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Abstract

In this paper, we introduce a novel MDL-based gramiearning algorithms, which can automatically
induce a good amount of high quality parsing-ogdngrammar rules from a tagged corpus with a mihima
annotation. Comparing between the basic best-MBIL induction algorithm and a pseudo-grammar
induction process, we identify problems associatgth the current MDL-based grammar induction
approaches. Based on this, we present a noveltage-grammar induction algorithm to overcome alloca
minimal problem by clustering the left hand sidéstte induced grammar rules with a classifier tealin
through a seed grammar. Preliminary experimentulte show that the resulting induction curve isyve
close to its upper bound and outperforms the fradit MDL-based grammar induction.

1. Introduction

With the increasing demand for natural languagegssing in the various Internet applications, sagh
automatic speech recognition and dialog systenesatiguisition of large amount of high quality graamm
rules become more important. The availability ofdi@nnotated corpora, such as Penn Treebank Rroject
offers the possibilities for overcoming this knodde-engineering bottleneck. However, the parsesedan
such grammar rules have the risk of becoming tdoréal to these labeled training data so as natlide to
reliably process sentences from other domains.arsegpsentences from a new domain, one would tlyen tr
obtain a new set of grammar rules from that domaimch often would require hand-parsed sentences fo
the new domain. Because to (semi-)manually part@ge corpus is both a labor-intensive and a time-
consuming task, it would be beneficial to autonalycderive grammar rules from raw text data frdmtt
domain with minimal annotations.

In this paper, we report our ongoing research vior&utomatic grammar acquisition within threnimal
description length(MDL) [ Ris78, Ris89] paradigm, together with cextual distribution classification to
infer the LHS of those induced rules. Particulavie, want to address three MDL-related grammar itidoc
issues: 1) What problems do current MDL-based graminduction approaches have? 2) What MDL values
may we obtain using the basic MDL induction apploadien both the grammar rules and their application
order is known? This way, we can have a good ideautathe upper bound for the basic MDL-based
grammar induction. 3) Are there any new approathas can lead to a performance close to that upper
bound?

To answer these questions, we conducted a setpafriexents that compare the induction curves under
different settings using both automatically indugeammar rules and hand-annotated rules in Treebank



The results show that the MDL principle alone inekiceasonable phrase grammar rules at the begjnning
but quickly leads to a local-minimal and most adued rules then are not adequate. However, agptiim
rules from Treebank by MDL principle in bottom-upder shows monotonous and sharp decrease of MDL
values, compared with the results from the basicLMibinciple. We speculate that it may be due to the
vagueness of the LHS symbols from the MDL princiglene, and therefore, we improve our algorithm to
determine LHS using distributional classificatidrhe experimental results show that the new appragach
very close to the hand-annotated rule inductiormr@gugh in term of MDL values.

The rest of paper is organized as follows: secHopresents the MDL principle, with an emphasis on
description length gain(DLG), described in [Kit98] following classic infmation theory [Shannon49,
Cover&Thomas91l]. The next section presents two graminduction strategies, i.e. the basic induction
algorithm, which aims to find optimal grammar rulieem the scratch with the guide of MDL principle
alone, and a two-stage improved induction algorittivat first explores the context distribution o¥di
syntactic categories from somseed grammdr During the next induction stage, those induceangmar
rules are dynamically classified as one of the fragegories to avoid the deficiency of MDL-basedrsk
strategy. Section 4 reports experimental settireg)lts and algorithm evaluation. Section 5 reviprevious
MDL-based research on grammar learning and givesanclusions.

2. Grammar induction by MDL Principle

Grammar induction can be viewed as a process #wtclses for the best grammar in a predefined
grammar (or hypothesis) space. If a set of perbissiules or rule formats, e.g., context-free granm
(CFG) rules, are given, it is widely adopted to tise Baum-Welch (or forward-backward) algorithm atsd
extension, the inside-outside algorithm [Baker78ri&Young90], to estimate the probabilistic paraenst
for these grammars. Essentially, there are twotasks in obtaining a CFG rule. One is to decidetviha
right-hand terminals or non-terminals should be] @@ other is to decide the left-hand symbol (LHS)

2.1. MDL Principle

Researchers have proposed various techniques iggriacto constrain the grammar space and to gihiele
search process. For example, [Hol75] ugedeticalgorithm and [KVG83] appliedtimulated annealing
algorithm to facilitate the search process. Howgsaethe core of the search process, the goodmissan
for search is a critical issue, this is becaugell$ which grammar rule is better. Among thoserapphes,
the minimal description lengtiMDL) principle, which is based on the classid aigorithmic information
theory [Shannon49, Solo64, and Kol65], has recedvaidde attention.

For any given set of data, i.e. legal sentenceggethare usually multiple theories (i.e. a set @ngmnar
rules) that can account for the data, and we neel@tide which one to select. An often used prirdpthe
Occam’s razomrinciple, which states that given a choice of tteories, the simplest is best. There are two
aspects associated with the simplicity. One is tioat simple is the theory describes the data, hadther
is that how simple is the description of the theitsglf. There is clearly a tradeoff between thisee aspects.
[Ris78] formalized this as follows: given some dBtawe should pick that theory T which minimizehat
is:

L(T) +L(D|T) (2)

where L(T) is the number of bits needed to minignathcode the theory T, and L(D|T) is the number of
bits needed to minimally encode the data D givertiieory T.



From Shannon’s information theory [Shannon49], wewk that if we have a discrete set X of items waith
probability distribution P(x), then to send a megsadentifying X1X, we need approximately L(x) = -
log,(P (X)) bits. In other words

P(x) = 27 2)

This enables us to interpret the MDL principle iayBsian framework. From the equation it can edsly
seen that minimizing L(T) + L(D|T) corresponds taximizing P(T)*P(D|T) and hence P(T|D). This shows,
theoretically, searching for the most likely thedoy a given data in a Bayesian modeling framewigrk
equivalent to searching for a model with the mirdidescription length.

It should be noted that the MDL principle enablegaiassign prior probabilities to items in a megful
way, even if we do not really have enough prioriiealge. We can do this through minimal length emugd
for the items.

2.2. Description Length Gain

The application of MDL is independent of encodimtpesme [Ris89]. To calculate the description length
L(T) +L(D|T), what we need is an ideal encodingesuol, instead of a real compression program. Thidea
formulated in terms of token counts in the corpasbalow for empirical calculation [Kit 98], followg
classic information theory [Shannon49, Cover&Tho®ids

_ ] _ O O _ C(X)

DL(X) =nH(X) = —n; p(x)log p(x) = —; o(x) logm (3)

where V is the set of distinct tokens (i.e. thealmdary) in corpus X and c(X) is the count of Xin

Accordingly, thedescription length gairof selecting the substringxx,...x; (denoted as;x;, i < j) as
possible RHS candidate of a grammar in a givenuipdefined as

DLG (x, ;0X)=DL(X)=-DL(X[r - x, 10X ) ()

where X[r — X, j] represents a resultant corpus from the operatioemacing all instances of; %

with r throughout X, and] denotes a string concatenation operation with aniter inserted between its
two operands, the current corpus and newly leaphease X ;.

It is worth to note that we can choose the sulgstwitth maximumDLG value at each iteration without
carrying out the real string substitution throughtine original corpus. The calculation is basedhmntoken
count change involved in the substitution to derthhe new corpus. After finding the substring with
maximumDLG, we replace the substring with a new string hmdriginal corpus.

Another problem is that we need to derive the cadnt, for all possible sub-strings x in the corps
because during the induction process, it is necgssaonsider all segments (i.e. all n-gram) ie torpus in
order to select a set of good candidates. Forlung,tMDL principle itself prefers short grammatesiover
long grammar rules and long rules normally occss l#equent than short rules and hence less pedsibl
become good grammar rules in the induction. In taldiit is too computationally expensive to comsid
each possible of these n-grams at every pointanséarch. Therefore, we use only bi-gram and #irgin
the induction process. However, we will consideo tases: using bi-gram and tri-gram RHS with autama
MDL principle alone, and using the same number ldERand-annotated rules.

3. Learning Strategies
3.1. Basic Induction Algorithm



Accordingly, the best first learning algorithm ugithe goodness criterion is illustrated in figureGlven
an utterance U itt...t, as input string of some linguistic token, e.g.tyudrspeech tags, the unsupervised
grammar induction looks for the substring with nmaxim description length decrease, i.e. maxiniin®, at
each iteration and then replaces the n-gram (birgrathe tri-gram in our work) with a random symiol
the whole corpus, at the same time, output thenéghrules in this iteration. It loops until destiop length
value does not decrease,XrG have a zero or negative value.

1.  setk=0and extract all 2-gram and 3-gram in X, with their counts;

2. for every n-gram (n = 2,3) in X, examine:
(a) If no more x;; (2<j-i <3) that DL (X\[r-> x;; ]) < DL(Xy), output the phrase and exit;
(b) Elser, = argmax ADL (X[r-> X;; 1);

3. Xia = Xy[rc -> Xij], output the r, go to step 2,

Figure 1 Basic MDL Induction Algorithm

3.2. Pseudo-Grammar Learning by MDL Principle
One may see that the learning algorithm may nathréle real shortest description length, since i i

best first strategy that stops at local minima.evaluate if the MDL principle is applicable for ge®hand-
annotated rules in Treebank corpus, we implemgrgeaido-grammar induction algorithm to gain insights
Figure 2 outlines this pseudo-grammar inductiomtigm.

1. Extract al hand-annotated grammar rules from Treebank corpus, sort those rules according to
bottom-up parsing order, mark grammar rules as “hidden”, except for leaf grammars in the every
sentence tree and add them to the rule pool;

2. For dl rulesintherule pool, apply step 2 and 3 of basic induction algorithmin figure 1 in
each run to choose the rule with maximum DLG;

3. Output the learned grammar and apply it in order to involve more higher level grammars, that
is, if al the children of one grammar are applicable, the grammar can be marked as “visible”
and hence add to the rule pool;

4. Goto step2 if there are rulesin the rule poor.

Figure 2 pseudo-grammar induction algorithm
In the algorithm, by simple extracting all hand-atated rules from the corpus, the rule form (RH8 an

LHS) and the rule application order are predeteesiinased on the parse trees. We only use MDL pi@eci
to pick a rule in the current step so to get maxmuescription length gain. When all the child rutes
selected and applied, their parent rule will bestdered subsequently. Thus, we apply these hanotzied
rules roughly in the bottom-up parsing order, gdidg the MDL criterion. From this experiment, wentéo
figure out how the basic induction algorithm diffdrom the pseudo-induction, where the rule andotider
of the application are already known, under theesariterion. In addition, through this experimeng try to
find an upper bound for MDL-based grammar induction



NP->DT JJNN NP->DT JJNNS | NP->DT NN NP->DT NNS NP->PRP NP->JJNNS
NP->JJNN NP->NNP POS NP->DTNNPOS | NP->JJJINN NP->JJ JINNS NP->DT NN NN
NP->DT CDNNS | NP->NP NP NP->NPCCNP | ADJP->RB JJ ADJP->RB JR ADJP->RB JIS
ADJP->RBS JJ ADJP->RBR JJ PP->IN NP PP->TO NP PP->IN S VP->VB NP
VP->TOVP VP->MD VP VP->VBD NP VP->VBZ NP S>NPVP S>PPNPVP

Table 1 the Seed Grammar Rules

3.3. MDL Induction by Dynamic Distributional Classification

Comparing the results of the two experiments, vgedalier that the basic MDL induction algorithm alone
does infer reasonable phrasal grammar rules adbeganing, but after getting about a hundred oésuit
quickly reaches a local-minimum and most of theugetl rules are not adequate.

We suspect that it may be due to the random lalpefnLHS for those induced rules, because if al th
LHS symbols of the induced rules are different, rdygetition of certain patterns becomes less aarcktore
its MDL value decreases less dramatically.

Based on this observation, we come up with a negerithm. We decide to integrate some linguistic
information into the search strategy, which triesctassify the LHS symbols of the induced rulesngis
distributional analysis, and to help the searcltgss to infer more syntactic plausible rules.

The algorithm is divided into two stages, one i8 tlontext vector training stage and the other is an
improved MDL induction process.

The context vector training algorithm is based o dssumption that similar grammar rules tend twioc
in similar contexts. The contexts of the rules frovP” category, for instance, differ greatly frorhase of
the “NP” rules. If the context is restricted toigefl sliding window (e.g., three part-of-speechstay our
work, on either side of rules), then we can defime context distribution over all rules in that &etic
category. The context distribution of one categoem be estimated from the observed contexts of lsamp
sentences in category.

In the next MDL induction stage, we measure theilanity of each MDL induced rule to the center of
context vectors of each syntactic category usintbidak-Leibler (KL) divergence as the distance fimmc
and assign to the LHS of the rule the category wufite shortest distance. At each iteration, we also
dynamically update the contexts and their centetiseoinduced rules for every syntactic category.

For simplicity, the syntactic categories are liddite five non-terminals, i.e., “NP”, “VP”, “S”, “ADP”,
and “PP”, which are main syntactic components @& giintactic parsing. We take, ass&ed grammdr a
set of most frequently used grammar rules for eddh syntactic categories and analyze the coni@xtsft
and 3 right part-of-speech tags) for each of thrages in the sample corpus. The thirty seed rulesiged in
the algorithm are illustrated in Table 1. Note tatnot only use the base grammar rules, i.e.ules at the
leaves of the parsing tree, but also the onescatipiper levels, since exploiting the context okthaules on
the fly will make the search process more robusibtAer critical issue concerning the selectionhef $eed
grammar rules is to decide the number of rulesstch category. The ratio we choose is roughly mees
ratio for these five categories in the trainingpa. In addition, we discover that “NP” rules al@wount
for two thirds of all rules in the hand-annotatetedbank corpus and they dominate other kind ofsrule
especially in the bottom level of parsing treeserBfiore, we choose many “NP” rules seed grammar
rules
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Figure3 The Two Grammar Induction Curves (MDL Value vs. Rules Induced)

4. Experimentsand Results

A number of preliminary experiments on unsupervigkthse and lexical learning have been conducted on
parts of Treebank corpus. These experiments showiping results bypLG measure [Kit 98]. It shows
certain ability to capture the regularities in theta. Since it takes a learning-via-compressionagmh, i.e.
MDL principle approach, the result is a set of deiaistic CFG rules.

We perform four experiments and all of them usé@,5entences extracted from Treebank corpus with
hand-annotated part-of-speech tag for each wolidpag. Backing off to POS tags is necessary bec#use
alleviates the sparse data problem.

4.1. Experiment 1: Basic MDL Grammar Induction

The first experiment is the basic MDL principle umdion. The testing corpus contains 2,500 short
sentences and the vocabulary set is made up oDRt&gs, a subset of 47 tags used in Treebank £orpe
apply MDL principle on the grammar space, whereRS of a CFG is bi-gram or tri-gram. The firstrtii
of induced rules are given in appendix A.

From the appendix, we can see that most learnedrgaa rules are reasonable, such as [NNP NNP], [TO
VB] and [MD VB]. However, some other rules seenbtquite “flat”, i.e. lack of internal structure§tbe
rule. The rule [PRP RB VBD], for instance, shoukl liroken down into [PRP [RB VBD]]. In addition, we
plot MDL value curve to show the MDL decrease trehohg the search procedure. The curve is given in
figure 3.

It is clear that having induced about a hundredsuthe basic MDL induction algorithm reaches teal
minimal quickly. For comparison and verificationwhether the MDL principle is useful for real woddta,
we perform another experiment using the pseudoeiimu algorithm in subsection 3.2.

4.2. Experiment 2: Learning by Pseudo-Grammar Induction



In this experiment, we use the same search strégigyp the manually annotated rules found in Taeéb
corpus. The search process only chooses the rtifetind maximum description length decrease, wihige t
rule forms are all predetermined in advance. TheLMDrve is illustrated in the figure 3. The detafilthe
algorithm is described in section 3.2.

From the figure, we observe that although the twwes are very closely to each other in the begmni
they differ greatly in the whole process in thaistfy, no local minimal is found in this case, Wehthe basic
induction process quickly becomes flat and hasettebminated because it is too computational experts
infer new rules — large amount of randomly seledi¢tS of the induced rules lead to a very sparse
distribution. Secondly, for the pseudo-grammar atiun case, the curve decreases irregularly, Hhat few
“critical” rules make the description length dropanhatically than the rest of them. We still work on
understanding the effects.

To verify if it is just a special case for pseudesgmar induction, we perform similar experiment on
different sentence sets, illustrated in figure heThree curves are obtained by applying pseudoHgie
induction algorithm on different number of senteneatracted from Treebank corpus, namely 2,50@%,0
and 10,000 sentences respectively. The chart stheasonsistency among varied numbers of sentences.
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Figure 4 Different Data Set uge&seudo-Grammar Induction Experiment

4.3. Experiment 3: MDL Induction by Dynamic Distributional Classification

In this section, we give experiment results oftthe-stage induction algorithm described in sec8dh

The goal of the experiment is to incorporate samguistic knowledge into the search process toyze
syntactic plausible grammar and overcome the logalmal problem.

After training the classifier on 1,000 POS taggedtsnces using the seed grammar rules, we obtain th
context vector centers for all the 5 syntactic gatees. Then, we construct the induction sets using
different set of 2,500 sentences (which is the sasrde previous experiements).

The curve labeled with “MDL Induction by DDC” in gfiire 5 summarizes the outcome of the experiment.
From the chart, we see that it decreases monotbnibawever, with no local minimal found at thisne in
the curve; the search process repeats until ne oale be induced by MDL framework. In addition, theve
is very close to the pseudo-grammar induction dasethe upper bound of the algorithm.

This algorithm learns not only the right-hand sewas of terminals/non-terminals, but also their LHS
syntactic categories.



We also conduct another experiment to see theteffeen both the classification of syntactic catggor
and the MDL induction are accurate, that is, asstiraesyntactic category of every induced rule isexily
identifiable using extra knowledge, and also assathimduced rules are subset of the grammar ridlesd
in the hand-annotated Treebank corpus.

We vary the experiment settings in this algorittorexplore the upper bound for experiment 3. Because
many induced grammar rules, which reduce the dagmmi length dramatically, are not syntactic platesi
rules and are not found in manual rule set, howetheralgorithm assigns a syntactic category ferntland
updates the center of the context vector for th#tgory in the search process. This, in turn, irgoan the
classification in the later part of the procesghéugh we try to use several high-level grammaggualsseed
grammarand explore their context in the induction processompensate this effect, how to improve the
robustness needs further investigation.

Another major factor to certain poor performancénis limited number of syntactic category, (fiveour
work, but more than fifteen in the Treebank), amel restricted number of n-gram (many ‘flat’ grammaes
are found in Treebank [Gai95]) that we appliedhe experiment all impact the induction procedure. T
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Figure 5 The MDL Curve

investigate their impact, we loose the restrictan the limited number of LHS categories. In theheac
induction process, as described in section 2.3seve the candidate rules by th&tLGs in a descending
order, choose only the first rule found in handatated Treebank grammar and apply it by replacieg i
RHS sequence with the correct LHS.

In such procedure, no classification is perforntedrefore the classifier is always assumed to barate,
which removes the effect that grammar rules indueady influence the rules induced later. On theeot
hand, all rules learned are syntactic plausiblespeimce they are subset of the manual-annotatadrgar
rules. The only difference between them is the remalf the right-hand symbol and the syntactic categf
the left-hand symbol.

The experiment result is illustrated in the fighrevith the label, “Simulated induction”. From thgure,
we find that the different number of n-grams argl slintactic categories does affect the resultgogsiby in



the later search process, when compared with tBeut-Grammar Induction” curve. On the other hand,
compared with “Grammar Induction by DDC” curve, tblassifier is really distracted by the previously
induced “bad” grammar rules. This is the place wHature research work can be directed.

In addition, we also calculate the precision arzhiiefor those induced rules, in contrast with tend-
annotated grammar rules extracted from the samaf 2500 sentences. The result is illustrateciie?.

Rules after 100 200 500 1000
Precision 0.92 0.89 0.82 0.74
Recall 0.13 0.16 0.18 0.22

Tablk2 precision and recall for induced rules

5. Related Work and Conclusions

The difficulty of grammar induction depends greathn the amount of supervision provided.
[Charniak96], for example, has shown that a grammlagr can be easily constructed when the examptes a
fully labeled parse tree. However, if the exampiessist of only raw sentences with no extra stmattu
information, grammar induction is very difficultyen theoretically impossible [Gold67]. Part of auork
explores the in-between case, where the categorgashed rules could be decided by the result of a
supervised learning algorithm.

Second, the search criterion also impacts the tmuprocess. Besides the MDL principle, thereaher
search criteria, similar to us, to guide the “gusgsgame”. Cook et al. [Cra76] explores a hill-diiimg
search for a grammar of a smaller weighted sumramgiarcomplexityand thediscrepancybetween the
grammar and corpus; Brill et al. [BMMS90] deriverabe structures from a bracket corpusgeperalized
mutual informatiorapproach; and Brill and Marcus [BM92] attemptrduce binary branching phrases with
distribution analysis using the information-thearat measuralivergencederived fronrelative entropy de
Marcken gives an in-depth discussion on the kingssiies involved in the pure distribution analysisl on
the disadvantages of the inside-outside algoritiem grammar induction in his PhD thesis [deMa95].
Recently, following Cook’s work, Stolcke [Sto94] vked under the Bayesian modeling framework, whereas
Chen [Chen95, Chen 96] uses the universal priobaiiity p(G) = 2'® for grammar induction. Their
learning strategy reports to work well on smallnbedium size artificial corpora, using measures sagh
entropy, perplexity or likelihood. But, to our kntadge, no one has tried to induce all levels oftagtic
grammar rules on large scale real corpora before.

In the paper, we have shown two MDL-based grammdudtion algorithms. Both of them try to infer
syntactic plausible grammar rules for parsing witle focusing on a best-first search strategy wiihimal
supervision and the other focusing on integratiblaeguage constrains into the learning model. Caning
these two approaches through experiments, we shatvMDL principle alone could induce phrase-level
grammar well, but fails to learn high-level grammales. In addition, with integrated language craists,
the MDL principle could infer not only the grammaites, but also the categories of the LHS of tlaerled
rules. The experiments show that the result ofgbeond algorithm is very close to that of the pseud
grammar induction algorithm.

To further improve the grammar learning algorithfos high performance parsing, we still need to
investigate the failed instances and come up withensophisticated learning algorithms. Evaluatiesyhed
rules for parsing and further improving learningalthms are the two main tasks in our future work.
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Appendix A

The first 30 grammar rules learned by basic MDLngraar induction algorithm from 2,500 sentences in
the Treebank corpus are given below. The rulesraked as true (t), false (f) and unsure (u) rebgey
according to human evaluators. There are four cotuin the table, namely, rule number, the current
description length with model and data combined rwhlee grammar rule is acquired, the rule and the
evaluation flag. The POS tags in these rules aredibelow.

1 146186 NNP NNP t | 16 136398 NNP NNPS t
2 144823 TO VB t |17 136274 TO CD CD t
3 142641 MD VB t | 18 136128 NNP POS t
4 141748 MD RB VB t |19 135916 EX VBZ u
5 141411 DT JJ NN t | 20 135839 WDT [MD VB] t
6 140245 IN DT NN t |21 135762 WDT VBD t
7 138981 PRP VBP uj| 22 135666 PRP RB VBD u
8 138625 PRP VBD uj| 23 135569 PRP [MD RB VB] | t
9 138119 PRP VBZ uj 24 135508 EX VBZ u
10 137703 PRP [MD VB] t |25 135456 WP VBZ t
11 137471 NNS VBP t | 26 135369 JJRIN CD f
12 136989 NNS WDT VBP | f | 27 135271 TO DT NN t
13 136834 WDT VBZ t |28 135082 PRP RB VBP u
14 136681 NNS WP VBP f |29 135023 NNS RB VBP f
15 136567 RB VB t |30 134936 [NNP NNP] POS |t
CD: Cardinal number PRP: Personal pronoun

DT: Determiner MD: Modal

JJ: Adjective RB: Adverb

JJS: Adjective, superlative To: ‘to’

IN: Preposition or subordinating conjunction VBDeN, past tense

POS: Possessive ending VBN: Verb, past participle

VB: Verb, base form VBZ: Verb, 3rd person singutaesent

NNP: Noun, singular form NN: Noun, base form



