
A MINIMALIST IMPLEMENTATION

OF VERB SUBCATEGORIZATION

Sourabh Niyogi

Department of Ele
tri
al Engineering and Computer S
ien
e

Massa
husetts Institute of Te
hnology

Cambridge, MA 02139, USA

niyogi�mit.edu

Abstra
t

Traditional a

ounts of verb sub
ategorization, from the
lassi
 work of Fillmore on, require either

a
onsiderable number of synta
ti
 rules to a

ount for diverse senten
e
onstru
tions, in
luding
ross-

language variation, or else
omplex linking rules mapping the themati
 roles of semanti
 event templates

with possible synta
ti
 forms. In this paper we exhibit a third approa
h: we implement, via an expli
it

parser and lexi
on, the in
orporation theory of Hale and Keyser (1993, 1998) to systemati
ally
over

most patterns in English Verb Classes and Alternations (Levin 1993), typi
ally using only 1 or 2 lex-

i
al entries per verb to subsume a large number of synta
ti

onstru
tions and also most information

typi
ally
ontained in semanti
 event templates, and, further, repla
ing the notion of \themati
 roles"

with pre
ise stru
tural
on�gurations. The implemented parser uses the merge and move operations

formalized by Stabler (1997) in the minimalist framework of Chomsky (2001). As a side bene�t, we

extend the minimalist re
ognizer of Harkema (2000) to a full parsing implementation. We summarize the

urrent
ompa
tness and
overage of our a

ount and provide this minimalist lexi
on and parser online

at http://web.mit.edu/niyogi/www/minimal.htm

1 The Problem of Verb Sub
ategorization

Why do
ertain verbs undergo parti
ular
ertain alternations and not others? On some a

ounts,

e.g. Levin (1993), referred to hereafter as EVCA, alternations provide insight into verb sub
ategoriza-

tion and hen
e hooks to parsing,
ross-language variation, ma
hine translation, and
lass based verb

learning. However, fully implemented a

ounts of the phenomena remains an open problem, with at

least three alternative models, shown in Figure 1.

A

ounts may be solely des
riptive { for example,
lassifying verbs as having an intransitive, a

transitive, and/or ditransitive form, as is familiar. Traditional
omputational a

ounts (see 1) map

these forms into individual grammar rules, (perhaps by ma
ro expansion-like te
hniques) adding as

many rules as ne
essary to a

ount for naturally' o

urring
onstru
tions (wh-movement, passive

forms, et
.) For ea
h grammati
al rule, a separate semanti
 de
omposition is required, typi
ally

labeling
omponent phrases with one of several \themati
 roles." A ri
her a

ount provided by lexi
al

semanti
s (see 2), exempli�ed in Ja
kendo� (1983, 1990) and Rappaport Hovav and Levin (1998), is

one that hypothesizes semanti
 templates, but requires linking rules mapping synta
ti
 frames with

semanti
 templates governed by a parti
ular verb. Often these semanti
 templates are
onstru
ted

in an ad ho
 manner, and the
orresponding linking rules are
onsquently a
olle
tion of diÆ
ult-to-

implement heuristi
s. In this paper we implement a rather di�erent formalism (Hale and Keyser's

In
orporation theory, see 3), wherein fewer lexi
al entries govern synta
ti
 and semanti
 behavior,

with no appeal to themati
 roles or
omplex linking rules.

0. Verb Sub
ategorization Phenomena

* Bob put. Butter was put on the bread.

* Bob put butter. What was put on the bread?

Bob put butter on the bread. Where was the butter put?

1. Traditional A

ount

VP ! V0 NP PP

lo

V0 ! put

VP ! was VPass VPass ! V0 PP

lo

VP/NP ! V0 NP/NP PP

lo

VP/NP ! V0 NP PP

lo

/NP

PP

lo

! P

lo

NP P

lo

! on | in | ...

PP

lo

/NP ! P

lo

NP/NP

Exhaustive modelling with a
onsiderable

number of grammati
al rules.

Semanti
s separate, otherwise unspe
i�ed.

2. Lexi
al Semanti
s A

ount

2

4

put

V

NP

j

PP

k

CAUSE

�

[BOB℄

i

;GO

�

[BUTTER℄

j

;TO

�

[BREAD℄

k

���

3

5

Syntax handled by numerous argument-fusing

\linking rules", typi
ally diÆ
ult to formalize.

Semanti
 templates mirror alternation

patterns, but are ad-ho
ly
onstru
ted.

3. Minimalist/In
orporation A

ount

/put/ =p

lo

=d v

ause

(�(=p

lo

) (�(=d) (=p

lo

=d)))

/on/ =d +k p

lo

(�(=d) (�(x) ((go x) (path self =d))))

// >v

ause

+k =d pred

(�(>v

ause

) (�(=d) ((
ause >v

ause

) =d)))

/-ed/ >pred ++k t

(�(>pred) (tense >pred past))

Small number of lexi
al entries handle all

synta
ti
 phenomena.

Semanti
s dire
tly en
oded in lexi
al entry.

Entries stru
turally governed by small number

of rules, spe
ifying how N/A/P are related.

Figure 1: Three Di�erent A

ounts of Verb Sub
ategorization

2 In
orporation Theory

At the heart of our new
ontribution to modeling verb sub
ategorization is the marriage of Hale and

Keyser's (1993, 1998) argument stru
ture theory with Stabler's (1997) `minimalist' stru
ture building

rules. In the Hale and Keyser's theory, using the terminology of X-bar syntax, a parti
ular head

(labeled X), may or may or may not take a
omplement (labeled Y) and may or may not proje
t a

spe
i�er (labeled S), resulting in 4 possible stru
tural
on�gurations:

X

�

�

H

H

X

Y

X

�

�

H

H

S

X

�

�

H

H

X

Y

�

�

�

H

H

S

�

�

�

H

H

�

X

X

(a) -subj, +
omp (V) (b) +subj, +
omp (P) (
) +subj, -
omp (A) (d) -subj, -
omp (N)

Figure 2: Four fundamental primitives in Hale and Keyser's in
orporation theory

The
ombinatorial possibilities of in
orporation with X=V, A, N, P heads, plus `head movement', is

designed to yield the spa
e of possible synta
ti
 argument stru
ture
on�gurations, presumably a
ross

all languages. Notions of agent, patient, instrument, theme, goal, et
. are not `primitives', but are

derived from positions in stru
tural
on�gurations. In English (but not ne
essarily in all languages),

(a) the
ategory V takes a
omplement but proje
ts no spe
i�er; (b) the
ategory P takes both a

omplement and proje
ts a spe
i�er; (
) the
ategory A takes no
omplement but proje
ts a spe
i�er;

(d) the
ategory N takes neither
omplement nor spe
i�er. A parti
ular verbal entry, being of
ategory

V, may in
orporate one or more of these stru
tures as its
omplement, as shown in Figure 3:

� Nouns in
orporated dire
tly into a verbal entry yield stru
tures su
h as (a): no subje
t is proje
ted

by the N. The phoneti
 material of the noun head in
orporates (undergoes head movement) into

the phoneti
 material of the verb head, whi
h itself may undergo further movement. Verbs su
h

as these are intransitive by nature, generating, e.g., /The light glow -ed/ but */Bob glow -ed

the light/. This argument stru
ture typi�es purely internally
aused pro
esses.

(a) (b) (
)

v

�

�

H

H

v

do

//

n

/glow/

v

�

�

�

H

H

H

n

/door/

v

�

�

H

H

v

be
ome

//

a

/open/

v

�

�

�

H

H

H

n

=book=

i

v

�

�

�

H

H

H

v

be
ome

=lay=

i

p

�

�

H

H

p

/on/

n

/shelf/

(d) (e)

v

�

�

�

H

H

H

n

=book=

j

v

�

�

�

H

H

H

v

ause

=put=

i

p

�

�

H

H

p

/on/

n

/shelf/

v

�

�

�

H

H

H

n

/book/

v

�

�

H

H

v

ause

//

p

�

�

H

H

p

//

n

/shelf/

Figure 3: Examples of Stru
ture Building in Hale and Keyser's In
orporation Theory

� Adje
tives in
orporated into a verbal entry yields stru
tures su
h as (b): a subje
t is proje
ted by

the A (i.e. /the door/). The phoneti
 material of the adje
tive head in
orporates into the verb

head, whi
h again, may undergo further movement. Verbs su
h as these are transitive by nature, re-

sulting in /The door open -ed/ and /Bob open -ed the door/. This argument stru
ture typi�es

externally
ausable state
hanges.

� Similarly, in
orporated prepositions yield fundamentally transitive verbs su
h as (
), thus both /The

book lay -ed on the shelf/ and /Bob lay -ed the book on the shelf/ is grammati
al.

� To a

ount for why /The book lay -ed on the shelf/ is grammati
al but */Bob put -ed on

the shelf/ is not, it is hypothesized that either the manner of the external argument (as in /put/)

or the internal argument (as in /lay/) is indexed in the verbal entry, as shown in (d).

� Multiple in
orporations are possible, su
h as in (e), where a preposition is in
orporated into a verbal

entry, and the preposition itself has a noun in
orporated into it (e.g. /shelf/) { the preposition

proje
ts a subje
t (e.g. /book/) through the verbal stru
ture it is in
orporated into. This kind

of argument stru
ture is
ommon for �gure-in
orporation, ground-in
orporation, and instrument-

in
orporation.

3 Minimalist Operations

We
an now show how one
an implement Hale and Keyser's in
orporation theory in the framework

of the Minimalist Program (Chomsky 2000). In this framework, there are at least 2 fundamental

stru
ture-building operations, Merge and Move. Stabler (1997, 2000) has formalized these into 4

spe
i�
 stru
ture-building operations for Merge and 2 for Move. In this model, a lexi
al entry (a

simple stru
ture) has the following form:

/phoneti
-
ontent/ feature-list �-expression

where the phoneti
-
ontent (possibly null, denoted //) is what is a
tually pronoun
ed, and the

feature-list is an ordered list of features
hosen from a set of li
ensors (e.g. >a, <a, =a, marking theta

role assignment), li
ensees (e.g. a, intuitively, marking an argument needing a theta-role), movement

triggers (e.g. ++k, +k, intuitively,
ase assigners), and movement requirements (e.g. -k, intuitively,

marking that an argument needs to be assigned
ase).

Stru
tures
an be simple, as in the above
ase, or
omplex, where the operation of Merge on two

stru
tures A and B (simple or
omplex):

A the head of a Merge operation, whose feature-list is headed a li
ensor and whose �-expression

is of the form (�(=a) exp), whose body exp returns an semanti
 stru
ture using semanti
 primitives

and the argument =a

B the argument of Merge, whose feature-list is headed by a mat
hing li
ensee and whose �-

expression is of any form val.

reates a new
omplex stru
ture (A, B, <, �-expression) or (B, A, >, �-expression) { where

the > and < symbols denote whi
h pie
e of the
omplex stru
ture was the head prior to Merge. In

this new
omplex stru
ture, the resulting new internal A and B stru
tures have the li
ensor-li
ensee

feature pairs deleted, phoneti
 material may be rearranged, and the �-expression of the li
ensor is

applied to that of the li
ensee.

Move, operating on just one stru
ture A, also
an
els features (the movement triggers/requirements),

but is semanti
ally va
uous: the semanti
 result of the new
omplex has the same value as the old

omplex. To generate a derivation, stru
tures undergo repeated Merge and Move operations,
an
eling

pairs of features from the feature lists until no features remain ex
ept a single goal feature
, whi
h

spe
i�es that a
omplete derivation has been
onstru
ted. We omit here the
lear
omparison to

ategorial grammar and its relatives; see Stabler (1997) and Berwi
k and Epstein (1995) for additional

details. The Merge and Move rules, summarized from Stabler (1997), are:

OPERATION EXAMPLE

Simple Merge

/h/ =a Æ (�(=a) exp)

/
/ a
 val !

(/h/ Æ, /
/
, <, ((�(=a) exp) val)

/the/ =n d -k (�(=n) =n)

/book/ n self !

(/the/ d -k, /book/, <, ...)

Complex Merge

(/h/ =a Æ, : : :, : : :, (�(=a) exp))

/s/ a
 : : : val !

(/s/
 : : : (/h/ Æ, : : :), >, ((�(=a) exp) val))

(/put/ =d v

ause

, (/on/, (/the/, /shelf/, <), <),<, : : :)

/what/ d -k -wh (unknown self) !

(/what/ -k -wh, (/put/ v

ause

,

(/on/, (/the/, /shelf/, <), <), <), >, : : :)

Left In
orporate

/h/ <a Æ : : : (�(<a) exp)

/
/ a
 val !

(/h
/ Æ, //
, <, ((�(<a) exp) val))

/de-/ <figure

removable

=d v

ause

/bone/ figure

removable

self !

(/de- bone/ =d v

ause

, //, <, : : :)

Right In
orporate

/h/ >a Æ : : : (�(>a) exp)

/
/ a
 val !

(/
 h/ Æ, //
, <, ((�(>a) exp) val))

/-s/ >n d -k (�(>n) (plural >n))

/book/ n self !

(/book -s/ d -k, //, <, (plural (book)))

Covert Move

(: : : (/h/ +k Æ, : : : (/
/ -k
, : : :), : : :) !

(: : : (/h/ Æ, : : : (/
/
, : : :), : : :)

(/open/ +k =d pred,

((/the/ -k, /door/, <), (//, //, <), >, : : :) !

(/open/ =d pred,

((/the/, /door/, <), (//, //, <), >, : : :)

Overt Move

(: : : (/h/ ++k Æ,

: : : (/
/ -k
, : : :), : : :) !

(/
/
, (: : : (/h/ Æ, : : : (*, : : :), : : :), >)

(/open -ed/ ++k t,

(// pred, ((/the/ -k, /door/, <), (//, //, <), >), <) !

((/the/, /door/, <),

(/open -ed/ t, (// pred, (*, (//, //, <), >), <), >, : : :)

Figure 4: Minimalist Stru
ture-building Rules: Merge and Move

We illustrate the use of the above stru
ture-building rules with the following lexi
on, deriving /Bob

put -ed the book on the shelf/:

1 Simple Merge: /the/ =n d -k (�(=n) =n) and /shelf/ n self ! (/the/ d -k, /shelf/, <, (shelf))

2 Simple Merge: /on/ =d +k p

lo

(�(=d) (�(x) ((go x) (path self =d)))) and (1) !

(/on/ +k p

lo

, (/the/ -k, /shelf/, <), <, (�(x) ((go x) (path (on) (shelf)))))

3 Covert Move: (2) ! (/on/ p

lo

, (/the/, /shelf/, <), <, (: : :))

4 Simple Merge: /put/ =p

lo

=d v

ause

(�(=p

lo

) (�(=d) (=p

lo

=d))) and (3) !

(/put/ =d v

ause

,(/on/, (/the/, /shelf/, <), <), <, (�(=d) ((�(x) ((go x) (path (on) (shelf)))) =d)))

5 Simple Merge: /the/ =n d -k (�(=n) =n) and /book/ n self ! (/the/ d -k, /book/, <, (book))

6 Complex Merge: (4) and (5) !

((/the/ -k, /book/, <), (/put/ v

ause

, (/on/, (/the/, /shelf/, <), <), <), >, ((go (book)) (path (on) (shelf))))

7 Right In
orporate: // >v

ause

+k =d pred (�(>v

ause

) (�(=d) ((
ause >v

ause

) =d))) and (6) !

(/put/ +k =d pred, ((/the/ -k, /book/, <), (//, (/on/, (/the/, /shelf/, <), <), <), >), <,

(�(=d) ((
ause ((go (book)) (path (on) (shelf)))) =d)))

8 Covert Move: (7) ! (/put/ =d pred,((/the/, /book/, <), (//, (/on/, (/the/, /shelf/, <), <), <), >), <, (: : :))

9 Complex Merge: /Bob/ d -k self and (7) !

(/Bob/ -k, (/put/ pred, ((/the/, /book/, <), (//, (/on/, (/the/, /shelf/,<),<),<),>),<),>,

((
ause ((go (book)) (path (on) (shelf)))) (Bob)))

10 Right In
orporate: /-ed/ >pred ++k t (�(>pred) (tense >pred 'past)) and (9) !

(/put -ed/ ++k t,(/Bob/ -k, (//, ((/the/, /book/,<),(//, (/on/, (/the/, /shelf/, <), <), <), >), <), >), <,

(tense ((
ause ((go (book)) (path (on) (shelf)))) (Bob)) 'past))

11 Overt Move: (10) !

(/Bob/, (/put -ed/ t, (*, (//, ((/the/, /book/, <),(//, (/on/, (/the/, /shelf/, <),<),<),>),<),>),<),>, (: : :))

12 Simple Merge: // =t
 (�(=t) =t) and (11) !

(//
, (/Bob/, (/put -ed/, (*, (//, ((/the/, /book/, <), (//, (/on/, (/the/, /shelf/, <),<),<),>),<),>),<),>),<,

(tense ((
ause ((go (book)) (path (on) (shelf)))) (Bob)) 'past))

Using semanti
-stru
ture building primitives su
h as:

unknown (�(x) '(? ,x))

query (�(event) '(query :event ,event)))

ause (�(event) (�(agent) '(
ause :agent ,agent :effe
t ,event)))

go (�(theme) (�(path) '(go :theme ,theme :path ,path)))

path (�(dir ground) '(path :oper ,dir :terminal+ ,ground))

tense (�(event val) (append event (list ':tense val)))

be
ome (�(state) (�(thing) '(be
ome :theme ,thing :goal ,state)))

we
an reformat the result in any style desired, for example, as in Ja
kendo� (1983):

(
ause :agent (bob) :effe
t (go :theme (book) :path (path :oper (onto) :terminal+ (shelf))) :tense past)

Using a small number of additional entries:

/did/ =pred +k t (�(=pred) (query (tense =pred 'past)))

/where/ p

lo

-wh (�(x) ((go x) (path () (unknown self))))

// =t ++wh
 (�(=t) =t)

/what/ d -k -wh (unknown self)

/who/ d -k -wh (unknown self)

we
an derive /what did Bob put on the shelf/:

4 See above ! (/put/ =d v

ause

,(/on/, (/the/, /shelf/, <), <), <, (�(x) ((go x) (path (on) (shelf)))))

5 Complex Merge: /what/ d -k -wh (unknown self) and (4) !

(/what/ -k -wh, (/put/ v

ause

, (/on/, (/the/, /shelf/, <), <), <), >, ((go (unknown self)) (path (on) (shelf))))

6 Right In
orporate: // >v

ause

+k =d pred (�(>v

ause

) (�(=d) ((
ause >v

ause

) =d))) and (5) !

(/put/ +k =d pred, (/what/ -k -wh, (//, (/on/, (/the/, /shelf/, <), <), <), >), <,

(�(=d) ((
ause ((go (unknown self)) (path (on) (shelf)))) =d)))

7 Covert Move: (6) !

(/put/ =d pred, (/what/ -wh, (//, (/on/, (/the/, /shelf/,<),<),<),>),<,

(�(=d) ((
ause ((go (unknown self)) (path (on) (shelf)))) =d)))

8 Complex Merge: /Bob/ d -k self and (7) !

(/Bob/ -k, (/put/ pred, (/what/ -wh, (//, (/on/, (/the/, /shelf/, <), <), <), >), <), >,

((
ause ((go (unknown self)) (path (on) (shelf)))) (Bob)))

9 Simple Merge: /did/ =pred +k t (�(=pred) (query (tense =pred 'past))) and (8) !

(/did/ +k t, (/Bob/ -k, (/put/, (/what/ -wh, (//, (/on/, (/the/, /shelf/, <), <), <), >), <), >), <,

(query (tense ((
ause ((go (unknown self)) (path (on) (shelf)))) (Bob)) 'past))))

10 Covert Move: (9) !

(/did/ t, (/Bob/, (/put/, (/what/ -wh, (//, (/on/, (/the/, /shelf/,<), <), <), >), <), >), <,(: : :))))

11 Simple Merge: // =t ++wh
 (�(=t) =t) and (10) !

(// ++wh
, (/did/, (/Bob/, (/put/, (/what/ -wh, (//, (/on/, (/the/, /shelf/, <), <),<),>),<),>),<), <, (: : :))))

12 Overt Move: (11) !

(/what/, (//
, (/did/, (/Bob/, (/put/, (*, (//, (/on/, (/the/, /shelf/, <), <), <), >), <), >), <), <), >,

(query (tense ((
ause ((go (unknown self)) (path (on) (shelf)))) (Bob)) 'past))))

) (query :event (
ause :agent (bob) :effe
t (go :theme (? (what))

:path (path :oper (on) :terminal+ (shelf))) :tense past))

It is straightforward to show that we
an derive simple `wh-movement' variations on the above in a

omparable number of steps:

/What did Bob put the book on/

) (query :event (
ause :agent (bob) :effe
t (go :theme (book)

:path (path :oper (on) :terminal+ (? (what)))) :tense past))

/Where did Bob put the book/

) (query :event (
ause :agent (bob) :effe
t (go :theme (book)

:path (path :oper () :terminal+ (? (where)))) :tense past))

Likewise, we derive passive forms with 3 new entries:

/was/ <pred

p

++k t (�(<pred

p

) (tense <pred

p

'past))

/-ed/ >v

ause

=p

by

? pred

p

(�(>v

ause

) (�(=p

by

) (=p

by

>v

ause

)))

/by/ =d +k p

by

(�(=d) (�(event) ((
ause event) =d)))

Note how p

by

is en
oded as an optional li
ensor feature, marked with a ? in the entry for /-ed/.

This is Optional Merge, where the li
ensor feature
an be
an
elled without a
orresponding li
ensee

feature. However, the semanti
 value of the missing li
ensee is taken from a database of �-expression

appli
ations, one per li
ensee possibility, generated through an appli
ation of what would ordinarily

be expe
ted in su
h a position. For example, for the li
ensor = p

by

, the semanti
 value for the missing

li
ensee is ((�(=d) (�(event) ((
ause event) =d))) 'somebody), i.e. the same merge as /by/

/somebody/. Illustrating the
ourse of the derivation of /the book was put -ed on the shelf/:

6 See above !

((/the/ -k,/book/,<),(/put/ v

ause

, (/on/, (/the/, /shelf/, <), <), <), >, ((go (book)) (path (on) (shelf)))

7 Simple Merge: /-ed/ >v

ause

=p

by

? pred

p

(�(>v

ause

) (�(=p

by

) (=p

by

>v

ause

))) and (6) !

(/put -ed/ =p

by

? pred

p

, ((/the/ -k, /book/, <), (//, (/on/, (/the/, /shelf/, <), <), <), >), <,

(�(=p

by

) (=p

by

((go (book)) (path (on) (shelf)))))

8 Optional Merge: (7) with ((�(=d) (�(event) ((
ause event) =d))) 'somebody) !

(/put -ed/ =p

by

? pred

p

, ((/the/ -k, /book/, <), (//, (/on/, (/the/, /shelf/, <), <), <), >), <,

((
ause ((go (book)) (path (on) (shelf))))) 'somebody))

9 Left In
orporate: /was/ <pred

p

++k t (�(<pred

p

) (tense <pred

p

'past)) and (8) !

(/was put -ed/ ++k t, (//,((/the/ -k,/book/,<), (//, (/on/, (/the/, /shelf/, <), <), <), >), <), <,

(tense ((
ause ((go (book)) (path (on) (shelf))))) 'somebody) 'past))

10 Overt Movement: (9) !

((/the/, /book/, <), (/was put -ed/ t,(//, (*, (//, (/on/, (/the/, /shelf/, <), <), <), >), <), <), >, (: : :))

11 Simple Merge: // =t
 and (10) !

(//
,((/the/, /book/, <), (/was put -ed/, (//,(*, //, (/on/, (/the/, /shelf/, <), <), <), >), <), <), >), <,

(tense ((
ause ((go (book)) (path (on) (shelf))))) 'somebody) 'past))

) (
ause :agent (somebody) :effe
t (go :theme (book) :path (path :oper (on) :terminal+ (shelf)))

Using the above rules, we have thus extended the work of Harkema (2000) from a re
ognizer to a

parser: it is straightforward to design a bottom-up
hart-based parser that re
overs the derivation

steps and semanti
 stru
ture from a given input senten
e. See the Appendix for the basi
 algorithm.

4 In
orporation

We now show how Hale and Keyser's in
orporation theory
an be implemented with the above mini-

malist framework, re
ognizing that other grammati
al frameworks, su
h as lexi
alized Tree Adjoining

Grammars (e.g. Vijay-Shanker and Weir 1999) or
ategorial grammars (e.g. Steedman 2000), are

likely to be
apable of implementing the same theory. Using in
orporation theory, we will show how

A-in
orporation, P-in
orporation, and N-in
orporation
ompa
t grammars to a very small number of

entries (1 or 2) per verb.

4.1 A-In
orporation

Adding just 6 new entries to the grammar we have built so far:

Root / Adje
tive Entry Verbal Entries

=open=

(45:4)

state self

// >state a (�(>state) >state))

// >state =d v

be
ome

(�(>state) (�(=d) ((be
ome >state) =d)))

// >v

be
ome

+k =d pred (�(>v

be
ome

) (�(=d) ((
ause >v

be
ome

) =d)))

// >v

be
ome

pred (�(>v

be
ome

) >v

be
ome

)

/-ed/ >v

be
ome

=p

by

? pred

p

(�(>v

be
ome

) (�(=p

by

) (=p

by

>v

be
ome

)))

derives /The door open -ed/:

1 Simple Merge: /the/ =n d -k (�(=n) =n) and /door/ n self ! (/the/ d -k, /door/, <, (door))

2 Right Merge: // >state =d v

be
ome

(�(>state) (�(=d) ((be
ome >state) =d))) and /open/ state self !

(/open/ =d v

be
ome

, //, <, (�(=d) ((be
ome (open)) =d)))

3 Complex Merge: (1) and (2) ! ((/the/ -k, /door/, <), (/open/ v

be
ome

, //, <), >, ((be
ome (open)) (door)))

4 Right Merge: // >v

be
ome

pred (�(>v

be
ome

) >v

be
ome

) and (3) !

(/open/ pred, ((/the/ -k, /door/, <), (//, //, <), >, (: : :))

5 Simple Merge: /-ed/ >pred ++k t and (4) !

(/open -ed/ ++k t, (//, ((/the/ -k, /door/, <), (//, //, <), >), <, (tense ((be
ome (open)) (door))) 'past))

6 Overt Move: (5) ! ((/the/, /door/,<), (/open -ed/ t, (//, (*, (//, //, <), >), <), >, (: : :))

7 Simple Merge: // =t
 (�(=t) =t) and (5) !

(//
, ((/the/, /door/, <), (/open -ed/, (//, (*, (//, //, <), >), <), >), <,(: : :))

) (be
ome :theme (door) :goal (open) :tense past)

Likewise, the derivation of /Bob open -ed the door/ pro
eeds from step (3) above as follows:

4 Right Merge: // >v

be
ome

+k =d pred (�(>v

be
ome

) (�(=d) ((
ause >v

be
ome

) =d))) and (3) !

(/open/ +k =d pred,((/the/ -k,/door/,<), (//, //, <),>, (�(=d) ((
ause ((be
ome (open)) (door))) =d)))

5 Covert Move: (4) ! (/open/ =d pred, ((/the/, /door/, <), (//, //, <), >, (: : :))

6 Simple Merge: (5) and /Bob/ d -k self !

(/Bob/ -k, (/open/ pred, ((/the/, /door/, <), (//, //, <), >), >, ((
ause ((be
ome (open)) (door))) (Bob)))

7 Simple Merge: /-ed/ >pred ++k t (�(>pred) (tense >pred 'past)) and (6) !

(/open -ed/ ++k t, (/Bob/ -k, (//, ((/the/, /door/, <), (//, //, <), >), >,

(tense ((
ause ((be
ome (open)) (door))) (Bob)) 'past))

8 Overt Move: (7) ! (/Bob/, (/open -ed/ t, (*, (// pred, ((/the/, /door/, <), (//, //, <), >), >), >, (: : :))

9 Simple Merge: // =t
 (�(=t) =t) and (8) !

(//
, (/Bob/, (/open -ed/, (*, (// pred, ((/the/, /door/, <), (//, //, <), >), >), >), <, (: : :)))

) (
ause :agent (bob) :effe
t (be
ome :theme (door) :goal (open)) :tense past)

We derive passives and questions using the lexi
al entries above as well:

/the door was open -ed/) (
ause :agent (somebody) :effe
t (be
ome :theme (door) :goal (open)) :tense past)

/who open -ed the door/) (
ause :agent (? (who)) :effe
t (be
ome :theme (door) :goal (open)) :tense past)

/what open -ed/) (be
ome :theme (? (what)) :goal (open)) :tense past)

/what was open -ed/) (
ause :agent (somebody) :effe
t (be
ome :theme (? (what)) :goal (open)) :tense past)

/did bob open the door/)

(query :event (
ause :agent (bob) :effe
t (be
ome :theme (door) :goal (open)) :tense past))

*/Was Bob open -ed the door/

*/Who open the door/

*/What was open (by Bob)/

*/What did open -ed (by Bob)/

4.2 P-In
orporation

We have already seen how verbal entries in
orporate prepositional entries: /put/ sele
ts p

lo

, and

\lo
ative" prepositions su
h as /onto/, /on/, /in/, /into/, /below/, et
., have entries of the same

form:

// =d +k p

lo

(�(=d) (�(x) ((go x) (path self =d))))

For a verbal entry like /lay/, on the other hand, we require a separate entry:

/lay/ =p

be�lo

=d v

be
ome

(�(=p

be�lo

) (�(=d) (=p

be�lo

=d)))

where \stative lo
ative" prepositions /on/ but not /onto/, /in/ but not /into/, et
. have p

be�lo

entries:

// =d +k p

be�lo

(�(=d) (�(x) ((be-lo
ation x) (pla
e self =d))))

This derives, as desired:

/Book -s lay -ed on/*onto the shelf/

) (be-lo
ation :patient (plural (book)) :lo
ation (pla
e :oper (on) :lo
ation (shelf)) :tense past)

/Bob lay -ed book -s on/*onto the shelf/

) (
ause :agent (bob) :effe
t (be-lo
ation :patient (plural (book)))

:lo
ation (pla
e :oper (on) (shelf)) :tense past)

As another illustration of preposition in
orporation,
onsider the dative alternation (/Bob give -ed

water to Sue/ /Bob give -ed Sue water/). In this
ase, we have 2 entries for /give/ (
.f. Pinker

(1989)), one for the to-form and another for the \double obje
t" form, and have similar entries for other

\spa
es" of lo
ation, identity, and information, shown in Figure 5. The /to/ preposition
odes the +

/to/ =d +k p

goal

(�(=d) (�(x) ((go x) (path+ =d)))) // =d =d p

have

(�(=d) (�(=d2) ((have =d) =d2)))

Possession

=give=

(13:1)

=p

goal

=d v

ause

(�(=p

goal

) (�(=d) (spa
e 'poss (=p

goal

=d))))

/Bob give -ed water to Sue/

=give=

(13:1)

=p

have

? +k ++k v

ause2

(�(=p

have

) (spa
e 'poss =p

have

))

/Bob give -ed Sue water/

Lo
ation

=send=

(11:1)

=p

goal

? =d v

ause

(�(=p

goal

) (�(=d) (spa
e 'lo
 (=p

goal

=d))))

/Bob send -ed a letter to Sue/

=send=

(11:1)

=p

have

? +k ++k v

ause2

(�(=p

have

) (spa
e 'lo
 =p

have

))

/Bob send -ed Sue a letter/

Identity

=turn=

(26:6)

=p

goal

=p

sour
e

? =d v

be
ome

(�(=p

goal

) (�(=p

sour
e

) (�(=d) (spa
e 'ident

(
ombine-paths (=p

goal

=d) (=p

sour
e

=d))))))

/Bob turn -ed (from a prin
e) into a frog/

=appoint=

(26:1)

=p

have

? +k ++k v

ause2

(�(=p

have

) (spa
e 'ident =p

have

))

/Sue appoint -ed Bob sheriff/

Information

=read=

(37:1)

=p

goal

? =d v

ause

(�(=p

goal

) (�(=d) (spa
e 'info (=p

goal

=d))))

/Bob read -ed a story to Sue/

=read=

(37:1)

=p

have

? +k ++k v

ause2

(�(=p

have

) (spa
e 'info =p

have

))

/Bob read -ed Sue a story/

Figure 5: Di�erent spa
es with P-In
orporation

terminal of a path, and the \spa
e" is marked to di�erentiate between verbs of transfer. Otherwise the

derivation of /Bob give -ed water to Sue/ is similar to /Bob put -ed the book on the shelf/.

The dative form is di�erent, and results in a di�erent semanti
 gloss. Following Baker (1997) and

Harley (2000), the double obje
t form derivation is:

1 Simple Merge: // =d =d p

have

(�(=d) (�(=d2) ((have =d) =d2))) and /Sue/ d -k self !

(// =d p

have

, /Sue/ -k, <, (�(=d2) ((have (Sue)) =d2)))

2 Complex Merge: (1) and /water/ d -k self ! (/water/ -k, (// p

have

, /Sue/ -k, <), >, ((have (Sue)) (water)))

3 Simple Merge: (2) and /give/ =p

have

+k ++k v

ause2

(�(=p

have

) (spa
e 'poss =p

have

)) !

(/give/ +k ++k v

ause2

, (/water/ -k, (//, /Sue/ -k, <), >), <, (spa
e 'poss ((have (Sue))(water))))

4 Covert Move: (3) ! (/give/ ++k v

ause2

, (/water/, (//, /Sue/ -k, <), >), <, (: : :))

5 Overt Move: (4) ! (/Sue/, (/give/ v

ause2

, (/water/, (//, *, <), >), <), >, (: : :))

6 Right In
orporate: (5) and // >v

ause2

=d pred (�(>v

be
ome

) (�(=d) ((
ause >v

be
ome

) =d))) !

(/give/ =d pred, (/Sue/, (//, (/water/, (//, *, <), >), <), >), <,

(�(=d) ((
ause (spa
e 'poss ((have (Sue)) (water)))) =d))))

7 Complex Merge: (6) and /Bob/ d -k self !

(/Bob/ -k, (/give/ pred, (/Sue/, (//, (/water/, (//, *, <), >), <), >), <), >,

((
ause (spa
e 'poss ((have (Sue)) (water))) (Bob)))

8 Right In
orporate: (7) and /-ed/ >pred ++k t (�(>pred) (tense >pred 'past)) !

(/give -ed/ ++k t, (/Bob/ -k, (//, (/Sue/, (//, (/water/, (//, *, <), >), <), >), <), >), >,

(tense ((
ause (spa
e 'poss ((have (Sue)) (water))) (Bob)) 'past))

9 Overt Move: (8) ! (/Bob/, (/give -ed/ t,(*,(//, (/Sue/, (//, (/water/, (//,*,<),>), <), >), <), >), >), >, (: : :))

10 Simple Merge: (9) and // =t
 !

(//
, (/Bob/, (/give -ed/, (*, (//, (/Sue/, (//, (/water/, (//, *, <), >), <), >), <), >), >), >), >,

(tense ((
ause (spa
e 'poss ((have (Sue)) (water))) (Bob)) 'past))

) (
ause :agent (bob) :effe
t (have :possessor (Sue) :theme (water) :spa
e 'poss) :tense past)

4.3 N-In
orporation

Nouns in
orporate trivially into verbs, as with verbs like /glow/, or into prepositions, whi
h
an be

in
orporated into verbs in turn, as with verbs like /butter/ (�gure), /shelf/ (ground), and /shovel/

(instruments):

Considering the derivation of /Bob shelf -ed the book/ vs. /Bob butter -ed the bread/, the

ore distin
tion is in how the argument /the book/ and /the bread/ are applied to the two primitives

p

lo
1

and p

lo
2

that have di�erent orders of sele
ting \�gure" and \ground":

p

lo
1

(�(figure) (�(ground) ((go figure) (path () ground))))

p

lo
2

(�(ground) (�(figure) ((go figure) (path () ground))))

The two derivations pro
eed identi
ally in form, but results in a di�erent semanti
 stru
ture as a

result of the above �gure-ground reversal:

/Bob butter -ed the bread/

) (
ause :agent (bob) :effe
t (go :theme (butter) :path (path :oper (bread) :terminal+ ())) :tense past)

/Bob shelf -ed the book/

) (
ause :agent (bob) :effe
t (go :theme (book) :path (path :oper (shelf) :terminal+ ())) :tense past)

Root/Nominal Entry Verbal Entry EVCA Se
tions

Pro
esses/A
tivities

=glow=

(40:2)

emission

// >emission n identity

/a glow/

// >emission v

do

(�(>emission) (do >emission))

/The light glow -ed/

Figures

=butter=

(9:9)

figure

lo

// >figure

lo

n identity

// >figure

lo

d -k identity

/the butter/, /butter/

// >figure

lo

=d v

ause

(�(>figure

lo

) (�(=d) ((p

lo
1

=d) >figure

lo

)))

/Bob butter -ed the bread/

=pit=

(10:7)

, =whale=

(13:7)

, =
ut=

(21:1)

,

=dye=

(24)

, =autograph=

(25:3)

, =
alf=

(28)

,

=knight=

(29:8)

, =love=

(31:2)

, =whisper=

(37:3)

,

=vomit=

(40:1:2)

, =braid=

(41:2:2)

,

=smell=

(43:3)

, =fra
ture=

(54:2)

Grounds

=shelf=

(9:10)

ground

lo

// >ground

lo

n identity

/a shelf/

// >ground

lo

=d v

ause

(�(>ground

lo

) (�(=d) ((p

lo
2

=d) >ground

lo

)))

/Bob shelf -ed the book/

=mine=

(10:9)

, =videotape=

(25:4)

, =tutor=

(29:8)

Instruments

=shovel=

(9:3)

inst

lo

// >inst

lo

n identity

/the shovel/

// >inst

lo

=p

lo

? =d v

ause

(�(>inst

lo

) (�(=p

lo

) (�(=d)

((using >inst

lo

) (=p

lo

=d)))))

/Bob shovel -ed the dirt (onto the tru
k)/

=mop=

(10:4:2)

, =whip=

(8:3)

, =
lamp=

(2:4)

,

=pen
il=

(25:2)

, =email=

(37:4)

, =ferry=

(11:5)

,

=
y
le=

(51:4:1)

, =paddle=

(51:4:2)

Figure 6: Di�erent kinds of N-In
orporation

The same alternation patterns seen in /butter/, /shelf/, and /shovel/
an be observed in a variety

of other \spa
es" in addition to the \lo
ation" spa
e - removal, possession, impression, identity,

emotion, information, body possession, material possession, and per
eptual spa
e.

5 Implementation Analysis

We have modeled all of the verb
lasses in Levin (1993) through
ombinations of N-in
orporation,

A-in
orporation, and P-in
orporation in verbal entries. Our
urrent lexi
on
ontains a total of 347

entries, where:

1. 199 are verbal entries. Frequently, one entry
overs more than 1 EVCA verb
lass.

2. 51 are pure root entries (e.g. /glow/ emission), 37 are nominalizing entries (e.g. // >emission

n), and 4 are adje
tival entries (e.g. // >state a)

3. 20 are preposition entries (e.g. /on/ =d +k p

lo

). One entry often
overs more than one preposition

(e.g. /on/, /in/)

4. 77 are \other" entries (e.g. // =t
), in
luding noun entries.

Of the 199 verbal entries (marked with v

do

, v

be
ome

, v

ause

, et
.), 142
ontain 1 or more instan
es of

P-in
orporation, 60
ontain N-in
orporation, and 4
ontain A-in
orporation. To the extent that the

ore meaning of the verbs in re
e
ted in the types of stru
tures that are in
orporated, this illustrates

how prevalent in
orporation is. At present, these verbal entries fall into traditional broad
lasses:

INTRANSITIVES : Not Externally Causable /The light glow -ed/ */Bob glow -ed the light/

// >v

do

pred (�(>v

do

) (>v

do

=d))

=glow=

(40:2)

emission self

// >emission v

do

(�(>v

do

) (do >emission))

INTRANSITIVE/TRANSITIVES : Externally Causable /The door open -ed/ /Bob open -ed the door/

// >v

be
ome

+k =d pred (�(>v

be
ome

) ((
ause >v

be
ome

) =d))

// >v

be
ome

pred (�(>v

be
ome

) >v

be
ome

)

/-ed/ >v

be
ome

=p

by

? pred

p

(�(=p

by

) (=p

by

>v

be
ome

))

=open=

(45:4)

state self

// >state v

be
ome

(�(>state) (�(=d) ((be
ome >state) =d)))

TRANSITIVES : Externally Caused /Bob put -ed the book on the shelf/

// >v

ause

+k =d pred (�(>v

ause

) ((
ause >v

ause

) =d))

/-ed/ >v

ause

=p

by

? pred

p

(�(=p

by

) (=p

by

>v

ause

))

/put/ =p

lo

=d v

ause

(�(=p

lo

) (�(=d) (=p

lo

=d)))

DITRANSITIVES : Externally Caused /Bob give -ed Sue the book/

// >v

ause2

=d pred (�(>v

ause2

) ((
ause >v

ause2

) =d))

/-ed/ >v

ause2

=p

by

? pred

p

(�(=p

by

) (=p

by

>v

ause2

))

/give/ =p

have

+k ++k v

ause2

(�(=p

have

) =p

have

)

Figure 7: Broad verb
lasses in our implementation

However, the reason a parti
ular verb is in a parti
ular verb
lass requires appealing to notions of

whether an event is not externally
ausable (/glow/ vs. /open/), or whether it must be externally

aused (/lay/ vs. /put/). Verbs su
h as /open/ (A-in
orporation) or /lay/ (P-in
orporation) are

of the v

be
ome

lass, and need only one entry to generate 2 alternation patterns, as dis
ussed earlier.

Verbs su
h as /put/, on the other hand, require only one entry be
ause they have only one
anoni
al

surfa
e realization, and must be externally
aused. In some
ases, verbs su
h as /give/ require two

entries for ea
h of their
anoni
al surfa
e realizations. A very small number of entries (3) generate all

the passive forms for the v

be
ome

, v

ause

, v

ause2

broad
lasses : one for ea
h
lass.

For the 183 verb
lasses of EVCA, a distributional analysis of entries per
lass reveals that 141

se
tions have exa
tly 1 entry in our lexi
on (e.g. the /put/
lass, the /lay/
lass, the /open/
lass),

32 se
tions have exa
tly 2 entries in our lexi
on (e.g. the /give/
lass), and only 10 se
tions have 3

or more entries in our lexi
on (e.g. the /email/
lass). Using in
orporation theory, we have redu
ed

the vast majority of EVCA se
tions (77%) to just 1 entry. Only a minority (42/183, 23%) need more

than 1 entry, and we suspe
t that some of these may redu
e to 1 entry with further analysis. We

should simultaneously stress, however, that at present not all alternations des
ribed in Levin (1993)

an be
urrently modeled fully, requiring new operations (sele
tion, adjun
tion, agreement, re
exives,

parti
les, aspe
t, et
.) We summarize our present
overage:

ALTERNATIONS MODELED ALTERNATIONS NOT MODELED

Modeled, does not need 2 entries:

1.1.2 Causative

2.4.3/2.4.4 Total Transformation

5.1 Verbal Passive

5.2 Prepositional Passive

Currently requires 2 or more entries

but probably
an be redu
ed to 1:

1.1.1 Middle (+effe
t)

1.3 Conative (+motion, +
onta
t)

2.12 Body-Part Possessor As
ension Alternation

7.1 Cognate Obje
t Constru
tion

7.2 Cognate Prepositional Phrase Constru
tion

Modeled,
urrently needs

2 entries when 2 alternations possible:

1.1.3 Substan
e / Sour
e Alternation

1.2 Unexpressed Obje
t Alternation

1.4. Preposition Drop Alternation

2.1 Dative (give)

2.2 Benefa
tive (
arve)

2.3 Lo
ative Alternation

2.4.1/2.4.2 Material/Produ
t Alternation

2.6 Fulfilling Alternation

2.7 Image Impression Alternation

2.8 With/Against Alternation

2.9 Through/With Alternation

2.10 Blame Alternation

2.11 Sear
h Alternation

2.14 As Alternation

Requires sele
tion/adjun
tion:

2.5 Re
ipro
al Alternations

2.13 Possessor-Attribute Fa
toring Alternations

3.1 Time Subje
t Alternation

3.2 Natural For
e Subje
t Alternation

3.3 Instrument Subje
t Alternation

3.4 Abstra
t Cause Subje
t Alternation

3.5 Lo
atum Subje
t Alternation

3.6 Lo
ation Subje
t Alternation

3.7 Container Subje
t Alternation

3.8 Raw Material Subje
t

3.9 Sum of Money Subje
t Alternation

3.10 Sour
e Subje
t Alternation

7.3 Rea
tion Obje
t Constru
tion

7.4 X's Way Constru
tion

7.5 Resultative Constru
tion

7.8 Dire
tion Phrases with Nondire
ted Motion

8.5 Obligatory Adverb

8.6 Obligatory Negative Polarity Element

Requires binding/re
exive operations:

4.1 Virtual Reflexive Alternation

4.2 Reflexive of Appearan
e

5.3/5.4 Adje
tival Passive

6.1 There-insertion

7.6 Unintentional Interpretation of Obje
t

7.7 Bound Nonreflexive Anaphor as Prepositional Obje
t

8.1 Obligatory Passive

8.2 Obligatory Reflexive Obje
t

8.3 Inalienably Possessed Body-Part

8.4 Expletive It Obje
t

We
an extend our minimalist operations to in
lude Agree (see Chomsky 2001) and Adjoin (Chomsky,

forth
oming), or use already well developed theories from earlier formalisms. This is the subje
t of

future work.

Our redu
tion to one or two entries per verb
lass is in stark
ontrast to a typi
al CFG, whi
h

would
ontain many more entries. Whereas /lay/ =d =p

be�lo

is represented with 1 entry in our

implementation, we would expe
t at least seven grammar rules to handle basi

onstru
tions in a

typi
al CFG:

VP ! V0 NP PP

lo

/He lay -ed the book on the shelf/ VP ! V0 PP

lo

/The book lay -ed on the shelf/

VPass ! V0 PP

lo

/The book was lay -ed on the shelf/ VP/NP ! V0 PP

lo

/NP /What did the book lay on/

VP/NP ! V0 NP/NP PP

lo

/What was lay -ed on the shelf/ VP/PP ! V0 PP

lo

/PP /Where did the book lay/

VP/NP ! V0 NP PP

lo

/NP /Where was the book lay -ed/

We do not
laim that the minimalist implementation presented here is the only a

ount that
an re-

du
e the majority of EVCA verb
lasses to just one entry per verb. It is likely that other frameworks

su
h as lexi
alized TAGs or
ategorial grammars (e.g. Vijay-Shankar and Weir 1999, Steedman 2000)

that also
ompa
tly handle movement, passivization, et
.
an simulate Hale and Keyser in
orporation

operations present in our implementation, resulting in a more
ompa
t grammar/lexi
on. The key les-

son to be learned is that by implementing Hale and Keyser's in
orporation theory in some framework,

there is enormous
ompa
tion, resulting in a grammar that is more easily engineered or learned.

Our parser and lexi
on (written in MIT S
heme), and an extensive array of sample derivations and

resulting semanti
 stru
tures is freely available at http://web.mit.edu/niyogi/www/minimal.htm

A
knowledgements

I thank Professor Robert C. Berwi
k for motivating and supporting this work, and for providing many

useful
omments in improving this paper. Kenneth Hale and Andrew Nevins provided many engaging

dis
ussions.

Referen
es

[1℄ Baker, M. (1997). \Themati
 roles and synta
ti
 stru
ture." In L. Haegeman (eds.) Elements of Grammar:

Handbook of Generative Syntax. Dordre
ht, Kluwer, pp. 73-137.

[2℄ Berwi
k, R. and Epstein, S. (1995). \Computational Minimalism: The Convergen
e of the Minimalist

Synta
ti
 Program and Categorial Grammar." AMILP '95 Workshop.

[3℄ Chomsky, N. (2000). \Minimalist Inquiries." In R. Martin, D. Mi
haels and J. Uriagereka (eds.) Step by

Step: Essays on Minimalist Syntax in honor of Howard Lasnik. MIT Press, Cambridge, MA.

[4℄ Chomsky, N. (2001). \Derivation by Phase." In M. Kenstowi
z (ed.) Ken Hale: A Life in Language. MIT

Press, Cambridge, MA.

[5℄ Chomsky, N. (forth
oming). \Beyond Explanatory Adequa
y." Ms., MIT.

[6℄ Harley, H. (2000) \Possession and the double obje
t
onstru
tion." Ms., University of Arizona.

[7℄ Hale, K. and Keyser, S. J. (1993). \On Argument Stru
ture and Lexi
al Expression of Synta
ti
 Relations."

In K. Hale and S. J. Keyser (eds). The View from Building 20, pp. 53-109. Cambridge, Mass.: MIT Press.

[8℄ Hale, K. and Keyser, S. J. (1998). \The basi
 elements of argument stru
ture." In H. Harley, ed., Papers

from the UPenn/MIT Roundtable on Argument Stru
ture and Aspe
t, pp. 73-118. MIT Working Papers in

Linguisti
s 32. MITWPL, Department of Linguisti
s and Philosophy, MIT, Cambridge, Mass.

[9℄ Harkema, H. (2000) \A re
ognizer for minimalist grammars." In Sixth International Workshop on Parsing

Te
hnologies, IWPT 2000.

[10℄ Ja
kendo�, R. S. (1983) Semanti
s and Cognition. MIT Press, Cambridge, MA.

[11℄ Ja
kendo�, R. S. (1990) Semanti
 Stru
tures. MIT Press, Cambridge, MA.

[12℄ Levin, B. (1993) English Verb Classes and Alternations: A Preliminary Investigation, University of

Chi
ago Press, Chi
ago, IL.

[13℄ Pinker, S. (1989) Learnability and Cognition. MIT Press, Cambridge, MA.

[14℄ Rappaport Hovav, M. and Levin, B. (1998) \Building Verb Meanings." In M. Butt and W. Geuder (eds.),

The Proje
tion of Arguments: Lexi
al and Compositional Fa
tors, CSLI Publi
ations, Stanford, CA, 97-134.

[15℄ Stabler, E. (2000) \Minimalist grammars and Re
ognition." Manus
ript for the SFB340 workshop at Bad

Teina
h.

[16℄ Stabler, E. (1997) \Derivational minimalism." Appears in Retore (ed.) Logi
al Aspe
ts of Computational

Linguisti
s. Springer, 1997, pp 68-95.

[17℄ Steedman, M. (2000) The Synta
ti
 Pro
ess. MIT Press, Cambridge, MA.

[18℄ Vijay-Shanker, K., andWeir, D. (1999) \Exploring the Underspe
i�edWorld of Lexi
alized Tree Adjoining

Grammars." In Pro
eedings of 6th Mathemati
s of Language Conferen
e, Orlando, USA.

Appendix

Below is a de�nition of an agenda-driven,
hart-based parser for minimalist grammars. For a given

grammar and input string, there is a set of items,
all them axioms, that are taken to represent true

grammati
al
laims. Given these axioms, and the stru
ture-building rules that allow us to make new

true grammati
al
laims, we
an design a parser, whi
h, given an input string, determines the truth of

the input string. If a stru
ture has a parti
ular set of goal features (i.e.
) and phoneti
 features that

mat
h the input, then the input string in is the language de�ned by our grammar. Our pro
edure to

�nd all items that are true for a given grammar and input string works as follows:

1. Initialize the
hart and the agenda (both modeled as an indexable sta
k) to be an empty set

of items { an item has the form (S; f; i

A

; i

B

) where the �rst element S is a simple or
omplex

stru
ture, the se
ond element f is a symbol representing the sour
e of the stru
ture (Merge, Move,

Optional-Merge, or Axiom), and i

A

and i

B

are indi
es into elements in
hart whi
h
reated S. The

axioms are pushed onto the agenda, with f = Axiom, i

A

= i

B

= 0, and S being a underived simple

stru
ture of the form /phoneti
/ feature-list �-expression. In our
ase, the axioms are the

union of (1) all phoneti
ally null lexi
al items and (2) the lexi
al entry(s) for ea
h word in the input.

2. Repeat the following until the agenda is empty:

(a) Pop an item o� the agenda,
all it the trigger.

(b) Push the trigger onto the
hart, if the trigger has not already been pla
ed on the
hart.

(
) If the trigger item was added to the
hart in (b), then:

i. generate all items that
an be derived from Merge of the trigger item and any items of the
hart,

pushing ea
h new item onto the agenda with f = Merge, and i

A

being the index to the li
ensor

item and i

B

being the index to the li
ensee item (one of i

A

or i

B

being the trigger's index)

ii. generate all items that
an be derived from the trigger item solely (viaMove, or Optional Merge),

pushing ea
h new item onto the agenda with f = Move (or f = Optional� Merge), i

A

being

the index of the trigger item, i

B

=0.

3. When the agenda is empty, s
an all items in the
hart for stru
tures that
ontain solely the goal

features (a
 feature). If su
h a stru
ture exists, then its phoneti

ontent is \spelled-out" { if the

phoneti

ontent mat
hes the input string, then we print the derivation re
overy and
omputed

semanti
 stru
ture:

(a) To print the derivation of an item (S, f , i

A

, i

B

), we
an print the derivations of item i

A

and i

B

(if non-zero), and then print the resulting stru
ture S.

(b) To
ompute the semanti
s of an item (S, f , i

A

, i

B

), we
ondition the result on f :

� if f =Merge, then return the result of applying the semanti
s of item i

A

to that of item i

B

� if f =Move, then return the semanti
s of item i

A

� if f =Optional-Merge, then return the result of applying the semanti
s of item i

A

to a pre
om-

puted �-expression based on the optional feature skipped.

� if f =Axiom, then return the �-expression of the axiom S, guaranteed to be a simple stru
ture

