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Abstract

Traditional accounts of verb subcategorization, from the classic work of Fillmore on, require either
a considerable number of syntactic rules to account for diverse sentence constructions, including cross-
language variation, or else complex linking rules mapping the thematic roles of semantic event templates
with possible syntactic forms. In this paper we exhibit a third approach: we implement, via an explicit
parser and lexicon, the incorporation theory of Hale and Keyser (1993, 1998) to systematically cover
most patterns in English Verb Classes and Alternations (Levin 1993), typically using only 1 or 2 lex-
ical entries per verb to subsume a large number of syntactic constructions and also most information
typically contained in semantic event templates, and, further, replacing the notion of “thematic roles”
with precise structural configurations. The implemented parser uses the merge and move operations
formalized by Stabler (1997) in the minimalist framework of Chomsky (2001). As a side benefit, we
extend the minimalist recognizer of Harkema (2000) to a full parsing implementation. We summarize the
current compactness and coverage of our account and provide this minimalist lexicon and parser online
at http://web.mit.edu/niyogi/www/minimal.htm

1 The Problem of Verb Subcategorization

Why do certain verbs undergo particular certain alternations and not others? On some accounts,
e.g. Levin (1993), referred to hereafter as EVCA, alternations provide insight into verb subcategoriza-
tion and hence hooks to parsing, cross-language variation, machine translation, and class based verb
learning. However, fully implemented accounts of the phenomena remains an open problem, with at
least three alternative models, shown in Figure 1.

Accounts may be solely descriptive — for example, classifying verbs as having an intransitive, a
transitive, and/or ditransitive form, as is familiar. Traditional computational accounts (see 1) map
these forms into individual grammar rules, (perhaps by macro expansion-like techniques) adding as
many rules as necessary to account for naturally’ occurring constructions (wh-movement, passive
forms, etc.) For each grammatical rule, a separate semantic decomposition is required, typically
labeling component phrases with one of several “thematic roles.” A richer account provided by lexical
semantics (see 2), exemplified in Jackendoff (1983, 1990) and Rappaport Hovav and Levin (1998), is
one that hypothesizes semantic templates, but requires linking rules mapping syntactic frames with
semantic templates governed by a particular verb. Often these semantic templates are constructed
in an ad hoc manner, and the corresponding linking rules are consquently a collection of difficult-to-
implement heuristics. In this paper we implement a rather different formalism (Hale and Keyser’s
Incorporation theory, see 3), wherein fewer lexical entries govern syntactic and semantic behavior,

with no appeal to thematic roles or complex linking rules.



0. Verb Subcategorization Phenomena

* Bob put. Butter was put on the bread.
* Bob put butter. What was put on the bread?
Bob put butter on the bread. Where was the butter put?
1. Traditional Account
VP — VO NP PPy, V0 — put
VP — was VPass VPass — VO PPy, Exhaustive modelling with a considerable
VP/NP — VO NP/NP PPy, VP/NP — VO NP PP../NP number of grammatical rules.
PP1oc — Pioc NP Pioc — on | in | ... Semantics separate, otherwise unspecified.

PP1o. /NP — Py, NP/NP

2. Lexical Semantics Account
put Syntax handled by numerous argument-fusing
v “linking rules”, typically difficult to formalize.
NP; PPy Semantic templates mirror alternation
CAUSE ([BOB,,GO ([BUTTER]; , TO ([BREAD],))) patterns, but are ad-hocly constructed.

3. Minimalist/Incorporation Account
/put/  =proc =d Vcause

(Al=proc) (A(=d) (=proc =d))) Small number of lexical entries handle all

/on/ =d *k Pioc syntactic phenomena
(A(=d) (A (x) ((go x) (path self =d)))) S}(’emanticspdirectly eﬁcoded in lexical entry.
// >Vcause +k =d pred 3

Entries structurally governed by small number

AOveause) (A(=d) ((cause >vease) =d))) of rules, specifying how N/A/P are related.

/-ed/ >pred ++k t
(A(>pred) (tense >pred past))

Figure 1: Three Different Accounts of Verb Subcategorization

2 Incorporation Theory

At the heart of our new contribution to modeling verb subcategorization is the marriage of Hale and
Keyser’s (1993, 1998) argument structure theory with Stabler’s (1997) ‘minimalist’ structure building
rules. In the Hale and Keyser’s theory, using the terminology of X-bar syntax, a particular head
(labeled X), may or may or may not take a complement (labeled Y) and may or may not project a

specifier (labeled S), resulting in 4 possible structural configurations:

“w  om

(a) -subj, 4+comp (V) (b) +subj, +comp (P) (c) +subj, -comp (&) (d) -subj, -comp (N)

Figure 2: Four fundamental primitives in Hale and Keyser’s incorporation theory

The combinatorial possibilities of incorporation with X=V, A, N, P heads, plus ‘head movement’, is
designed to yield the space of possible syntactic argument structure configurations, presumably across
all languages. Notions of agent, patient, instrument, theme, goal, etc. are not ‘primitives’, but are
derived from positions in structural configurations. In English (but not necessarily in all languages),
(a) the category V takes a complement but projects no specifier; (b) the category P takes both a
complement and projects a specifier; (c) the category A takes no complement but projects a specifier;
(d) the category N takes neither complement nor specifier. A particular verbal entry, being of category

V, may incorporate one or more of these structures as its complement, as shown in Figure 3:

e Nouns incorporated directly into a verbal entry yield structures such as (a): no subject is projected
by the N. The phonetic material of the noun head incorporates (undergoes head movement) into
the phonetic material of the verb head, which itself may undergo further movement. Verbs such
as these are intransitive by nature, generating, e.g., /The light glow -ed/ but */Bob glow -ed

the light/. This argument structure typifies purely internally caused processes.
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Figure 3: Examples of Structure Building in Hale and Keyser’s Incorporation Theory

e Adjectives incorporated into a verbal entry yields structures such as (b): a subject is projected by
the A (i.e. /the door/). The phonetic material of the adjective head incorporates into the verb
head, which again, may undergo further movement. Verbs such as these are transitive by nature, re-
sulting in /The door open -ed/ and /Bob open -ed the door/. This argument structure typifies
externally causable state changes.

e Similarly, incorporated prepositions yield fundamentally transitive verbs such as (c), thus both /The
book lay -ed on the shelf/ and /Bob lay -ed the book on the shelf/ is grammatical.

e To account for why /The book lay -ed on the shelf/ is grammatical but */Bob put -ed on
the shelf/ is not, it is hypothesized that either the manner of the external argument (as in /put/)
or the internal argument (as in /lay/) is indexed in the verbal entry, as shown in (d).

e Multiple incorporations are possible, such as in (e), where a preposition is incorporated into a verbal
entry, and the preposition itself has a noun incorporated into it (e.g. /shelf/) — the preposition
projects a subject (e.g. /book/) through the verbal structure it is incorporated into. This kind
of argument structure is common for figure-incorporation, ground-incorporation, and instrument-

incorporation.

3 Minimalist Operations

We can now show how one can implement Hale and Keyser’s incorporation theory in the framework
of the Minimalist Program (Chomsky 2000). In this framework, there are at least 2 fundamental
structure-building operations, Merge and Move. Stabler (1997, 2000) has formalized these into 4
specific structure-building operations for Merge and 2 for Move. In this model, a lexical entry (a

simple structure) has the following form:
/phonetic-content/ feature-list A-expression

where the phonetic-content (possibly null, denoted //) is what is actually pronounced, and the
feature-listis an ordered list of features chosen from a set of licensors (e.g. >a, <a, =a, marking theta
role assignment), licensees (e.g. a, intuitively, marking an argument needing a theta-role), movement
triggers (e.g. ++k, +k, intuitively, case assigners), and movement requirements (e.g. -k, intuitively,

marking that an argument needs to be assigned case).



Structures can be simple, as in the above case, or complez, where the operation of Merge on two

structures A and B (simple or complex):

A the head of a Merge operation, whose feature-1ist is headed a licensor and whose A-expression
is of the form (A (=a) exp), whose body exp returns an semantic structure using semantic primitives
and the argument =a

B the argument of Merge, whose feature-list is headed by a matching licensee and whose A-

expression is of any form val.

creates a new complex structure (A, B, <, A-expression) or (B, A, >, A-expression) — where
the > and < symbols denote which piece of the complex structure was the head prior to Merge. In
this new complex structure, the resulting new internal A and B structures have the licensor-licensee
feature pairs deleted, phonetic material may be rearranged, and the A-expression of the licensor is
applied to that of the licensee.

Move, operating on just one structure A, also cancels features (the movement triggers/requirements),
but is semantically vacuous: the semantic result of the new complex has the same value as the old
complex. To generate a derivation, structures undergo repeated Merge and Move operations, canceling
pairs of features from the feature lists until no features remain except a single goal feature c, which
specifies that a complete derivation has been constructed. We omit here the clear comparison to
categorial grammar and its relatives; see Stabler (1997) and Berwick and Epstein (1995) for additional
details. The Merge and Move rules, summarized from Stabler (1997), are:

OPERATION EXAMPLE

Simple Merge _ B N

/h/ =a 6 (A(=a) exp) /the/ =n d -k (A(=n) =n)

/c/ a ~ val — /book/ n self —

(/n/ 8§, /c/ v, <, ((A(=a) exp) val) (/the/ d -k, /book/, <, ...)

Complex Merge (/put/ =d Veause, (/on/, (/the/, /shelf/, <), <),<, ...)
(/h/ =a §, ..., ..., (A(=a) exp)) /what/ d -k -wh (unknown self) —

/s/ a v ... val — (/what/ -k -wh, (/put/ Vcause,

(/s/ ~v ... (/n/ 4§, ..), >, ((A(=a) exp) val)) (/on/, (/the/, /shelf/, <), <), <), >, ...)
Left Incorporate B j _

/h/ <a § ... (\(<a) exp) /de-/ <figureremovable =d Vcause

/c/ a v val — /bone/ figureremovavie self —

Ub e/ 8, 1/ 7, < ((A(<a) exp) val)) (/de- bone/ =d Vewse, //, <, -
Right Incorporate

/h/ >a d ... (A(>a) exp)
/c/ a v val —

/-s/ >n d -k (A(>n) (plural >n))
/book/ n self —

(Ve 1/ 8, 11 %, <, ((A(>a) exp) val)) (/book -s/ d -k, //, <, (plural (book)))
(/open/ +k =d pred,
Sf’f’e('/i/l\/f(ivj, Ul oy ((the/ -k, [door/, s (/15 [/, s > ) =
Coo UM/ 8y el ya Dy D (/open/ =d pred,
o P e ((/the/, /door/, <), (//, //, ), >, ...)
Overt Move (/open -ed/ ++k t,
(... (/h/ ++k 4, (// pred, ((/the/ -k, /door/, <), (//, //, <), >, ) —
oo (el Ry, ), ) = ((/the/, /door/, <),
(/c/ v, (.. (/h/ 6, ... (%, .., .., >) (/open -ed/ t, (// pred, (x, (//, //, <), >), D, >, ...)

Figure 4: Minimalist Structure-building Rules: Merge and Move

We illustrate the use of the above structure-building rules with the following lexicon, deriving /Bob
put -ed the book on the shelf/:

1 Simple Merge: /the/ =n d -k (A(=n) =n) and /shelf/ n self — (/the/ d -k, /shelf/, <, (shelf))
2 Simple Merge: /on/ =d +k pioc (A(=d) (A(x) ((go x) (path self =d)))) and (1) —
(/on/ +k pi1oc, (/the/ -k, /shelf/, <), <, (A(x) ((go x) (path (on) (shelf)))))
3 Covert Move: (2) — (/on/ pioc, (/the/, /shelf/, <), <, (...))
4 Simple Merge: /put/ =pioc =d Vcause (A (=p1oc) (A(=d) (=p1oc =d))) and (3) —
(/put/ =d Veause, (/on/, (/the/, /shelf/, <), <), <, (A(=d) ((A(x) ((go x) (path (on) (shelf)))) =d)))
5 Simple Merge: /the/ =n d -k (A(=n) =n) and /book/ n self — (/the/ d -k, /book/, <, (book))
6 Complex Merge: (4) and (5) —
((/the/ -k, /book/, <), (/put/ Vcause, (/on/, (/the/, /shelf/, <), <), <), >, ((go (book)) (path (on) (shelf))))



7 Right Incorporate: // >Vcause +k =d pred (A(OVcause) (A(=d) ((cause >Vcayse) =d))) and (6) —
(/put/ +k =d pred, ((/the/ -k, /book/, <), (//, (/on/, (/the/, /shelf/, <), <), <), >), <,
(A(=d) ((cause ((go (book)) (path (on) (shelf)))) =d)))
8 Covert Move: (7) — (/put/ =d pred, ((/the/, /book/, <), (//, (/on/, (/the/, /shelf/, <), <), <), >), <, (...))
9 Complex Merge: /Bob/ d -k self and (7) —
(/Bob/ -k, (/put/ pred, ((/the/, /book/, <), (//, (/on/, (/the/, /shelf/,<),<),<),>),<),>,
((cause ((go (book)) (path (on) (shelf)))) (Bob)))
10 Right Incorporate: /-ed/ >pred ++k t (A(>pred) (tense >pred ’past)) and (9) —
(/put -ed/ ++k t,(/Bob/ -k, (//, ((/the/, /book/,<),(//, (/on/, (/the/, /shelf/, <), <), <), >), <), >), <,
(tense ((cause ((go (book)) (path (on) (shelf)))) (Bob)) ’past))
11 Overt Move: (10) —
(/Bob/, (/put -ed/ t, (x, (//, ((/the/, /book/, <),(//, (Jon/, (/the/, /shelf/, <),<),<),>),<),>),<),>, (...))
12 Simple Merge: // =t ¢ (A(=t) =t) and (11) —
(// ¢, (/Bob/, (/put -ed/, (*, (//, ((/the/, /book/, <), (//, (/on/, (/the/, /shelf/, <),<),<),>),<),>),<),>),<,
(tense ((cause ((go (book)) (path (on) (shelf)))) (Bob)) ’past))

Using semantic-structure building primitives such as:

unknown (A(x) (7 ,x))

query (A(event) ’(query :event ,event)))

cause (A(event) (A(agent) ’(cause :agent ,agent :effect ,event)))
go (A (theme) (A(path) ’(go :theme ,theme :path ,path)))

path (A(dir ground) ’(path :oper ,dir :terminal+ ,ground))
tense (A(event val) (append event (list ’:tense val)))

become (A(state) (A(thing) ’>(become :theme ,thing :goal ,state)))

we can reformat the result in any style desired, for example, as in Jackendoff (1983):
(cause :agent (bob) :effect (go :theme (book) :path (path :oper (onto) :terminal+ (shelf))) :tense past)
Using a small number of additional entries:

/did/ =pred +k t (A(=pred) (query (tense =pred ’past)))
/where/ pioc -wh (A(x) ((go x) (path () (unknown self))))

// =t ++wh c (A(=t) =t)
/what/ d -k -wh (unknown self)
/who/ d -k -wh (unknown self)

we can derive /what did Bob put on the shelf/:

4 See above — (/put/ =d Vcause,(/on/, (/the/, /shelf/, <), <), <, (A(x) ((go x) (path (on) (shelf)))))
5 Complex Merge: /what/ d -k -wh (unknown self) and (4) —
(/what/ -k -wh, (/put/ vcase, (/on/, (/the/, /shelf/, <), <), <), >, ((go (unknown self)) (path (on) (shelf))))
6 Right Incorporate: // >Veause +k =d pred (A(>Veause) (A(=d) ((cause >Vcauss) =d))) and (5) —
(/put/ +k =d pred, (/what/ -k -wh, (//, (/on/, (/the/, /shelf/, <), <), <), >), <,
(A(=d) ((cause ((go (unknown self)) (path (on) (shelf)))) =d)))
7 Covert Move: (6) —
(/put/ =d pred, (/what/ -wh, (//, (/on/, (/the/, /shelf/,<),<),<),>),<,
(A(=d) ((cause ((go (unknown self)) (path (on) (shelf)))) =d)))
8 Complex Merge: /Bob/ d -k self and (7) —
(/Bob/ -k, (/put/ pred, (/what/ -wh, (//, (/on/, (/the/, /shelf/, <), <), <), >), <), >,
((cause ((go (unknown self)) (path (on) (shelf)))) (Bob)))
9 Simple Merge: /did/ =pred +k t (A (=pred) (query (tense =pred ’past))) and (8) —
(/did/ +k t, (/Bob/ -k, (/put/, (/what/ -wh, (//, (/on/, (/the/, /shelf/, <), <), <), >), <), >), <,
(query (tense ((cause ((go (unknown self)) (path (on) (shelf)))) (Bob)) ’past))))
10 Covert Move: (9) —
(/did/ t, (/Bob/, (/put/, (/what/ -wh, (//, (/on/, (/the/, /shelf/,<), <), <), >), <), >, <, (...))))
11 Simple Merge: // =t ++wh ¢ (A(=t) =t) and (10) —
(// ++wh ¢, (/did/, (/Bob/, (/put/, (/what/ -wh, (//, (/on/, (/the/, /shelf/, <), <),<),>),<),>),<), <, (...))))
12 Overt Move: (11) —
(/what/, (// ¢, (/did/, (/Bob/, (/put/, (x, (//, (/on/, (/the/, /shelf/, <), <), <), >), <, >), <), <), >,
(query (tense ((cause ((go (unknown self)) (path (on) (shelf)))) (Bob)) ’past))))
= (query :event (cause :agent (bob) :effect (go :theme (? (what))
:path (path :oper (on) :terminal+ (shelf))) :tense past))

It is straightforward to show that we can derive simple ‘wh-movement’ variations on the above in a
comparable number of steps:

/What did Bob put the book on/
= (query :event (cause :agent (bob) :effect (go :theme (book)
:path (path :oper (on) :terminal+ (? (what)))) :tense past))
/Where did Bob put the book/
= (query :event (cause :agent (bob) :effect (go :theme (book)
:path (path :oper () :terminal+ (? (where)))) :tense past))



Likewise, we derive passive forms with 3 new entries:

/was/ <pred, ++k t (A (<pred;) (tense <pred, ’past))
/-ed/ >Vcause =Poy? Ppred; (AOVeause) (A(=pry) (Fpoy >Veause)))
/by/ =d +k Poy (A(=d) (MA(event) ((cause event) =d)))

Note how ppy is encoded as an optional licensor feature, marked with a ? in the entry for /-ed/.
This is Optional Merge, where the licensor feature can be cancelled without a corresponding licensee
feature. However, the semantic value of the missing licensee is taken from a database of A-expression
applications, one per licensee possibility, generated through an application of what would ordinarily
be expected in such a position. For example, for the licensor = pyy, the semantic value for the missing
licensee is ((A(=d) (A(event) ((cause event) =d))) ’somebody), i.e. the same merge as /by/
/somebody/. Illustrating the course of the derivation of /the book was put -ed on the shelf/:

6 See above —
((/the/ -k,/book/,<),(/put/ Veause, (/on/, (/the/, /shelf/, <), <), <), >, ((go (book)) (path (on) (shelf)))

7 Simple Merge: /-ed/ >Vcause =pby? Predp (A(>Veause) (A(=pyy) (=ppy >Veause))) and (6) —
(/put -ed/ =puy? predy, ((/the/ -k, /book/, <), (//, (/on/, (/the/, /shelf/, <), <), <), >), <,
(A (=poy) (=pypy ((go (book)) (path (on) (shelf)))))
8 Optional Merge: (7) with ((A(=d) (A(event) ((cause event) =d))) ’somebody) —
(/put -ed/ =puy? predy, ((/the/ -k, /book/, <), (//, (/on/, (/the/, /shelf/, <), <), <), >), <,
((cause ((go (book)) (path (on) (shelf))))) ’somebody))

9 Left Incorporate: /was/ <pred, ++k t (A(<pred,) (tense <pred, ’past)) and (8) —
(/was put -ed/ ++k t, (//,((/the/ -k,/book/,<), (//, (/on/, (/the/, /shelf/, <), <), <, >), <), <,
(tense ((cause ((go (book)) (path (on) (shelf))))) ’somebody) ’past))
10 Overt Movement: (9) —
((/the/, /book/, <), (/was put -ed/ t,(//, (¥, (//, (/on/, (/the/, /shelf/, <), <), <), >), <), <), >, (...))
11 Simple Merge: // =t c and (10) —
(// c,((/the/, /book/, <), (/was put -ed/, (//,(*, //, (/on/, (/the/, /shelf/, <), <), <), >), <), <), >), <,
(tense ((cause ((go (book)) (path (on) (shelf))))) ’somebody) ’past))

= (cause :agent (somebody) :effect (go :theme (book) :path (path :oper (on) :terminal+ (shelf)))

Using the above rules, we have thus extended the work of Harkema (2000) from a recognizer to a
parser: it is straightforward to design a bottom-up chart-based parser that recovers the derivation

steps and semantic structure from a given input sentence. See the Appendix for the basic algorithm.

4 Incorporation

We now show how Hale and Keyser’s incorporation theory can be implemented with the above mini-
malist framework, recognizing that other grammatical frameworks, such as lexicalized Tree Adjoining
Grammars (e.g. Vijay-Shanker and Weir 1999) or categorial grammars (e.g. Steedman 2000), are
likely to be capable of implementing the same theory. Using incorporation theory, we will show how
A-incorporation, P-incorporation, and N-incorporation compact grammars to a very small number of

entries (1 or 2) per verb.

4.1 A-Incorporation

Adding just 6 new entries to the grammar we have built so far:

Root / Adjective Entry Verbal Entries
// >state =d vVpecome (A(>state) (A(=d) ((become >state) =d)))
Jopen/("®% state self /7 >Vpecons +k =d pred (A(>Vpecoms) (A(=d) ((cause >Vpecome) =d)))
// >state a (A(>state) >state)) // >Vpecone pred (A(>Vbecome) >Vbecome)

/-ed/ >Vbecome =Pby? Predy (A(>Vbecome) (A(=Pby) (=Pvy >Vbecome)))
derives /The door open -ed/:

1 Simple Merge: /the/ =n d -k (A(=n) =n) and /door/ n self — (/the/ d -k, /door/, <, (door))

2 Right Merge: // >state =d Vpecome (A(>state) (A(=d) ((become >state) =d))) and /open/ state self —
(/open/ =d Vyecome» //, <, (A(=d) ((become (open)) =d)))

3 Complex Merge: (1) and (2) — ((/the/ -k, /door/, <), (/open/ Viecome, //, <), >, ((become (open)) (door)))



4 Right Merge: // >Vyecome Pred (A(>Vbecome) >Vbecome) and (3) —
(/open/ pred, ((/the/ -k, /door/, <), (//, //, <), >, (...))
5 Simple Merge: /-ed/ >pred ++k t and (4) —
(/open -ed/ ++k t, (//, ((/the/ -k, /door/, <), (//, //, <, >), <, (tense ((become (open)) (door))) ’past))
6 Overt Move: (5) — ((/the/, /door/,<), (/open -ed/ t, (//, (x, (//, //, O, >, <, >, (..)
7 Simple Merge: // =t ¢ (A(=t) =t) and (5) —
(// c, ((/the/, /door/, <), (/open -ed/, (//, (x, (//, //, <), >, <), >, <(..))
= (become :theme (door) :goal (open) :tense past)

Likewise, the derivation of /Bob open -ed the door/ proceeds from step (3) above as follows:

4 Right Merge: // >Viecone +k =d pred (A(>Vpecome) (A(=d) ((cause >Vpecome) =d))) and (3) —
(/open/ +k =d pred, ((/the/ -k,/door/,<), (//, //, <),>, (A(=d) ((cause ((become (open)) (door))) =d)))

5 Covert Move: (4) — (/open/ =d pred, ((/the/, /door/, <), (//, //, <), >, (...))
6 Simple Merge: (5) and /Bob/ d -k self —

(/Bob/ -k, (/open/ pred, ((/the/, /door/, <), (//, //, <, >), >, ((cause ((become (open)) (door))) (Bob)))
7 Simple Merge: /-ed/ >pred ++k t (A(>pred) (tense >pred ’past)) and (6) —

(/open -ed/ ++k t, (/Bob/ -k, (//, ((/the/, /door/, <), (//, //, <), >), >,

(tense ((cause ((become (open)) (door))) (Bob)) ’past))

8 Overt Move: (7) — (/Bob/, (/open -ed/ t, (¥, (// pred, ((/the/, /dooxr/, <), (//, //, <), >, >, >, (.))
9 Simple Merge: // =t ¢ (A(=t) =t) and (8) —

(// ¢, (/Bob/, (/open -ed/, (¥, (// pred, ((/the/, /door/, <), (//, //, <), >), >, >, <, (..)))
= (cause :agent (bob) :effect (become :theme (door) :goal (open)) :tense past)

We derive passives and questions using the lexical entries above as well:

/the door was open -ed/ = (cause :agent (somebody) :effect (become :theme (door) :goal (open)) :tense past)
/who open -ed the door/ = (cause :agent (7 (who)) :effect (become :theme (door) :goal (open)) :tense past)
/what open -ed/ => (become :theme (? (what)) :goal (open)) :tense past)

/what was open -ed/ => (cause :agent (somebody) :effect (become :theme (? (what)) :goal (open)) :tense past)

/did bob open the door/ =
(query :event (cause :agent (bob) :effect (become :theme (door) :goal (open)) :tense past))

*/Was Bob open -ed the door/
*/Who open the door/

*/What was open (by Bob)/
*/What did open -ed (by Bob)/

4.2 P-Incorporation

We have already seen how verbal entries incorporate prepositional entries: /put/ selects pioc, and
“locative” prepositions such as /onto/, /on/, /in/, /into/, /below/, etc., have entries of the same
form:

// =d +k proc (A(=d) (A(x) ((go x) (path self =d))))
For a verbal entry like /lay/, on the other hand, we require a separate entry:

/1ay/ =Pbe—10c =d Vbecone (A(=Pbe—10c) (A(=d) (=Pre—10c =d)))
where “stative locative” prepositions /on/ but not /onto/, /in/ but not /into/, etc. have ppe—10c
entries:

// =d +k pre—1oc (A(=d) (X(x) ((be-location x) (place self =d))))

This derives, as desired:

/Book -s lay -ed on/*onto the shelf/
= (be-location :patient (plural (book)) :location (place :oper (on) :location (shelf)) :tense past)

/Bob lay -ed book -s on/*onto the shelf/
= (cause :agent (bob) :effect (be-location :patient (plural (book)))
:location (place :oper (on) (shelf)) :tense past)

As another illustration of preposition incorporation, consider the dative alternation (/Bob give -ed
water to Sue/ /Bob give -ed Sue water/). In this case, we have 2 entries for /give/ (c.f. Pinker
(1989)), one for the to-form and another for the “double object” form, and have similar entries for other

“spaces” of location, identity, and information, shown in Figure 5. The /to/ preposition codes the +



/to/ =d +k pgoar (A(=d) (A(x) ((go x) (path+ =d))))|// =d =d pnave (A(=d) (A(=d2) ((have =d) =d2)))

. [give/ D =p 1 =d Veause [give/TF D =p 07 4k 4K Veaueer
Possession (A (=pgoa1) (A(=d) (space ’poss (=pgoar =d)))) (A (=pnave) (space ’poss =pnave))
/Bob give -ed water to Sue/ /Bob give -ed Sue water/
/send/(u'l) =Pgoa1? =d Vcause /send/(u'l) =Phave? +k ++k Veause2
Location (A (=pgoa1) (A(=d) (space ’loc (=pgoar =d)))) (A (=pnave) (space ’loc =prave))
/Bob send -ed a letter to Sue/ /Bob send -ed Sue a letter/
Jturn/5®) =p 1 =peowrce? =d Voecoms

/appoint/(%'l) =Phave? +k ++K Vcause2
(X (=phave) (space ’ident =ppaye))
/Sue appoint -ed Bob sheriff/

. (A (=pgoa1) (A (=psource) (A(=d) (space ’ident
14entity | (conbine-paths (gt =d) (=puource =4)))))
/Bob turn -ed (from a prince) into a frog/

/read/(”'i) =Pgoa1? =d Vcause /read/(”'i) =Phave? +k ++k Veause2
Information (A (=pgoa1) (A(=d) (space ’info (=pgea1 =d)))) (X (=Pphave) (space ’info =ppave))
/Bob read -ed a story to Sue/ /Bob read -ed Sue a story/

Figure 5: Different spaces with P-Incorporation

terminal of a path, and the “space” is marked to differentiate between verbs of transfer. Otherwise the
derivation of /Bob give -ed water to Sue/ issimilar to /Bob put -ed the book on the shelf/.
The dative form is different, and results in a different semantic gloss. Following Baker (1997) and
Harley (2000), the double object form derivation is:

1 Simple Merge: // =d =d prave (A(=d) (A(=d2) ((have =d) =d2))) and /Sue/ d -k self —
(// =4 Prave, /Sue/ -k, <, (A(=d2) ((have (Sue)) =d2)))
2 Complex Merge: (1) and /water/ d -k self — (/water/ -k, (// Pnave, /Sue/ -k, <), >, ((have (Sue)) (water)))
3 Simple Merge: (2) and /give/ =prave +k ++K Vcausez (A(=Prave) (space ’poss =pnave)) —
(/give/ +k ++k Vcaysen, (/water/ -k, (//, /Sue/ -k, <), >), <, (space ’poss ((have (Sue)) (water))))
4 Covert Move: (3) — (/give/ ++k Vcause2, (/water/, (//, /Sue/ -k, <), >), <, (...))
Overt Move: (4) — (/Sue/, (/give/ Vcase2, (/water/, (//, *, <), >, <, >, (...))
6 Right Incorporate: (5) and // >Vcausez =d pred (A(>Viecone) (A(=d) ((cause >Vpecome) =d))) —
(/give/ =d pred, (/Sue/, (//, (Jwater/, (//, *, <), >), <), >), <,
(A(=d) ((cause (space ’poss ((have (Sue)) (water)))) =d))))
7 Complex Merge: (6) and /Bob/ d -k self —
(/Bob/ -k, (/give/ pred, (/Sue/, (//, (/water/, (//, *, <), >), <), >), <), >,
((cause (space ’poss ((have (Sue)) (water))) (Bob)))
8 Right Incorporate: (7) and /-ed/ >pred ++k t (A (>pred) (tense >pred ’past)) —
(/give -ed/ ++k t, (/Bob/ -k, (//, (/Sue/, (//, (Jwater/, (//, *, <), >), <), >), <, >), >,
(tense ((cause (space ’poss ((have (Sue)) (water))) (Bob)) ’past))
9 Overt Move: (8) — (/Bob/, (/give -ed/ t,(x,(//, (/Sue/, (//, (/water/, (//,*,<),>), <), >), <), >, >, >, (..))
10 Simple Merge: (9) and // =t ¢ —
(// ¢, (/Bob/, (/give -ed/, (*, (//, (/Sue/, (//, (/water/, (//, *, <), >), <), >), <), >), >), >), >,
(tense ((cause (space ’poss ((have (Sue)) (water))) (Bob)) ’past))

5]

= (cause :agent (bob) :effect (have :possessor (Sue) :theme (water) :space ’poss) :tense past)

4.3 N-Incorporation

Nouns incorporate trivially into verbs, as with verbs like /glow/, or into prepositions, which can be
incorporated into verbs in turn, as with verbs like /butter/ (figure), /shelf/ (ground), and /shovel/
(instruments):

Considering the derivation of /Bob shelf -ed the book/ vs. /Bob butter -ed the bread/, the
core distinction is in how the argument /the book/ and /the bread/ are applied to the two primitives

P1oct and pioce that have different orders of selecting “figure” and “ground”:

Ploct (A (figure) (A(ground) ((go figure) (path () ground))))
Ploc2 (A (ground) (A(figure) ((go figure) (path () ground))))

The two derivations proceed identically in form, but results in a different semantic structure as a

result of the above figure-ground reversal:

/Bob butter -ed the bread/
= (cause :agent (bob) :effect (go :theme (butter) :path (path :oper (bread) :terminal+ ())) :tense past)

/Bob shelf -ed the book/
= (cause :agent (bob) :effect (go :theme (book) :path (path :oper (shelf) :terminal+ ())) :tense past)



Root/Nominal Entry

Verbal Entry

EVCA Sections

Processes/Activities
/glow/(4°'2) emission
// >emission n identity

/a glow/

// >emission vg,
(A(>emission) (do >emission))
/The light glow -ed/

Figures

/butter/(g'g) figurej,.

// >figure;,cn identity
// >figure;,.d -k identity
/the butter/, /butter/

// >figureisc =d Vcause
(A(Ofigureio.) (A(=d) ((proct
/Bob butter -ed the bread/

=d) >figureioc)))

/pit/izz.;) R /whale/(is.zzs’ 3)/5ut/(21.1)(;8)
/dye/ , /autograph/‘*®), /calf/ ,
/knight/(zg's) N /love/(31'2) N /whisper/(37'3) N
/Vomit/(4°'1'2) B /braid/(41'2'2) B

/smell/(43'3) N /fracture/(54'2)

Grounds

/shelf/(g'io) ground;,

// >ground;,. n identity
/a shelf/

// >groundioc =d Vcause
(A (groundio.) (A(=d) ((p1oc2
/Bob shelf -ed the book/

=d) >groundiec)))

/mine/(lo'g), /Videotape/(zs'q), /tutor/(zg's)

Instruments

/shovel/(9'3) instioc
// >insti,c n identity

// >insticc =pioc? =d Vcause
(A(>instiee) (A(=p1oe) (A(=d)
((using >instise) (=p1oc =d)))))
/Bob shovel -ed the dirt (onto the truck)/

/mop/(10.4.2)’ /whip/(s.a)’ /clamp/(2'4),
/pencil/(25'2), /email/(37'4), /ferry/(“'s),
/Cycle/(51.4.1) s /paddle/(51.4.2)

/the shovel/

Figure 6: Different kinds of N-Incorporation

The same alternation patterns seen in /butter/, /shelf/, and /shovel/ can be observed in a variety
of other “spaces” in addition to the “location” space - removal, possession, impression, identity,

emotion, information, body possession, material possession, and perceptual space.

5 Implementation Analysis

We have modeled all of the verb classes in Levin (1993) through combinations of N-incorporation,
A-incorporation, and P-incorporation in verbal entries. Our current lexicon contains a total of 347

entries, where:

1. 199 are verbal entries. Frequently, one entry covers more than 1 EVCA verb class.

2. 51 are pure root entries (e.g. /glow/ emission), 37 are nominalizing entries (e.g. // >emission
n), and 4 are adjectival entries (e.g. // >state a)

3. 20 are preposition entries (e.g. /on/ =d +k pi.c). One entry often covers more than one preposition
(e.g. /on/, /in/)

4. 77 are “other” entries (e.g. // =t c), including noun entries.

Of the 199 verbal entries (marked with V4o, Vbecome, Veause, €tC.), 142 contain 1 or more instances of
P-incorporation, 60 contain N-incorporation, and 4 contain A-incorporation. To the extent that the
core meaning of the verbs in reflected in the types of structures that are incorporated, this illustrates

how prevalent incorporation is. At present, these verbal entries fall into traditional broad classes:

INTRANSITIVES : Not Externally Causable

/The light glow -ed/ */Bob glow -ed the light/

// >Vao pred (A(Ovg,) (Gvg, =d))

/glow/(4°'2) emission self
// >emission vg, (A(>v4,) (do >emission))

INTRANSITIVE/TRANSITIVES : Externally Causable

/The door open -ed/ /Bob open -ed the door/

// >Vvecome +k =d pred (A(>Vpecome) ((cause >Vpecome) =d))
// >Voecone Pred (A(>Vpecome) >Vbecome)
/-ed/ >Vbecome =Pby? Ppredp

(A (=pby) (=Pby >Vbecome))

Jopen/(*5%) state self
// >state Vpecome (A(>state) (A(=d) ((become >state) =d)))

TRANSITIVES : Externally Caused

/Bob put -ed the book on the shelf/

// >Vcanse +k =d pred (A(>vViause) ((cause >Veayse) =d))
/-ed/ >Vcause =pby? predp (A(=ppy) (=ppy >Vcause))

/put/ =pioc =d Veause (A(=p1oc) (A(=d) (=p1oc =d)))

DITRANSITIVES : Externally Caused

/Bob give -ed Sue the book/

// >Vcausez =d pred (A(>Vcausez) ((cause >Veaysez) =d))
/-ed/ >Vcausez =pry? pred, (A(=poy) (=pby >Vcause2))

/give/ =pnave *k ++k Vcausez (A(=Phave) =Phave)

Figure 7: Broad verb classes in our implementation




However, the reason a particular verb is in a particular verb class requires appealing to notions of
whether an event is not externally causable (/glow/ vs. /open/), or whether it must be externally
caused (/lay/ vs. /put/). Verbs such as /open/ (A-incorporation) or /lay/ (P-incorporation) are
of the Vpecome Class, and need only one entry to generate 2 alternation patterns, as discussed earlier.
Verbs such as /put/, on the other hand, require only one entry because they have only one canonical
surface realization, and must be externally caused. In some cases, verbs such as /give/ require two
entries for each of their canonical surface realizations. A very small number of entries (3) generate all
the passive forms for the Vpecome, Veauses Veause2 broad classes : one for each class.

For the 183 verb classes of EVCA, a distributional analysis of entries per class reveals that 141
sections have exactly 1 entry in our lexicon (e.g. the /put/ class, the /lay/ class, the /open/ class),
32 sections have exactly 2 entries in our lexicon (e.g. the /give/ class), and only 10 sections have 3
or more entries in our lexicon (e.g. the /email/ class). Using incorporation theory, we have reduced
the vast majority of EVCA sections (77%) to just 1 entry. Only a minority (42/183, 23%) need more
than 1 entry, and we suspect that some of these may reduce to 1 entry with further analysis. We
should simultaneously stress, however, that at present not all alternations described in Levin (1993)
can be currently modeled fully, requiring new operations (selection, adjunction, agreement, reflexives,

particles, aspect, etc.) We summarize our present coverage:
ALTERNATIONS MODELED ALTERNATIONS NOT MODELED

Requires selection/adjunction:
2.5 Reciprocal Alternations
2.13 Possessor-Attribute Factoring Alternations

Modeled, does not need 2 entries:
1.1.2 Causative
2.4.3/2.4.4 Total Transformation

: 1 Time Subject Alternation
5.1 Verbal Passive 3 Subj r )
oy e i 3.2 Natural Force Subject Alternation
‘& Frepositional fassive 3.3 Instrument Subject Alternation
. . 3.4 Abstract Cause Subject Alternation
Currently requires 2 or more entries s !
3.5 Locatum Subject Alternation
but probably can be reduced to 1: ! i i
° 3.6 Location Subject Alternation
1.1.1 Middle (+effect) : X >
] : 3.7 Container Subject Alternation
1.3 Conative (+motion, 4+contact) > )
- | 3.8 Raw Material Subject
2.12 Body-Part Possessor Ascension Alternation c )
! > 3.9 Sum of Money Subject Alternation
7.1 Cognate Object Construction X L
7.2 Cognate Prepositional Phrase Construction | 510 _Source Subject Alternation
& P 7.3 Reaction Object Clonstruction
4 X’s Way Construction
Modeled, currently needs 7 y C :
. . . 7.5 Resultative Construction
2 ontries when 2 alternations possible: esult: ¢ ) )
> 7.8 Direction Phrases with Nondirected Motion
1.1.3 Substance / Source Alternation >
' ! 8.5 Obligatory Adverb
1.2 Unexpressed Object Alternation 8.6 Obligatory Negative Polarity Element
1.4. Preposition Drop Alternation - gatory Nega arity
2.1 Dative (give) Requires binding/reflexive operations:

-2 Benefactive (carve) 1 Virtual Reflexive Alternation

.2 Reflexive of Appearance

.3/5.4 Adjectival Passive

.1 There-insertion

Unintentional Interpretation of Object

Bound Nonreflexive Anaphor as Prepositional Object
Obligatory Passive

Obligatory Reflexive Object

Inalienably Possessed Body-Part

.4 Expletive It Object

.3 Locative Alternation
.4.1/2.4.2 Material/Product Alternation
.6 Fulfilling Alternation

.7 Image Impression Alternation

.8 With/Against Alternation :
9
1
1
1

Through/With Alternation
0 Blame Alternation

1 Search Alternation

4 As Alternation

PMNNDNNDNNDD

W= o

000000 00 ~1 ~1 O T

We can extend our minimalist operations to include Agree (see Chomsky 2001) and Adjoin (Chomsky,
forthcoming), or use already well developed theories from earlier formalisms. This is the subject of
future work.

Our reduction to one or two entries per verb class is in stark contrast to a typical CFG, which
would contain many more entries. Whereas /lay/ =d =ppe—10c is represented with 1 entry in our
implementation, we would expect at least seven grammar rules to handle basic constructions in a
typical CFG:

VP — VO NP PPy, /He lay -ed the book on the shelf/ |VP — VO PPy, /The book lay -ed on the shelf/
VPass — VO PPy /The book was lay -ed on the shelf/|VP/NP — VO PP;,./NP /What did the book lay on/
VP/NP — VO NP/NP PP;,. /What was lay -ed on the shelf/ VP/PP — VO PPy,./PP /Where did the book lay/

VP/NP — VO NP PPy.,./NP /Where was the book lay -ed/

We do not claim that the minimalist implementation presented here is the only account that can re-
duce the majority of EVCA verb classes to just one entry per verb. It is likely that other frameworks
such as lexicalized TAGs or categorial grammars (e.g. Vijay-Shankar and Weir 1999, Steedman 2000)

that also compactly handle movement, passivization, etc. can simulate Hale and Keyser incorporation



operations present in our implementation, resulting in a more compact grammar /lexicon. The key les-

son to be learned is that by implementing Hale and Keyser’s incorporation theory in some framework,

there is enormous compaction, resulting in a grammar that is more easily engineered or learned.
Our parser and lexicon (written in MIT Scheme), and an extensive array of sample derivations and

resulting semantic structures is freely available at http://web.mit.edu/niyogi/www/minimal.htm
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Appendix

Below is a definition of an agenda-driven, chart-based parser for minimalist grammars. For a given
grammar and input string, there is a set of items, call them axioms, that are taken to represent true
grammatical claims. Given these axioms, and the structure-building rules that allow us to make new
true grammatical claims, we can design a parser, which, given an input string, determines the truth of
the input string. If a structure has a particular set of goal features (i.e. c) and phonetic features that
match the input, then the input string in is the language defined by our grammar. Our procedure to

find all items that are true for a given grammar and input string works as follows:

1. Initialize the chart and the agenda (both modeled as an indexable stack) to be an empty set
of items — an item has the form (S, f,i4,ip) where the first element S is a simple or complex
structure, the second element f is a symbol representing the source of the structure (Merge, Move,
Optional-Merge, or Axiom), and i4 and ip are indices into elements in chart which created S. The
axioms are pushed onto the agenda, with f = Axiom, i4 =i = 0, and S being a underived simple
structure of the form /phonetic/ feature-list A-expression. In our case, the axioms are the

union of (1) all phonetically null lexical items and (2) the lexical entry(s) for each word in the input.

2. Repeat the following until the agenda is empty:

(a) Pop an item off the agenda, call it the trigger.
(b) Push the trigger onto the chart, if the trigger has not already been placed on the chart.
(c) If the trigger item was added to the chart in (b), then:

i. generate all items that can be derived from Merge of the trigger item and any items of the chart,
pushing each new item onto the agenda with f = Merge, and i4 being the index to the licensor
item and ip being the index to the licensee item (one of i4 or i being the trigger’s index)

ii. generate all items that can be derived from the trigger item solely (via Mowe, or Optional Merge),
pushing each new item onto the agenda with f = Move (or f = Optional — Merge), i4 being

the index of the trigger item, ip =0.

3. When the agenda is empty, scan all items in the chart for structures that contain solely the goal
features (a ¢ feature). If such a structure exists, then its phonetic content is “spelled-out” — if the
phonetic content matches the input string, then we print the derivation recovery and computed

semantic structure:

(a) To print the derivation of an item (S, f, i4, i), we can print the derivations of item 74 and ip

(if non-zero), and then print the resulting structure S.

(b) To compute the semantics of an item (S, f, 74, i), we condition the result on f:

if f =Merge, then return the result of applying the semantics of item iy to that of item ip

if f =Move, then return the semantics of item i4

if f =Optional-Merge, then return the result of applying the semantics of item i 4 to a precom-

puted A-expression based on the optional feature skipped.

if f =Axiom, then return the A-expression of the axiom S, guaranteed to be a simple structure



