. The transforma-

tion 
learly makes tagging mu
h easier by making the number of di�erent tags mu
h smaller (about

1400 tags remain). This 
lass-based approa
h typi
ally removes less tags than the previous approa
h.

In Table 4 we show the results. In �gure 3 we 
ompare the system without a POS-�lter with two

systems in
luding the POS-�lter, either with or without sub
ategorization information. As 
an be

seen from these �gures, the a

ura
y of Alpino is improved if sub
ategorization from verbs is ignored.

If � = 2 then Alpino is almost ten times faster than the referen
e system (without POS-tagger), and

the 
orresponding a

ura
y is higher too: 76.40% vs. 74.79%.

5 Future Work

We showed that a simple POS-tagger 
an be used to �lter the results of lexi
al analysis of a wide-


overage 
omputational grammar. The redu
tion of the number of lexi
al 
ategories not only greatly

improves parsing eÆ
ien
y, but in our experiments also gave rise to a mild in
rease in parsing a

ura
y;

in 
ontrast to results reported in earlier work on supervised tagging. The novel aspe
t of our approa
h

� tags/word CPU (mse
) A

ura
y (%)

NONE 3.53 76620 74.79

0 1.46 3125 73.33

1 1.58 5221 75.30

2 1.70 7846 76.40

3 1.81 11054 76.29

4 1.94 26415 76.09

5 2.09 34611 75.68

Table 4: POS-�lter in Alpino, if sub
ategorization information is ignored; 
dbl220 
orpus. (CPU

times are averages per senten
e)
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Figure 3: POS-�ltering for Alpino

is that the POS-tagger does not require any human-annotated data - but rather uses the parser output

obtained on a large training set.

The bigram HMM POS-tagger implemented here is perhaps the simplest POS-tagger proposed

in the literature. Therefore, an obvious extension of this work would be to experiment with POS-

taggers whi
h have been shown to perform better than the bigram HMM. We did some preliminary

experiments with a trigram model, but we were not yet able to improve upon the bigram results.

The 
ontext of the work reported in this paper 
on
erns �nite-state approximation and grammar

spe
ialization te
hniques. In �nite-state approximation, a �nite-state grammar is often derived di-

re
tly from an underlying (typi
ally 
ontext-free) grammar. In the approa
h that we would like to

pursue, a �nite-state approximation is derived in an indire
t way by means of the appli
ation of the

underlying grammar to a large training 
orpus. The �nite-state approximation is then extra
ted from

the annotated training 
orpus. The experiment des
ribed in this paper is a simple implementation of

this te
hnique. The Alpino grammar is applied to a large 
orpus, and from the parse results we derive

a bigram HMM (a sto
hasti
 �nite-state automaton with a very simple topology). In the future we

hope to experiment with �nite-state learning te
hniques that are 
apable of learning more 
omplex

sto
hasti
 �nite-state automata [9, 22℄.
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