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Abstract

We examine what purpose a dialog metric serves and then propose empirical methods
for evauating systems that meet that purpose. The methods include a protocol for
conducting a wizard-of-oz experiment and a basic set of descriptive statistics for
substantiating performance claims using the data collected from the experiment as an
idea benchmark or “gold standard” for comparative judgments. The methods also
provide a practica means of optimizing the system through component analysis and
cost valuation.
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Abstract

We examine what purpose a
dialog metric serves and then
propose empirical methods for
evaluating systems that meet that
purpose. The methods include a
protocol for conducting a wizard-
of-o0z experiment and a basic sat
of descriptive statistics for
substantiating performance claims
using the data collected from the
experiment as an idea benchmark
or “gold standard” for
comparative  judgments. The
methods aso provide a practical
means of optimizing the system
through component analysis and
cost valuation.

1 I ntroduction

In evaluating the performance of dialog systems,
designers face a number of complicated issues.
On the one hand, dialog systems are ultimately
created for the user, so usability factors such as
satisfaction or likelihood of future use should be
the fina criteria. On the other hand, because
usability factors are subjective, they can be
erratic and highly dependent on features of the
user interface (Kamm et a., 1999). So, designers
have turned to “objective’” metrics such as
didog success rate or completion time.
Unfortunately, due to the interactive nature of
didog, these metrics do not aways correspond
to the most effective user experience (Lamel et
al., 2000). Furthermore, severa different metrics
may contradict one another (Kamm et a., 1999),
leaving designers with the tricky task of
untangling the interactions or correlations
between metrics.

Instead of focusing on developing a new
metric that circumvents the problems above, we
maintain that designers need to make better use
of the ones that already exist. Toward that end,
we first examine what purpose a dialog metric
serves and then propose empirical methods for
evaluating systems that meet that purpose. The
methods include a protocol for conducting a

wizard-of-oz experiment and a basic set of
descriptive  datistics  for  substantiating
performance claims using the data collected
from the experiment as an ideal benchmark or
“gold standard” for comparative judgments. The
methods also provide a practicd means of
optimizing the system through component
anaysis and cost va uation.

2  Purpose

Performance can be measured in myriad ways.
Indeed, for evaluating dialog systems, the one
problem designers do not encounter is lack of
choice. Dialog metrics come in a diverse
assortment of styles. They can be subjective or
objective, deriving from gquestionnaires or log
files. They can vary in scale, from the utterance
level to the overdl didog (Glass et a., 2000).
They can treat the system as a “black box,”
describing only its externa behavior (Eckert et
a., 1998), or as a “glass box,” detaling its
internal processing. If one metric fails to suffice,
didog metrics can be combined. For example,
the PARADISE framework alows designers to
predict user satisfaction from a linear
combination of objective metrics such as mean
recognition score and task completion (Kamm et
a., 1999; Litman & Pan, 1999; Walker et al.,
1997).

Why so many metrics? The answer has to do
with more than just the absence of agreed upon
standards in the research community,
notwithstanding significant efforts in that
direction (Gibbon et a., 1997). Part of the
reason deds with the purpose a dialog metric
serves. Designers want a dialog metric to
address the multiple, sometimes inconsistent
needs. Here are four typical needs:

(1) Provide an accurate estimation of how well a
system meets the goals of the domain task.

(2) Allow for comparative judgments of one
system against another, and if possible, across
different domain tasks.

(3) ldentify factors or components in the system
that can beimproved.

(4) Discover tradeoffs or correlations between
factors.



While the above list is not intended to be
exhaustive, it is ingructive. Creating such a list
can hep designers to anticipate the kinds of
obstacles they are likely to face in trying to
satisfy al of the needs. Consider the first need
onthelist.

Providing an accurate estimation of how well
a system meets the goas of the domain task
depends on how wel the designers have
delineated all the possible goas of interaction.
Unfortunately, users often have finer gods than
those anticipated by designers, even for domain
tasks that seem well defined, such as airline
ticket reservation. For example, a user may be
leisurely hunting for a vacation and not care
about degtination or time of travel, or the user
may be franticaly looking for an emergency
ticket and not care about pricee The
“agppropriate” dialog metric should reflect even
these kinds of gods. While “time to compl etion”
is more appropriate for the emergency ticket,
“concept efficiency rat€”’ is more appropriate for
the savvy vacationer. As psychologists have
long recognized, when people engage in
conversation, they make sure that they mutually
understand the goals, roles, and behaviors that
can be expected (Clark, 1996; Clark & Brennan,
1991; Clark & Schaefer, 1987, 1989). They
evaluate the “performance” of the dialog based
on their mutual understanding and expectations.

Not only do different users have different
gods, they sometimes have multiple goals, or
more often, their goals change dynamicaly in
response to system behavior such as
communication failures (Danidi & Gerbino,
1995; Paek & Horvitz, 1999). Because goals
engender expectations that then influence
evaluation at different points of time, usability
ratings are notoriously hard to interpret,
especidly if the system is not equipped to infer
and keep track of user goas (Horvitz & Paek,
1999; Paek & Horvitz, 2000).

The second typical need for adialog metric —
allowing for comparative judgments, introduces
further obstacles. In addition to unanticipated,
dynamically changing user goas, different
systems employ different dialog strategies
operating under  different  architectura
congtraints, making the search for a diadog
metric that generalizes across systems nearly
impossible. While the PARADISE framework
facilitates some comparison of dialog systemsin
different domain tasks, generalization is limited

because different components can render factors
irrdevant in the statistical model (Kamm et al.,
1997). For example, a common measure of task
completion would be possible if every system
represented the domain task as an Attribute-
Vaue Matrix (AVM). Unfortunately, that
reguirement excludes systems that use Bayesian
networks or other non-symbolic representations.
This has prompted some researchers to argue
that a “common inventory of concepts’ is
necessary to have dsandard metrics for
evauation across systems and domain tasks
(Kamm et d., 1997; Glass et a., 2000). As we
discuss in the next section, the argument is
actually backwards; we can use the metrics we
aready have to define a common inventory of
concepts. Furthermore, with the proper set of
descriptive statistics, we can exploit these
metrics to address the third and fourth typical
needs of designers, that of identifying
contributing factors, along with their tradeoffs,
and optimizing them.

Thisis not to say that comparative judgments
are impossible; rather, it takes some amount of
careful work to make them meaningful. When
research papers describe evaluation studies of
the performance of dialog systems, it is
imperative that they provide a basdine
comparison from which to benchmark their
systems. Even when readers understand the
scale of the metrics being reported, without a
baseline, the numbers convey very little about
the quality of experience users of the system can
expect. For example, suppose a paper reports
that a didog system recelved an average
usability score of 9.5/10, a high concept
efficiency rate of 90%, and alow word error rate
of 5%. These numbers sound terrific, but they
could have resulted from low user expectations
and a simplistic or highly constrained interface.
Practically spesking, readers must either
experience interacting with the system
themselves, or have a baseline comparison for
the domain task from which to make sense of
the numbers. This is true even if the paper
reports a statistical modd for predicting one or
more of the metrics from the others, which may
reved tradeoffs but not how well the system
performs relative to the baseline.

To sum up, in considering the purpose a
didog metric serves, we examined four typical
needs and discussed the kinds of obstacles
designers are likely to face in finding a diaog



metric that satisfies those needs. The obstacles
themselves present distinct challenges: first,
keeping track of user goals and expectations for
performance based on the goas, and second,
establishing a basdline from which to benchmark
systems and make comparative judgments.
Assuming that designers equip their system to
handle the first chalenge, we now propose
empirical methods that alow them to handle the
second, while a the same time providing a
practical means of optimizing the system. These
methods do not require new metrics, but instead
teke advantage of existing ones through
experimental design and a basic set of
descriptive statistics.

3  Empirical methods

Before designers can make comparative
judgments about the performance of a didog
system relative to another system, so that readers
unacquainted with either system can understand
the reported metrics, they need a baseline.
Fortunatdy, in evaluating didog between
humans and computers, the “gold standard” is
oftentimes known; namely, human conversation.
The most intuitive and effective way to
subgtantiate performance claims is to compare a
didog system on a particular domain task with
how human beings perform on the same task.
Because human performance constitutes an ideal
benchmark, readers can make sense of the
reported metrics by assessing how close the
system approaches the gold sandard.
Furthermore, with a benchmark, designers can
optimize their system through component
anaysis and cost va uation.

In this section, we outline an experimental
protocol for obtaining human performance data
that can serve as a gold standard. We then
highlight a basic set of descriptive statistics for
substantiating performance claims, as well asfor
optimization.

3.1 Experimental protocol

Callecting human performance data for
establishing a gold standard requires conducting
a carefully controlled wizard-of-oz (WOQO2)
study. The generd idea is tha users
communicate with a human “wizard” under the
illuson that they are interacting with a
computational system. For spoken dialog
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Figure 1. Wizard-of-Oz study for the purpose of
establishing a baseline comparison.

systems, maintaining the illusion usualy
involves utilizing a synthetic voice to output
wizard responses, often through voice distortion
or atext-to-speech (TTS) generator.

The typicd use of a WOZ study is to record
and analyze user input and wizard output. This
allows designers to know what to expect and
what they should try to support. User input is
especially critical for speech recognition
systems that rely on the collected data for
acoustic training and language modding. In
iterative WOZ studies, previously collected data
is used to adjust the system so that as the
performance of the system improves, the studies
employ less of the wizard and more of the
system (Glass et a., 2000). In the process,
design congraints in the interfface may be
reveded, in which case, further studies are
conducted until acceptable tradeoffs are found
(Bernsen et al., 1998).

In contrast to the typical use, a WOZ study
for establishing a gold standard prohibits
modifications to the interface or experimental
“curtain.” As shown in Figure 1, al input and
output through the interface must be carefully
controlled. If designers want to use previoudy
collected performance data as a gold standard,
they need to verify that all input and output have
remained constant. The protocol for establishing
agold standard is straightforward:

(1) Select a diadog metric to serve as an
objective function for eva uation.

(2) Vary the component or feature that best
matches the desired performance claim for the
dialog metric.



(3) Hold dl other input and output through the
interface constant so that the only unknown
variableiswho does the interna processing.

(4) Repeat using different wizards.

To motivate the above protocol, consider
how a WOZ study might be used to evaluate
spoken dialog systems. The Achilles hed of
spoken interaction is the fragility of the speech
recognizer. System performance depends highly
on the quality of the recognition. Suppose a
designer is interested in bolstering the
robustness of a dialog system by exploiting
various repair strategies. Using task completion
rate as an objective function, the designer varies
the repair strategies utilized by the syssem. To
make claims about the robustness of these repair
strategies, the designer must keep al other input
and output constant. In particular, the wizard in
the experiment must receive utterances through
the same speech recognizer as the dialog system.
The performance of the wizard on the same
quality of input as the dialog system constitutes
the gold standard. The designer may also wish to
keep the sat of repair strategies constant while
varying the use or disuse of the speech
recognizer to estimate how much the recognizer
degrades task completion.

A deep intuition underlies the experimental
control of the speech recognizer. As researchers
have observed, people with impaired hearing or
non-native language skills still manage to
communicate effectively despite noisy or
uncertain input. Unfortunately, the same cannot
be sad of computers with anaogous
deficiencies. People overcome their deficiencies
by collaboratively working out the mutual belief
that their utterances have been understood
sufficiently for current purposes — a process
referred to as “grounding” (Clark, 1996). Repair
drategies based on grounding indeed show
promise for improving the robustness of spoken
didog systems (Paek & Horvitz, 1999; Pagk &
Horvitz, 2000).

3.1.1 Precautions

A few precautions are in order. First, WOZ
studies for establishing a gold standard work
best with didog systems that are highly
modular. Modularity makes it possible to test
components by replacing a module with the
wizard. Without modularity, it is harder to use
because the boundaries between components are
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Figure 2. Comparison of two dialog systems
with respect to the gold standard.

blurred. Second, what allows the performance of
the wizard to be used as a gold standard is not
the wizard, but rather the fact tha the
performance congtitutes an upper bound. For
example, the upper bound may be better
established by graphical user interfaces (GUI) or
touch-tone systems, in which case, those
systems should be the gold standard.

3.2 Descriptive statistics

After designers collect data from the WOZ
study, they can make comparative judgments
about the performance of their system relaiveto
other systems using a basic set of descriptive
statistics. The descriptive statistics rest on first
model fitting the data for both the wizard and
the dialog system. Plotting the fitted curves on
the same graph sheds light on how best to
substantiate any performance claims. In fact, we
advocate that designers present this “benchmark
graph” to assist readers in interpreting diaog
metrics.

Using spoken dialog again as an example,
suppose a designer is evaluating the robustness
of two didog systems utilizing two different
repair strategies. The designer varies the repair
strategies, while holding constant the use of the
speech recognizer. As speech recognition errors
increase, numerous researchers have shown that
task completion rate, or dialog success rate, not
surprisingly decreases. Plotting task completion
rate as a function of word error rate discloses an
approximately linear relationship (Lamel et d.,
2000; Rudnicky, 2000).

Figure 2 displays a benchmark graph for two
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Figure 3. Distance in performance of the two
systems from the gold standard.

didog systems A and B, utilizing different repair
strategies. Suppose that the fitted curve for
System A is characterigtically linear, while the
curve for System B is polynomial. Because
wizards are presumably more capable of
recovering from recognition errors, their
performance data make up the gold standard.
Figure 2 shows a fitted curve for the gold
standard staying close to the upper right hand
corner of the graph in a monotonicdly
decreasing fashion; that is, task completion rate
remains relaively high as word error rate
increases and then gracefully degrades before
the error rate reaches 100%.

Looking at the benchmark graph, readers
immediately get a sense of how to substantiate
performance claims about robustness. For
example, by noticing that task completion rate
for the gold standard rapidly drops from around
65% at the 80% mark to about 15% by 100%,
readers know that at 80% word error rate, even
wizards, with human level inteligence, cannot
recover from failures with better than 65% task
completion rate. In other words, the task is
difficult. So, even if System A and B report low
task completion rates after the 80% word error
rate, they may be performing relatively well
compared to the gold standard.

In making comparative judgments, it helps to
plot the absolute difference in performance from
the gold standard as a function of the same
independent variable as the benchmark graph.
Figure 3 displays such a “gold impurity graph”
for Systems A and B as afunction of word error
rate. The closer a system is to the gold standard,
the smaller the “mass’ of the gold impurity on

the graph. Anomalies are easier to see, as they
typically show up as bumps or peaks. The
advantage of the graph is that if a diaog system
reports terrible numbers on various performance
metrics but displays a splendidly smal gold
impurity, the reader can be assured that the
systemisasgood asit can possibly be.

Looking a the gold impurity graph for
Systems A and B, without having experienced
either of the two systems, readers can make
comparative judgments. For example, athough
B performs worse at lower word error rates than
A, dter about the 35% mark, B stays closer to
the gold standard. With such crosses in
performance, designers cannot categorically
prefer one system to the other. In fact, assuming
that the only difference between A and B is the
choice of repair strategies, designers should
prefer A to B if the average word error rate for
the speech recognizer is below 35%, and B to A,
if the average error rateis about 40%.

With agold standard, readers are even able to
substantiate performance claims about different
diadog systems across domain tasks. They need
only to look at how close each system is to their
respective gold standard in a benchmark graph,
and how much mass each system shows in a
gold impurity graph.

3.2.1 Complexity

One reason why comparative judgments,
without a gold standard, are so hard to make
across different domain tasksis task complexity.
For example, tutoring physics is generaly more
complex than retrieving email. Another reason is
didog complexity. A physics tutoring system
will beless complex if the system forces usersto
follow a predefined script. An email system that
engages in “mixed initiative” will aways be
more complex because the user can take more
possible actions at any point in time.

The way to express complexity in a
benchmark graph is to measure the distance of
the gold standard to the absolute upper bound of
performance. If wizards with human level
intelligence cannot perform close to the absolute
upper bound, then the task is complex, or the
didog interface is too redrictive for wizard, or
both. Because complexity is measured only in
connection with the gold standard ceteris
paribus, “intellectual complexity” can be
defined as:



IC=nU —Zn:g(x)

x=0

where U is the upper bound value of a
performance metric, n is the upper bound value
for an independent variable x, and g(x) is the
gold standard along that variable.

Designers can use intellectual complexity to
compare systems across different domain tasks
if they ae not too concerned about
discriminating task complexity from didog
complexity. Otherwise, they can use intellectua
complexity an objective function and vary the
complexity of the dialog interface to scrutinize
how much task complexity affects wizard
performance.

3.2.2 Precautions

Before substantiating performance claims with a
benchmark graph, designers should exercise a
few precautionary measures. First, in mode
fitting a gold standard or the performance of a
didog system, beware of insufficient data.
Without sufficient data, differences from the
gold standard may be due to variance in the
models. To guarantee that designers have
collected enough data, we recommend that they
go through an iterative process. First, run
subjects, collect data, and fit a mode. Then plot

the least squares distance, or Y (y; = f(x))?,

where f(X) is the fitted model, against the
iteration. Keep running more subjects until the
plot seems to approach convergence. To inform
readers of the reliability of the fitted models, we
suggest that designers ether show the
convergence plot or report their R%s for their
curves (which relate how much of the variance
can be accounted for by the fitted models).
Second, to guarantee the reiability of the gold
standard, use different wizards. The
experimental protocol listed this as the last point
because it is important to know whether a
consistent gold standard is even possible with
the given interface. Difference between wizards
may reveal serious design flaws. Furthermore,
just as adding more subjects improves the fit of
the dialog performance models, the law of large
numbers applies equally to the gold standard.

Finaly, designers may encounter problems
with residuad errors in mode fitting that are
typicaly well covered in most statistics
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Figure 4. Dollar amount designer iswilling to
pay for improvements to task completion rate.

textbooks. For example, because the
performance metric shown in Figure 2 and 3,
task completion rate, has an upper bound of
100%, it is unlikely that residual errors will be
equally spread out a al word error rates.
Another common problem is the non-normality
of the residual errors, which violates the model
assumption.

3.2.3 Component analysis

Designers can identify which components are
contributing the most to a performance metric
by examining the gold impurity graph of the
system with and without the component,
rendering this kind of test similar to a “lesion”
experiment. Carrying out stepwise comparisons
of the components, designers can check for
tradeoffs, and even use al or part of the mass
under the curve as an optimization metric. For
example, a designer may wish to improve a
didog system from its current average task
completion rate of 70% to 80%. Suppose that
System B in Figure 2 incorporates a particular
component that System A does not. Looking at
the corresponding word error rates in the gold
impurity graph for both systems, the mass under
the curvefor B is dightly greater than that for A.
The designer can optimize the performance of
the system by selecting components that
minimize that mass, in which case, the
component in System B should be excluded.
Because components may interact with each
other, designers may want to carry out a multi-
dimensional component analyss  for
optimization.



3.2.4 Cost valuation

Suppose the main concern of the designer is to
optimize the monetary cost of the dialog system.
The designer can determine how much
improving the system is worth by calculating the
average marginal cost. To do this, a cost
function must be dlicited that conveys what the
designer is willing to pay to achieve various
levels of performance. This is actudly very
easy. Figure 4 displays what dollar amount a
designer might be willing to pay for various
rates of task completion. The average marginal
cost can be computed by using the cost function
as aweighting factor for the mass under the gold
impurity graph for the system. So, following the
previous example, if the designer wishes to
improve the system that is currently operating at
an average task completion rate of 70% to 80%,
then the average marginal cost for that gain is
simply:

AMC =" c(t) [f (t) — g (t)|

t=70

where f(t) is the task completion rate of the
system, g(t) is the task completion rate of the
gold standard, and c(t) isthe cost function.

Average marginal cost is wuseful for
minimizing expenditure. For example, if the
god is to improve task completion rate from
70% to 80%, and the designer must choose
between two systems, one with a particular
component and one without, the designer should
caculate the average margina cost of both
systems as stated in the above equation and
select the cheaper system.

4 Discussion

Instead of focusing on developing new diaog
metrics that allow for comparative judgments
across different systems and domain tasks, we
proposed empirical methods that accomplish the
same purpose while taking advantage of dialog
metrics that aready exist. In particular, we
outlined a protocol for conducting a WOZ
experiment to collect human performance data
that can be used as a gold standard. We then
described how to substantiate performance
claims using both a benchmark graph and a gold
impurity graph. Findly, we explained how to

optimize a dialog system using component
analysis and value optimization.

Without a doubt, the greatest drawback to the
empirical methods we propose is the tremendous
cost of running WOZ studies, both in terms of
time and money. In specia cases, such as the
DARPA  Communicator  Project  where
participants work within the same domain task, a
funding agency may wish to conduct the WOZ
studies on behaf of the participants. To defray
the cost of running the studies, the agency may
wish to determine its own cost function with
respect to a given performance metric and utilize
average marginal cost to decide which diaog
systemsto continue sponsoring.

Because the focus of this paper has been on
how to apply the empiricd methods,
hypothetica examples were considered. Work is
currently underway to collect data for evaluating
implemented dialog systems. We maintain that
without these empirica methods, readers of
reported dialog metrics cannot really make sense
of the numbers.
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