Bidirectional Ascendant Parsing for Natural Language
Processing

Stefan ANDREI
Faculty of Computer Science, “Al.I.Cuza” University
Str. Berthelot, nr. 16, 6600, Iagi, Romania.
E-mail: stefan@infoiasi.ro

Abstract

The paper emphasizes some subclasses of context free grammars for which there exists a parallel
approach useful for solving the membership problem. We combine the classical style of LR parsers
attached to a grammar G with a “mirror” process for G. The input word will be analysed from both sides
using two processors. We present the general bidirectional parser (for any context free language) using
a nondeterministic device. A general MIMD model for describing the bidirectional parsing is presented.
Our general bidirectional parser can be also used as a deterministic model for the known LR(k) and
RL(k) parsers. Accordingly, the membership problem may be solved in linear time complexity with
a parallel algorithm. Finally, we present an example of a context free grammar useful for describing
syntactic dependencies for English language.

1 Introduction

In recent years, recognition algorithms, both sequential and parallel, for context free grammars (with
applications to parsing programming languages) or for non context free languages (with applications
to computational linguistic) have been the subject of study by many computer scientists ([7, 11]).
In ([11]) was described a formal framework for bidirectional tabular parsing of general context free
languages, and some applications to natural language processing were studied. Moreover, an algorithm
for head-driven parsing and a general algorithm for island-driven parsing were studied.

The main purpose of this paper is to provide parallel parsing for (subclasses of) context free gram-
mars using two processors. Similar ideas concerning parsing of the input word from both sides were
presented in [9, 8]. However, the mention papers do not construct effectively any parsers and do not
mention any parallel model of computers for such computation.

In this paper, we define a new parser for the class of context free languages. The input word is
analysed from both sides, but the parse strategy is in up-to-up sense (LR and RL styles are combined
for this parallel strategy). Some of the theoretical results used in this paper were reported previously
in [3, 4].

The associated derivation tree corresponding to the input word w is down to up traversed by both
processors, i.e. from the leaves to its root. Only one processor will be strongly active after the parallel

algorithm “meets” the “middle” of the input word:

\ /
Figure 1. Up-to-up bidirectional parsing

The “derivation forests” S7; and ST> will be parsed in parallel, and, finally, the subtree ST3 will
be parsed in a sequential way.

The second section contains the definition of the general up-to-up bidirectional parser. The cor-
rectness of this parser is proven as the main result of this section (Theorem 2.1). The third section
presents a very convenient parallel approach for describing the general up-to-up bidirectional parsing
strategy. The chosen model is a MIMD computer. Two processors P1 and P2 analyse the input word
from both sides. Theorems 3.1 and 3.2 ensure the finiteness and correctness of our parallel algorithm.
The next section points out the definition of some new subclasses of context free grammars. We called
them LR — RL grammars. These grammars can be viewed as some combinations between classical
LR grammars and the mirror ones. The fifth section presents an example of a simple context free
grammar useful for describing syntactic dependencies for English language. Some open problems are

emphasized in Conclusions.

2 The General Bidirectional Parser

We suppose the reader familiar with the notions as context free grammars, words ([5, 10]). Let
@ = ay ...ap be a word over V. Then
(m)gy — {oq ..oy ifm<k and o™ — { il Oz 0y ifn<k

a otherwise a otherwise.

Notation 2.1 Let G = (Vn,Vr, S, P) be a context free grammar, V. = VN U Vy and V' be the set
VN x NxN. Let h : VUV' = V be a function given by h(X) = X, VX € V and h(Xp.) =
X, ¥V Xy € V'. This function can be easily extended to an homomorphism h: (V UV')* — V* such
as h(A) = X and h(X1X5..X,,) = h(Xy) - h(X2) - ... - h(X,), V X4, Xo, ..., X;, e VUV, Vn>2 (-
being the catenation operation).

The occurrence of A4; . signifies that A is the label of the derivation subtree of root v in the forests
ST, or ST, (Figure 1), and the frontier has the corresponding right most derivation [rp, 7p41, ..., Te]-
In the following definition, we shall describe our up-to-up bidirectional parser which contains 14

transitions. Some of the transitions can be “compacted” (e.g. 1°, 5° and 7° or 2°, 6° and 7°, a.s.0.).

We defined explicitely all the possible cases (similar to “cartesian product” of the classical transitions)

because it is easier to prove the correctness of our model.

Definition 2.1 Let G = (Vn,Vr, S, P) be a context free grammar. Let CC{s1,s2}%x{1,2,...,|P|}*x
VUV XHEVE#EX(VUV) #x{1,2,...,|P|}* x{1,2, ..., |P|}*U{ACC, RE J} be the set of all possible
configurations, where # is a special character (a new terminal symbol). The general up-to-up bidi-
rectional parser (denoted by G,BP(G)) is the pair (Co,F), where Co = {(s1, \, #, #w#,#,\, \) |
w € V}} CC is called the set of initial configurations. The first component is the state, the second
(ordered from right to left) and the last but one (ordered from left to right) components of a configura-
tion are for storing the partial syntactic analysis. The last component is for storing the final syntactic
analysis. The third and the fifth components are the work - stacks. The fourth component represents
the current content of the input word. The transition relation (FC C x C, sometimes denoted by

——) between configurations is given by:
G.BP(G)

19 Shift-Shift: (s1,m1, #a, #auwbdt, B#, 7, N) F (51,71, #aa, #udt, bB#, 72, N);

2° Reduce-Shift: (s1,m1,#a B, #ub#t, v#,m2,\) b (s1,r171, #a Ay o, #u#, by#, m, N), where r1 =
A= h(B)eP,e =|m|+1,b =min{|m|+1 min{b” | Cyrr e € B}};

3% Shift-Reduce: (s1,m1,#a, #aut,y B4, mh 7 N) & (s1,m1, #aa, #u#, By f#,7h ramh, X), where
ro =B — h(vy) € P, e =|mhmy| + 1, b—mln{|7r27r | + 1, min{d’ | Dy o € v}}.

4% Reduce-Reduce: (slaﬂla#aﬁ #U#;€7#>W2 7r27) F (Sl7r17r17#aAblyen#u#;Bbmw'Y#;
whrowy,N), where v = A = h(B) € P, ro = B = h(e) € P, e; = |m|+1, ea = |7h7l| + 1,
by = min{|m | + 1, min{d} | Cy o € B}} and by = min{|my 75| + 1, min{d} | Dy oy € €}};

50 Sh?’ﬁ'Sta'y (8177r17#a7#au#76#77r27)‘) + (817’”17#0‘ a, #U#,B#,Trz,)\);

6° Reduce-Stay: (s1,m1,#a B, #utt,v#,m2,\) F (51,7171, #a Ay o, #udt, v#,m2,\), where r1 =
A= h(p)eP,e =|m|+ 1,0 =min{|m |+ 1,min{d" | Cpr v € B}};

70 Stay'Sh’lﬂ (817’”17#0‘ #Ub# B#a’nla) (Sla’nlaaa #U#,bﬁ#,’frz,A),‘

8% Stay-Reduce: (s1,m1, #a, #u#, vy B#, 7 w4, \) b (s1, 1, #a, #u#, By B#,7hrawh, X), wherery =
B — h(v) € P, e = |mhnl| + 1, b = min{|my7y| + 1, min{d’ | Dy o € v}};

90 Possible-accept: (8177r17#a7##7ﬁ#77r27A) + (82,7'(1,#&, ##7B#77T27)‘)7'

10° Shift-Terminal: (8277r17#a7 ##7aﬁ#777277r3) F (82,7'(1,#@ a,##,ﬁ#,m,m);

11° Shift-Nonterminal: (sa, 71, #a, #4F, Av.e B, mhml m3) b (52,71, #a A, #4#, B#, 74, whws), where
7r2 [rbaerrl: T'e] (e'g' |7r3| =e—b+]-)7'

120 Reduce: (827’”5’”1’7#&57 ##77#7’”27’”3) F (827’”1’7#aAa##77#7W27T1W37T1); where r = A—
h(B) € P, B=u1Bpe..unCp e B, 8 €V* ur, ..., um € Vi, |7} =€ — b+ 1;

13% Accept: (s, \, #S, ##,#,\,m) = ACC;

14° RejeCt: (Slaﬂla#aa #u#aﬁ#aﬂ-%A) F REJ and (Sz,ﬂl,#a,##,ﬁ#,ﬂg,’ffg) H REJ lf no tran-
sitions of type 1°, 20, ..., 13° can be applied.

Our model is a two-stack machine ([5]). The differences consist in the existence of two heads (instead
of only one) which may read the input tape, and two output tapes which can be accessed only in write
style, and has only two states. Therefore, our model can simulate a Turing machine.

Theorem 2.1 ([3]) Let G be a context free grammar, S being its start symbol. Then
* 13°
(Sl,)\,#,#ﬂ)#,#,)\,)\) I_ (527>\ #S ## # A ﬂ-) I_ ACC lffS :> w-

G.BP(G) G.BP(Q) G,rm

3 Parallel Approach for General Bidirectional Parsing

In this section, we present a very convenient parallel approach for describing the general up-to-up
bidirectional parsing strategy. Our model is a MIMD (multiple instruction stream and multiple data
stream) computer. We consider two processors P1 and P2 which operate asynchronously and share a

common memory ([1]).

In the following, we shall present a parallel algorithm which describes the general up-to-up bidi-
rectional parsing strategy. In fact, our parallel algorithm (denoted by (PAR-UUBP)) clearly follows
Definition 2.1 of the general up-to-up bidirectional parser. Our algorithm uses the following variables:

e we V} the input word, n= |w|;

e i1, i2 two counters for the current positions in w;

e accept a boolean variable which takes the true value iff we L(G);

e Stackl, Stack2 two working stacks for P1 and P2;

e Output_tapel, ODutput_tape2 the output tapes of P1 and P2 for storing the partial syntactic
analysis;

e Output_tape the output tape for storing the global syntactic analysis;

e exit a boolean variable which is true iff P1 or P2 detect the non-acceptance of w.

The variables w, i1, i2, accept, Output_tape, exit are stored in the common memory. We use
some predefined procedures, such as:

e pop(Stack,a) - the value of @ will be the string of length |a| starting from the first symbol of
Stack; after that, the string « is removed from Stack;

e push_first(Stack,A) - add to the content of Stack the symbol A; A will be the new top of Stack;

e push_last(Stack,«a) - add to the content of Stack, starting from the last symbol of Stack, the

string a; Stack will have the same top.

Now, the method of parallel algorithm (PAR-UUBP) can be pointed out (we suppose that the
context free grammar G = (Vy, Vr, S, P) is already read):

begin
read(n); read(w); il:=1; i2:=n; accept:=false; exit:=false;
repeat in parallel
actionl1(P1); action2(P2)
until (i1>=i2) or (exit=true);
if (exit = true) then accept := false
else repeat action3(P1, P2) until (exit = true);
if (accept = true) then
write(’w is accepted and has the right syntactical analysis’,Output_tape);
else write(’w is not accepted’);
end.

It remains to describe the procedures action1(P1), action2(P2) and action3(P1,P2).

procedure actionl(P1);
begin
case
if (3rl = A— h(a) € P, a is in Stackl starting from the top) then begin
/* reduce action */
let @ :=uy Che..cthyy, Dy o @', where uy,...,uy € VJi, o € VF =V,

e := |Output_tapel|+ 1;

if (a does not contain any symbol from V' —V) then b" :=¢"
else b’ := min{e”, b};
pop(Stackl,q); push_first(Stackl, Ay o) ; push_first(Output_tapel,rl);
end;
if (i1l <= i2) then begin /* shift action */
push_first(Stackl,wl[ill); il := il+1;
end
otherwise: begin /* backtrack is needed; */
if (all the backtrack steps are over) and (still no reduce or shift
action could be made) then exit := true;
end

end;
The description of procedure action2(P2) is very similar to actionl (P1).

procedure action2(P2);
begin
case
if (3r2 = A— h(f) € P, B is in Stack2 starting from the top) then begin
/* reduce action */
let B := u1 Cpe...um Dy o B, where uq, ..., um € Vi, f' € V¥ = V"™
e'" := |Output_tape2| + 1;
if (S does not contain any symbol from V' — V) then b"” :=¢"
else b” := min{e", b}
pop(Stack2,3); push_first(Stack2, By) ; push_first(Output_tape2, r2);
end;
if (i1 < i2) then begin /* shift action */
push_first(Stack2,wl[i2]); i2 := i2-1;
end
otherwise: begin /* backtrack is needed; */
if (all the backtrack steps are over) and (still no reduce or shift
action could be made) then exit := true;

end

end;

Finally, we describe the procedure action3(P1,P2) in a sequential way. The goal is to simulate the
transitions 10°, 11°, 12° and 13° for G\, BP(G) from Definition 2.1. The input tape is now empty, i.e.

w has been already read (of course, if exit has the value false), but we read symbols from Stack2

(send by processor P2) modifying the content of the Output_tapel and Output_tape2 putting the
results in Output_tape.
procedure action3(P1,P2);
begin
case
if (3rl = A— h(a) € P, @ is in Stackl starting from the top) then begin
/* reduce action */
let a =uj Cpe...a/ Dy @, whereu € Vi, " € V*, o' € (VUV")¥;
let 7} from Output_tapel such that |7]| =€ — b+ 1;
pop(Output_tapel,n]); pop(Stackl,«); push(Stack2,A);
push_first(Output_tape,rl); push_last (Output_tape,n]);
end;
if (top of Stack2 is a terminal symbol) then begin
/* shift-terminal action */
pop(Stack2,a), where a € Vp; push_first(Stackl,a);
end;
if (top of Stack2 is from V’) then begin /*shift-nonterminal action*/
pop(Stack2,A4;) ; push_first(Stackl,A);
let 7} from Output_tape2 such that 75| =e — b+ 1;
pop(Output_tape2,7}) ; push_first (Output_tape,m));
end;
if (Output_tapel=()) and (Output_tape2=()) and (Stack1=S) and (Stack2=()
then begin accept:=true; exit:=true end;
otherwise: begin /* backtrack is needed; */
if (all the backtrack steps are over) and (still no reduce or shift
action could be made) then exit := true
end;

end;

Theorem 3.1 ([3]) - finiteness of Algorithm (PAR-UUBP))
The Algorithm (PAR-UUBP) performs a finite number of steps until terminates its execution.

Theorem 3.2 ([3]) - correctness of Algorithm (PAR-UUBP))
For a given context free grammar G = (Vn,Vr, S, P) and w € Vi as its input, Algorithm (PAR-
UUBP) gives the answer "w is accepted and has the right syntactical analysis 7”7 if S == w

G,rm
and ‘@ is not accepted.” otherwise.

4 Deterministic Bidirectional Parsing for LR-RL Grammars

Deterministic (and linear) parallel algorithms (as particular cases of the general up-to-up bidirectional
parsing algorithm) for solving the membership problem, can be derived for some “combinations” of
subclasses of context free languages. The deterministic up-to-up bidirectional parser has the same
device as the general model. The only difference is the uniqueness of choosing the production r from
the set of the given productions of the input grammar (i.e. no backtrack step is needed). We use the
definitions of LR(k) ([6]) grammars.

Definition 4.1 Let G be a context free grammar and k be a natural number. We say that G is RL(k)

if G is a LR(k) grammar. A language L is RL(k) if there exists a RL(k) grammar which generates
L.

In a similar way to Definition 4.1, we can define the “mirror” of classical subclasses of LR(k)
grammars useful in compiler techniques. We combine the LR(k) and RL(k) styles for obtaining the
deterministic up-to-up bidirectional parsing for context free languages.

Definition 4.2 Let G be a contezt free grammar and k1, k2 € N. We say that G is a LR(k1)— RL(ks)

grammar iff G is both a LR(k1) and RL(ks) grammar. A language L is called LR(k,) — RL(kz) if
there exists G a LR(k1) — RL(k3) grammar for which L = L(G).

We can remark that G is a LR(ky) — RL(ky) grammar iff G is a RL(k;) — LR(k;) grammar. Of
course, because the class of LR(k) languages, for & > 1, equals to the class of LR(1) languages ([6]),
then the above definition has practical interest for k1, k2 € {0,1}.

Particularly, the deterministic up-to-up bidirectional parsing is similar to the general parallel ap-
proach, the only difference being the lack of backtrack steps. The procedures actionl(P1) and
action2(P2) are related to classical sequential syntactical analysis algorithms for LR(1) (or the sub-
classes LR(0), SLR(1) and LALR(1)) and RL(1). We also get a linear running time for the procedures
actionl(P1) and action2(P2) instead of an exponential sequential running time (backtrack steps
are no more required).

Obviously, the procedure action3(P1,P2) has no backtrack steps for the subclasses of grammars
given in Definition 4.2. Consequently, the procedure action3 (P1,P2) is deterministic and has a linear
running time.

The correctness of the deterministic parallel algorithms is ensured by the correctness of the general
parallel algorithm and the correctness of each of the sequential syntactic analysers for the mentioned
subclasses of context free grammars (such as LR(1), RL(1)).

Theorem 4.1 ([3]) - the complexity of the deterministic parallel algorithms)

Let us denote with Ti(n), T»(n) and Ts5(n) the running time of the sequential procedures
actionl(P1), action2(P2) and action3(P1,P2), where n is the length of the input word. Supposing
that the routing time is zero, the parallel running time t(n) satisfies the relations: w +
T3(n) < t(n) < max{Ti(n),T2(n)} + T3(n), and t(n) € O(n).

5 A Natural Language Example

We present a modified context free grammar similar to the one presented in [12] for describing syntactic

dependencies for English language.

The term ’grammatical category’ covers the parts of speech and types of phrases, such as noun
phrase and prepositional phrase. For convenience, we will abbreviate them, so that 'NOUN’ becomes
'N’,’NOUN PHRASE’ becomes 'NP’, 'DETERMINER’ becomes 'D’, etc. Let us consider the following

context free grammar:

G = ({S,NP,VP,D, A, N, PP, V, P}, Vi, S, Prod), where V; C ¥* ¥ being the English
alphabet and Prod being the following set of productions:

1.S—- NP VP 7. NP - N 13. D — the 21. N — hunter
2.NP D AANPP 8VP—V NPPP 14. D — some 22.V — attack
3. NP> A AN PP 9. VP -V NP 15. A — big 23. V — ate
4. NP - D A N PP 10. VP -V PP 16. A — brown 24.V — watched
5 NP —- A N PP 11. VP -V 17. A — old 25. P — for
6. NP —- D N 12. PP - P NP 18. N — birds 26. P — beside
19. N — fleas 27. P — with
20. N — dog
In [12], the productions 1,..., 12 are called rules, and 13, ..., 27 are called lexicon.

Using a JAVA implementation for our bidirectional parsing algorithm, we determine the viable prefix
automaton for grammar G which has 88 states corresponding to LR(1) items with no conflicts (reduce-
reduce, reduce-shift), so G is a LR(1) grammar. Moreover, we construct the viable prefix automaton
for grammar G which has 70 states corresponding to RL(1) items with no conflicts (reduce-reduce,

reduce-shift), so G is a RL(1) grammar.

According to Definition 4.2, it follows that grammar G is a LR(1) — RL(1) grammar. We consider

now the input word:
w = the big brown dog with fleas watched the birds beside the hunter

We shall simulate a possible execution of the bidirectional parsing algorithm for this example (pro-
cessors P1 and P2 work synchronously). We have n = |w| and il and i2 two pointers between 1 and
12. We shall point out the iterations of the procedures action(P1) and action(P2). The execution

of these procedures will finish when i1 > i2.

Processor P1 Processor P2

Action: Initial Action: Initial

Stackl =[] Stack2 = []

ilt=1 i2 =12

Output_tapel = [] Output_tape2 = []
Action: Shift Action: Shift

Stackl = [the] Stack2 = [hunter]

il=2 i2=11

Output_tapel = [] Output_tape2 = []
Action: Reduce Action: Reduce

Stackl = [D1 1] Stack2 = [Ny 1]

il=2 i2=11

Output_tapel = [13] Output_tape2 = [21]
Action: Shift Action: Shift

Stackl = [D1 1, big] Stack2 = [the, N1 1]
il=3 i2 =10

Output_tapel = [13] Output_tape2 = [21]
Action: Reduce Action: Reduce

Stackl = [Dy,1, A22] Stack2 = [D3 2, Ny 1]
il=3 i2 =10

Output_tapel = [15, 13] Output_tape2 = [21, 13]
Action: Shift Action: Reduce

Stackl = [Dy,1, Az22, brown)] Stack2 = [N P, 3]

il=14 i2=10

Output_tapel = [15, 13] Output_tape2 = [6, 21, 13]
Action: Reduce Action: Shift

Stackl = [Dq,1, As2, As 3] Stack2 = [beside, NP, 3]
il=14 i2=9

Output_tapel = [16, 15, 13] Output_tape2 = [6, 21, 13]
Action: Shift Action: Reduce

Stackl = [D1,1, As2, A3 3, dog] Stack2 = [Py4, NP, 3]
il=5 i2=9

Output_tapel = [16, 15, 13] Output_tape2 = [6, 21, 13, 26]
Action: Reduce Action: Reduce

Stackl = [D1,1, A22, A33, Na4] Stack2 = [PP, 5]

il=5 i2=9

Output_tapel = [20, 16, 15, 13] Output_tape2 = [12, 6, 21, 13, 26]
Action: Shift Action: Shift

Stackl = [D11, A22, As 3, Nug, with] Stack2 = [birds, PP 5]
il=6 i2==8

Output_tapel = [20, 16, 15, 13] Output_tape2 = [12, 6, 21, 13, 26]

Procesor P1

Procesor P2

Action: Reduce

Stackl = [D11, As2, A3 3, Naa, Ps 5]
il=6

Output_tapel = [27, 20, 16, 15, 13]

Action: Reduce

Stack2 = [Ng 6, PP 5]

i2=28

Output_tape2 = [12, 6, 21, 13, 26, 18]

Action: Shift

Stackl = [Dy,1, A2, As3, Nua, Ps 5, fleas]
il1=7

Output_tapel = [27, 20, 16, 15, 13]

Action: Shift

Stack2 = [the, Ng,, PP 5]

i2=7

Output_tape2 = [12, 6, 21, 13, 26, 18]

Action: Reduce

Stackl = [Dy1, Az, A33, Naa, Ps5, Ng 6]
il=7

Output_tapel = [19, 27, 20, 16, 15, 13|

Action: Reduce

Stack2 = [D7.7, Ng g, PP 5]

i2="7

Output_tape2 = [12, 6, 21, 13, 26, 18, 13]

Reduce

Stackl = [D11, Az, A33, Nua, P55, NPs 7]
il1=7

Output_tapel = [7, 19, 27, 20, 16, 15, 13]

Action:

Action: Reduce

Stack2 = [NFs8, PP 5]

Stack2 = [NFs 8, PP 5]

Output_tape2 = [12, 6, 21, 13, 26, 6, 18,
13]

Reduce

Stackl = [D11, Az, A33, Nua, PPsg]
il1=7

Output_tapel = [12, 7, 19, 27, 20, 16, 15,

Action:

Action: Shift

Stack2 = [watched, NFPs s, PP 5]
i2=6

Output_tape2 = [12, 6, 21, 13, 26, 6, 18,

13] 13]

Action: Reduce Action: Reduce

Stackl = [N P, 9] Stack2 = [Vy g9, NFPs s, PP 5]
il1=7 i2=6

Output_tapel = [2, 12, 7, 19, 27, 20, 16, 15,
13]

Output_tape2 = [12, 6, 21, 13, 26, 6, 18,
13, 24]

Now, the processors P1 and P2 meet in the “middle” of the input word, and only processor P1 will

be strongly active. Processor P2 only sends the data (i.e. Stack2, Output_tape2) to the internal

memory of P1. In fact, we shall illustrate the execution steps made by the procedure action(P1,P2).

Action: Shift-Nonterminal

Stackl =[NPy, V]

Stack2 = [NFs 5, PP 5]

Output_tapel = [2, 12, 7, 19, 27, 20, 16, 15,
13]

Output_tape2 = [12, 6, 21, 13, 26, 6, 18, 13]
Output_tape = [24]

Action: Shift-Nonterminal

Stackl =[NPy, V, NP, PP]

Stack2 = []

Output_tapel = [2, 12, 7, 19, 27, 20, 16, 15,
13]

Output_tape2 = []

Output_tape = [12, 6, 21, 13, 26, 6, 18, 13,
24]

Action: Shift-Nonterminal

Stackl =[NPy, V, NP]

Stack2 = [PP 5]

Output_tapel = [2, 12, 7, 19, 27, 20, 16, 15,
13]

Output_tape2 = [12, 6, 21, 13, 26]
Output_tape = [6, 18, 13, 24]

Action: Reduce

Stackl =[NP, g, VP]

Stack2 =[]

Output_tapel = [2, 12, 7, 19, 27, 20, 16, 15,
13]

Output_tape2 = []

Output_tape = [§8, 12, 6, 21, 13, 26, 6, 18,

13, 24]

The final transition is:
Action: Reduce
Stackl = [S]
Stack2 =[]
Output_tapel = []
Output_tape2 = []
Output_tape = [1, 8, 12, 6, 21, 13, 26, 6, 18, 13, 24, 2, 12, 7, 19, 27, 20, 16, 15, 13]

In conclusion, the word w is accepted by the bidirectional parser and it has the right syntactic
analysis 7, = [1,8,12,6,21,13,26,6,18,13,24,2,12, 7,19, 27, 20, 16, 15, 13].

We can extend our example according to agreement restrictions between words and phrases. For
example, the NP “a dogs” is not correct English because the article “a” indicates a single object
while the noun “dogs” indicates a plural object. There are many other forms of agreement (subject -
verb, gender, etc). To use such agreement restrictions, the context free grammar is extended to allow

constituents to have features ([2]). For example, we might define a feature NUM BER that may

[{3e))

take a value of either “s” (for singular) or “p” (for plural), and we then might write an augmented
context free grammar rule such as:

NP — D N only when NUMBER(D) = NUMBER(N).

There is an interesting issue of whether an augmented context free grammar can describe languages
that cannot be described by a simple context free grammar. The answer depends on the constraints
on what can be a feature value. If the set of feature values is finite, then it would always be possible to
create new constituent categories for every combination of features. Thus it is expressively equivalent
to a context free grammar. If the set of feature values is unconstrained, however, then such grammars
have arbitrary computational power. In practice, even when the set of values is not explicitly restricted,

this power is not used, and the standard parsing algorithms can be used on grammars that includes

features ([2]).

6 Conclusions

We have seen that our bidirectional parser model is in fact a two-stack machine ([5]) and therefore
our model can simulate a Turing machine. In this paper the bidirectional parsing uses LR(k) style

(and its “mirror” RL(k) style, of course).

Open problems and future work: to get a more precise estimation of the running time of the

deterministic parallel algorithm; to find further closure and inclusion properties of LR — RL grammars

and languages; to extend our bidirectional approach to non context free languages - with applications

to computational linguistic and natural language processing.

We want to thank to the unknown referees for their useful remarks which improve the paper.

References

[1] AKl, S.: Parallel Computation. Models and Methods. Prentice Hall (1997)

[2] Allen, P. Natural Language Understanding. Second Edition, The Benjamin/Cummings Publishing
Company, Inc. (1995)

[3] Andrei, St.: Bidirectional Parsing. Ph-D Thesis, Fachbereich Informatik, Universitit Hamburg,
URL: http://wuw.sub.uni-hamburg.de/disse/134/inhalt.html (2000)

[4] Andrei, St., Kudlek, M.: Bidirectional Parsing for Linear Languages. Developments in Language
Theory, Fourth International Conference, July 6-9, 1999, Aachen, Germany, Preproceedings, W.
Thomas Ed. (1999) 331-344

[5] Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation.
Addison - Wesley Publishing Company (1979)

[6] Knuth, D.E.: On the translation of languages from left to right. Information Control. 8 (1965)
607-639

[7] Kulkarni, S.R., Shankar, P.: Linear time parsers for classes of non context free languages. Theo-
retical Computer Science. 165 (1996) 355-390

[8] Loka, R.R.: A note on parallel parsing. SIGPLAN Notices. 19 (1) (1984) 57-59

[9] Tseytlin, G.E., Yushchenko, E.L.: Several aspects of theory of parametric models of languages
and parallel syntactic analysis. In: Methods of Algorithmic Language Implementation. A.Ershov,
C.H.A Koster (Eds.), LNCS 47, Springer Verlag, Berlin, Germany (1977) 231-245

[10] Salomaa, A.: Formal Languages. Academic Press. New York (1973)

[11] Satta, G., Stock, O.: Bidirectional context-free grammar parsing for natural language processing.
Artificial Intelligence. 69 (1994) 87-103

[12] Sag, I.A., Wasow, T.: Syntactic Theory: A Formal Introduction. CSLI Publications. Leland

Stanford Junior University (1997)

