Generating Full Paraphrases of Fragments in a
Dialogue Interpretation System

Christian Ebert
Shalom Lappin
Howard Gregory
Department of Computer Science
King’s College London
{ebert, lappin}@dcs.kcl.ac.uk
howard.gregory@kcl.ac.uk

Abstract

Using SHARDS - a semantically-
based HPSG approach to the res-
olution of dialogue fragments — we
will show how to generate full para-
phrases for fragments in dialogue.
We adopt a template-filler approach
that does not require deep gener-
ation from an underlying semantic
representation. Instead it reuses the
results of the parse and interpreta-
tion process to dynamically compute
templates and to update fillers as
the dialogue proceeds.
cling of already available syntactic
and phonological information makes
generation efficient, as it reduces the
operations of the generator to mere
string manipulations.

This recy-

1 Introduction

Much previous work on generation has fo-
cused on the general problem of producing
lexical strings from abstract semantic repre-
sentations. We consider generation in the
context of a particular task, creating full sen-
tential paraphrases of fragments in dialogue.
When the syntactic, semantic and phonolog-
ical information provided by a dialogue frag-
ment resolution system is made accessible to
a generation component, much of the indeter-
minacy of lexical selection is eliminated.

One major challenge for any dialogue in-
terpretation system is the proper treatment

Nicolas Nicolov
IBM T. J. Watson Research Center
Yorktown, New York
nicolas@watson.ibm.com

of fragments. Examples include bare NP an-
swers (2a), where the NP a personnel man-
ager is resolved as the assertion (2b), and
sluicing (4a), where the wh-phrase is inter-
preted as the question (4b)!.

(1) Who hired Jones?

(2) (a) A personnel manager.

(b) A personnel manager hired Jones.

(3) A personnel manager hired Jones.

(4) (a) Who?
(b) Which personnel manager hired
Jones?

Furthermore the antecedent or the frag-
ment may be embedded, as in the following
examples.

(5) The management asked who hired
Jones.

(6) (a) The personnel department thinks a
board member.

(b) The personnel department thinks a
board member hired Jones.

(7) The personnel department thinks a
board member hired Jones.

(8) (a) The CEO wonders who.
(b) The CEO wonders which board

member hired Jones.

Throughout this paper sentences representing
paraphrases will be set in stalics.

Generating full paraphrases for interpreted
fragments in a dialogue management system
is an important utility for facilitating human-
machine communication. We consider three
cases where paraphrase generation performs
a useful function.

Dialogue Systems In dialogue systems
the purpose of paraphrase generation is
twofold. First, it increases the explicitness
and transparency of the system, which might
be an option that the user wishes to use.
Second, it is necessary for the generation
of clarification questions, which can be
used by the system to resolve ambiguity.
This is illustrated in the following dialogue
between a user and an information system.

UseErR: Who did the personnel depart-
ment hire?
SYSTEM: John thinks a student.
UseER: Who?

At this point Who? might ask for more de-
tails about John (because the user wonders
who John is) or it might be a question
about the hired student. To resolve
this ambiguity the system produces the
following clarification question by generat-
ing the paraphrase of the user’s wh-sluice:

SYSTEM: Do you want to know which stu-
dent John thinks the personnel
department hired?

If the user answers positively the sys-
tem responds with the fragment an-

swer or the full paraphrase, depend-
ing on the parameter which con-
trols the system’s level of explicitness:

SysTEM: Bill Smith.
or
SYSTEM: John thinks the personnel de-
partment hired Bill Smith.

If the user answers negatively, then the sys-
tem will treat Who? as a clarificatory

question on John?.

System Evaluation A natural application
of paraphrase generation is the monitoring of
a system’s performance. Full paraphrases can
be used to interactively test the system’s in-
terpretation of fragments. When the para-
phrase is available to a human user, he/she
can confirm or revise the paraphrase, and so
monitor the performance of the system effi-
ciently. The paraphrase generator that we
present in this paper is currently used for
monitoring the performance of the SHARDS
system — a system for resolving fragments in
dialogue — which is introduced in more detail
in section 2.

Machine Translation Certain elided
structures pose a problem for machine
translation. Although the source language
might exhibit ellipsis structures of a specific
kind, the target language might not allow for
these. Therefore these structures will have
no direct translation. Two cases in point are
VP-ellipsis and pseudo-gapping in English,
which have no direct counterparts in lan-
guages such as German. A straightforward
solution is to use full paraphrases instead of
ellipsis as the input to the MT component.
Consider the following English dialogue and

it’s translation into German?®.

(9) (E) Who submitted a report today?

G) Wer legte heute einen Bericht vor?

(
(10) (E) John did to his supervisor.

(G) John ?[*tat es] seinem Betreuer.
11) (

(

) (E) John submitted a report to his
supervisor today.

(G) John legte heute einen Bericht
seinem Betreuer vor.

2See (Ginzburg, 2001) for an account of clarifica-
tory ellipsis within the general HPSG framework as-
sumed here. A procedure for recognizing clarificatory
question fragments is being developed on the basis of
this account.

3Currently our system is not capable of handling
ellipsis structures. But as we point out in the last
section, we are extending it to deal with these cases.

The English answer (10E) exhibits pseudo-
gapping, which cannot be translated into a
similar structure in German (10G). A trans-
lation including an auxiliary corresponding to
did is ungrammatical. Dropping the auxiliary
prior to the translation results in an (at best)
odd sentence.

This problem can be circumvented using
paraphrase generation. Instead of translating
(10E) directly, it’s paraphrase (11E) is com-
puted. Then the translation can proceed with
this paraphrase as the source input to obtain
an appropriate German sentence (11G).

Using the fragment interpretation system
SHARDS we show how to generate para-
phrases for fragments in dialogues like those
in (b) in the examples (1-8) above. The gen-
erator uses a template-filler approach, and it
does not do any deep generation from an un-
derlying semantic representation. Instead it
reuses the results of the parse and interpreta-
tion process of SHARDS to dynamically com-
pute the templates, and then to update the
filler. This recycling of already available syn-
tactic structures makes generation efficient
because it reduces the operations of the gen-
erator to string manipulations.

In Section 2 we give a brief review of
the SHARDS system. We then explain
our proposal for generating fragment para-
phrases with templates in Section 3. In Sec-
tion 4 we briefly describe the implementation
of SHARDS and the generation component.
Section 5 sketches some directions for future
work.

2 The SHARDS System

SHARDS (Ginzburg et al., 2001) is a Head
Driven Phrase Structure Grammar (HPSG)-
based system for the resolution of fragments
in dialogue. It is based on a version of HPSG
developed in (Ginzburg and Sag, 2000) which
integrates the situation semantics-based the-
ory of dialogue context given in the KOS
framework (Cooper et al., 1999) into recent
work in HPSG (Pollard and Sag, 1994; Sag,
1997). Following (Ginzburg and Sag, 2000),
two new attributes are defined within the
CONTEXT feature structure: the Mazimal

Question Under Discussion (MAX-QUD) and
the Salient Utterance (SAL-UTT).

The MAX-QUD* can be seen as the most
salient question that needs to be answered in
the course of a dialogue. It’s value is of type
question. In the framework of this system,
questions are represented as semantic objects
comprising a set of parameters — that is, re-
stricted indices — and a State of Affairs (SOA)
(12).

(12) | question
PARAMS {m,...}

[SOG(...T{'...)]

SOA

This is the feature structure counterpart of
the A-abstract Aw.(...7...). In a wh-question
the PARAMS set represents the abstracted IN-
DEX values associated with the wh-phrase(s).
For a polar (yes-no) question the PARAMS set
is empty. In general a number of such ques-
tions may be available in a given dialogue con-
text, of which one is selected as the value of
MAX-QUD.

The SAL-UTT represents a distinguished
constituent of the utterance whose content is
the current value of MAX-QUD. In informa-
tion structure terms, it can be thought of as
specifying a potential parallel element corre-
lated with an element in the antecedent ques-
tion or assertion. It’s value is of type sign,
enabling the system to encode syntactic cat-
egorial parallelism, including case assignment
for the fragment.

Specifically, SAL-UTT is computed as the
(sub)utterance associated with the role bear-
ing widest scope within MAX-QUD:

e For wh-questions, SAL-UTT is the wh-
phrase associated with the PARAMS set
of the question.

e If MAX-QUD is a question with an empty
PARAMS set, the context will be under-
specified for SAL-UTT. The possible val-
ues for the SAL-UTT feature are either

*In the following we will use ’MAX-QUD’ as an ab-

breviation for 'maximal question under discussion’ as
well as for the corresponding HPSG feature

the empty set or the utterance associ-
ated with the widest scoping quantifier
in MAX-QUD. This is envoked to resolve
sluicing®. In the case of polar questions,
SAL-UTT will be empty.

Interpreting a bare phrase B in dialogue
consists in computing from context (repre-
sented as a dialogue record) the MAX-QUD
and SAL-UTT features of the assertion or
question clause BCL that B expresses, and
then using these features to specify the CON-
TENT feature of BCL.

Bare argument phrases constitute a non-
head daughter (the fragment), the remaining
information for the interpretation being pro-
vided primarily by the contextual features.
Phrases are classified not only in terms of
their phrasal type, but also with respect to
the further dimension of clausality. Frag-
ments are assigned to a subtype of the type
bare-arg-ph, namely to bare-decl-cl for ‘short
answers’ or bare-wh-cl for sluices.

The restrictions on interpretation are then
imposed by constraints on these types. The
constraint on bare-arg-ph, for instance, re-
quires unification of the NUCLEUS (proposi-
tional core) feature of the MAX-QUD and the
CONTENT feature of the proposition or ques-
tion of which the bare argument phrase is the
non-head daughter. Similarly, the CAT fea-
ture of the SAL-UTT and the non-head daugh-
ter features of the bare phrase are unified to
insure syntactic categorial parallelism. The
constraint on bare-decl-cl requires the RESTR
value of the phrase to be the union of the RE-
STR values of the MAX-QUD and the non-head
daughter (the fragment), i.e. it enforces the
amalgamation of semantic restrictions given
by the context and the fragment itself. For
further details on the grammatical framework
see (Sag, 1997; Ginzburg and Sag, 2000).

We give the result of resolving fragment
(2a). After parsing the antecedent (1) and
the fragment phrase, the resolution procedure
yields the Attribute-Value-Matrix (AVM) in

SSAL-UTT can also be a set containing more than
one element in contexts where MAX-QUD is a multiple

question as in A: Who arrived when? B: Jo at b,
Mustafa at 7.

figure 1. The AVM satisfies the constraints
mentioned above, as the NUCLEUS value of
the entire clause for which the bare phrase is
a non-head daughter is structure shared with
MAX-QUD’S NUCLEUS via , categorial paral-
lelism is ensured via @, and the semantic re-
strictions | 2| and |3 | have been amalgamated
into the RESTR value of the phrase.

The generator uses AVMs like this to set
up it’s templates and fillers.

3 Generation of Fragment
Paraphrases

Template-based approaches to NL generation
have proved useful in various systems (see e.g.
(Reiter, 1995; Becker and Busemann, 1999)).
These approaches are particularly appropri-
ate in systems where large parts of the text
to be generated remain fixed in some way, or
are partially determined prior to generation.
An inspection of the following dialogue indi-
cates that this is true for the generation of
fragment paraphrases:

(13) The personnel department wonders who
the CEO hired.

(

14) (a) John thinks a student.

(b) John thinks the CEQ hired a student.
(15) (a) Who?

(b) Which student did the CEO hire?
(16) (a)

(b)

) (a) The student who passed all tests.

b) The CEO hired the student who

passed all tests.

The paraphrase (14b) is a combination of
parts of the fragment answer (14a) and the
antecedent clause (13). It is worth noting
at this point that dialogues with consecu-
tive fragment answers or questions (such as
the one above) are recursive in nature. The
paraphrase (16b) for instance contains mate-
rial from the initial clause of the discourse.
Just considering the antecedent Who? and
the fragment the student who passed all tests
itself is not sufficient to genmerate the frag-
ment’s paraphrase. It is necessary to insure

NUCLEUS hare([4], [5])

[PHON (a, personnel, manager)
CAT S[fin]
CONT NUCLEUS
RESTR u
[question
PARAMS {}
MAX-QUD
SOA
RESTR
CTXT L
PHON (who)
CAT [6] NP[nom)]
SAL-UTT INDEX
CONT
RESTR {person()}
PHON (a, personnel, manager)
caT [g]
NHD-DTRS < INDEX
CONT
RESTR {personnel_manager(@)}

{named(, jones) , person()}

)

Figure 1: Resolution of (2a): A personnel manager hired Jones.

that some parts of the dialogue (in this case
the CEQ hired ...) are carried over from one
paraphrase to the other, while other parts
have to be modified with respect to the frag-
ment (such as which student and the student
who passed all tests). This suggests the use of
templates for the fixed parts that have to be
carried over, and of fillers for the parts that
might require modification within the tem-
plates.

Unlike template-based generation systems
where the templates are defined in advance,
our algorithm uses dynamically created tem-
plates. The templates are not fixed in ad-
vance, but must be constructed dynamically
from the dialogue. In a dialogue such as (13—
16) the templates are built once for a specified
MAX-QUD at the very beginning and remain
specified until the dialogue ends. More pre-
cisely, every change in the MAX-QUD forces a
recomputation of the templates. Another dy-
namic feature concerns the filler. After each
utterance, the filler is updated and combined
with one of the templates to yield the in-
tended paraphrase. This enables us to up-
date the paraphrases in a sequence of ques-
tions and fragment answers.

The main point in using this template-filler
mechanism is that it permits the reuse of con-
stituents/syntactic structure that is already
available. Since the surface strings are ac-
cessible from the user input, and the syntac-
tic and semantic information is available from
the parse and fragment interpretation, it is
useful to exploit these resources. Our genera-
tor performs shallow generation by recycling
already given data without using deep seman-
tic knowledge.

We now consider the dynamic construction
of the templates and fillers in greater detail.
Essentially, the templates correspond to dif-
ferent paraphrase schema of the MAX-QUD,
while the fillers correspond to the fragments.

3.1 Identifying the Templates

In (13-16) the parser identifies the question
Who did the CEO hire? as the maximal ques-
tion under discussion and who as the salient
utterance. We can see that a certain con-
stituent of the MAX-QUD — namely did the
CEO hire — reappears in modified forms in
the paraphrases (14-16)(b): The paraphrases
(14b) and (16b) contain this component in
Subject-Verb-Object (SVO) order (the CEO

hired ...). The paraphrase (15b) however con-
tains this component after Subject-Auxiliary-
Inversion (SAI) has been done (...did the
CEO hire). To handle these phenomena our
algorithm constructs two different templates:
the template T, for the SVO case and Tyg;
for the SAI case.

Both templates contain a slot (represented
by <) which determines the position that the
filler will occupy. In the example above we
indicated this position with three points. For
the dialogue in (13-16) the templates are

Tsvo =
Tsoi =

the CED hired <
{ did the CEOD hire

3.2 Identifying the Filler

The dialogue contains the following progres-
sion from the SAL-UTT who in (13) to the fi-
nal bare NP answer the student who passed all
tests in (16):
Fi : who
i)
Fy . a student

4
F3 : which student

4
Fy : the student who passed all tests

We generate the paraphrases of the corre-
sponding fragments by substituting the fillers
Fy to F, for the slots in the corresponding
templates. For instance substituting Fj for
the slot in Ty, (which we write Tyq;(F3))
yields the intended paraphrase (15b).

Each fragment produces an update of the
preceding filler. E.g. the filler F5 is updated
by the fragment who of (15a) to F3. The final
selection of the template and it’s composition
with the filler depends on the entire fragment
clause and not on the fragment alone. In (14),
for instance, we have to prefix John thinks to
Tsvo(F2) to get the intended result.

4 An Implemented System for
Fragment Resolution and
Paraphrase Generation

The entire system of fragment resolution and
generation is implemented in Prolog using

ProFIT (Erbach, 1996) as a formalism to han-
dle typed feature structures. The complete
system consists of five main components. The
components I-IV constitute the SHARDS sys-
tem (Ginzburg et al., 2001). V is the para-
phrase generator.

I. HPSG Grammar. This is a substan-
tially modified version of the gram-
mar employed by (Gregory and Lappin,
1999), but using the types and features
mentioned in Section 2.

II. Dialogue Record. When a clause has
been parsed (and any fragments re-
solved), its AVM is first converted into a
transitive network of Mother-Daughter-
Relations (the MDR list) and then stored
in a dialogue record paired with an index
(counter). A list of MAX-QUD candidates
is computed from the CONT of each sub-
clause and stored as a further component
of the dialogue record.

ITI. Context Resolution Procedure.
This assigns values from the dialogue
record to the MAX-QUD and SAL-UTT
features of the current clause. The
most recent element of the MAX-QUD
candidate list which is compatible with
the constraints imposed by the bare
argument phrase is selected as the value
of the MAX-QUDS®. SAL-UTT is obtained
from the sign whose content provides
MAX-QUD by applying the conditions on
scoped elements proposed in (Ginzburg
et al., 2001).

IV. Fragment Resolution Procedure.
This computes the semantics (i.e. the
CONT) of the current fragment clause
from its MAX-QUD and SAL-UTT values.

V. Paraphrase Generator. After the res-
olution procedure has been applied, the
generator is called with the antecedent
clause in the form of the MDR list and
the resolved fragment clause in the form

5This recency-based procedure for selecting the

MAX-QUD from the candidate list may require mod-
ification in light of future testing and evaluation

of an AVM. It computes the templates,
updates the fillers, and returns the para-
phrase of the fragment clause.

4.1 Implementation of the
Generation Algorithm

The generator takes AVMs as arguments
(a list of AVMs as the Mother- Daughter-
Relations list corresponding to the antecedent
and the AVM of the resolved fragment clause)
and returns the paraphrase of the fragment
clause in the form of a word string. The
MDR list argument enables the generator to
search the parse of the antecedent clause ef-
ficiently, e.g. for the auxiliary in SAT clauses
or for some verbal head, etc. The operations
(such as deletion or substitution of an ele-
ment) that the generator performs are car-
ried out on the surface strings, i.e. on the
values of the PHON features. The generator
extracts the PHON values of the AVMs for the
antecedent clause and the fragment clause in
the initial phase of generation and performs
it’s operations not on their AVMs but just on
these surface strings. All operations — though
guided by the information in the full AVMs —
are simple string manipulations.

If the generator is called for the first time
(or when the MAX-QUD changes, e.g. when
a new dialogue starts), it computes the two
templates and the first filler F}, using the an-
tecedent clause and the fragment, according
to the following algorithm:

Construct Templates

1. Identify the SAL-UTT and store the AVM
as first filler Fj.

2. Identify the MAX-QUD and delete the
SAL-UTT to get the AVM MQ.

3. Compute the templates T, and Ty,
from M () and store them:

(a) If M@ is in SVO order, store it as
Tsvo, compute Tyu;, and insert the
slots; else

(b) MQ is in SAI order, store it as T,
compute T,,, and insert the slots.

The setup of the templates requires a conver-
sion from a clause in SVO order to one in SAT
order or vice versa. If the clause is in SVO
order, the verbal head has to be searched, an
appropriate auxiliary has to be inserted into
the string, and the base form of the verb has
to be substituted for it’s inflected form. If
the conversion has to be done in the other
direction, then the auxiliary is identified and
deleted, and the inflected form of the verb is
substituted for it’s base form.

The insertion of the slot at the appropri-
ate position in the SVO template requires the
identification of the verbal head which sub-
categorizes for the SAL-UTT. After this verb
has been found, the slot is inserted at the po-
sition that the SAL-UTT would occupy. E.g.
if the SAL-UTT is the subject, then the slot
is inserted immediately in front of this verb.
In the case of the SAI template the slot is in-
serted at the beginning of the template just
in front of the auxiliary.

As mentioned above, the search for daugh-
ters such as the verbal heads can be done effi-
ciently by going through the MDR list, which
has already been computed for the SHARDS
dialogue record (cf. component II above).

Once the templates are set up, the gener-
ator updates the filler F; to Fj;; according
to the type of the fragment. Below we refer
to the clause which contains the fragment as
FcC.

Update Filler

1. If the fragment of F'C is a wh-phrase,
substitute which for the determiner in
the filler F; else,

2. substitute the fragment for Fj.

To accomplish the first case of filler update
the AVM corresponding to the stored filler F;
is searched for it’s determiner. Then which is
substituted for this determiner. The second
case is straightforward.

After the filler has been updated the gener-
ator is ready to compute the complete para-
phrase P;;;. Let o stand for the concatena-
tion of strings and ¢ for the empty string. We
write T'(F') for the result of substituting the

filler F for the slot <} in the template T'. Thus
T(e) is the result of deleting the slot from
T. The composition of template and filler de-
pends on the clause F'C, which contains the
fragment.

Composition of template and filler

1. If F;41 is a wh-phrase

(a) If FC consists just of the fragment,
then P11 = T4 (Fi_|_1); else,

(b) substitute Fj10Tsy(e) for the frag-
ment in FC to get Piy1;

else,

2. substitute Ty, (Fj11) for the fragment in
FC to get Piq1.

The if-then cascade takes care of the possible
word orders and specifically of the fronting of
wh-phrases. 1(a) handles fronted wh-phrases
in SATI constructions of wh-questions such as
Which student did the CEO hire?. Case 1(b)
handles cases where the wh-question is em-
bedded, as in The personnel department won-
ders which student the CEQO hired. Case 2
generates the SVO order in embedded and
non-embedded cases ([John thinks] the CEO
hired a student.).

Once the filler and the template have been
set up, the composition of these two compo-
nents is achieved by simple string concatena-
tion. We insure agreement of the filler and the
template by supplying the slot with the corre-
sponding agreement features of the template
and checking them when the filler is inserted”.

4.2 The Generator at work

We can now illustrate the generation algo-
rithm with dialogue (13-16). The first time
the generator is called the arguments are a
parse (in the form of the MDR list) of the

It will be necessary to refine our agreement check-
ing procedure to deal with mismatches in number and
tense, as in (i) and (ii) respectively.

(i) (a) Who is presenting the report?
(b) John and Mary.

(ii) (a) Who has written the program?
(b) Mary will.

antecedent clause (13) and an AVM of the
parsed and interpreted fragment clause (14).
As this is the first call, the templates Ty,
and T, are generated in the way described
above. The first filler F7 is set to the salient
utterance who. The situation is as follows:

Fy = who
Tewo = the CEO hired ¢
Tee; = <did the CEOQ hire

Immediately after this initial computation the
filler is updated to

F5 = a student

because the fragment is a student. As
the filler is not a wh-phrase, case 2 of the
composition step applies and Ty, (Fa) =
the CEQ hired a student is substituted for
a student in (14). The final paraphrase is

P, = John thinks the CED hired

a student

The next call of the generator with (14) as the
antecedent clause and (15) as the fragment
clause leads to an update of F5 to

F3 = which student

as the fragment is who and which is substi-
tuted for the determiner a in F5. The compo-
sition yields

P3 = Which student did the CED hire?

As F3 is a wh-phrase and the fragment clause
consists of the fragment who, case 1(a) is con-
sidered. If the bare phrase had been embed-
ded, as in Bob wonders who, case 1(b) would
lead to the substitution of F30Ts,,(¢) for who,
and the paraphrase would be Bob wonders
which student the CEQ hired. After the
last call of the generator, the filler F3 is up-
dated to

Fy = the student who passed all tests

and the paraphrase is computed as

P, = The CE0 hired the student

who passed all tests

This algorithm works properly with exam-
ples that contain multiple embeddings, as in
the case of the following antecedent clause,
where the wh-phrase occurs outside of the ma-
trix clause the system administrator thinks....

(17) Peter wonders who the system
administrator thinks deleted the files.

(18) (a) The webmaster believes a student.

(b) The webmaster believes the system
admanistrator thinks a student
deleted the files.

(19) (a) Who?

(b) Which student does the system
administrator think deleted the files?

The parser identifies the question Who does
the system administrator think deleted the
files as the maximal question under discus-
sion and who as the salient utterance (and
the first filler ;). Therefore the antecedent
clause (17) gives rise to the two templates

T = the system administrator

thinks ¢ deleted the files
{» does the system administra-
tor think deleted the files

The first update of the filler yields Fo =
a student, and the paraphrase (18b) is gen-
erated on case 2 of the composition proce-
dure. In the next turn F5 is updated to
F3 = which student, and case 1(a) of the
composition procedure leads to (19b).

Tsai =

The algorithm is able to pro-
duce paraphrases of answers to po-
lar questions quite straightforwardly.

(20) Does Peter think the CEO hired a
student?

(21) (a) Yes.
(b) Peter thinks the CEO hired a

student.
(c) No.

(d) Peter does not think the CEO hired
a student.

As the polar question (20) is an SAI con-
struction we can just run the procedure for
setting up the templates on it. This will com-
pute Ts,, and since the SAL-UTT is empty in
the case of polar questions, nothing will be
deleted, and no slot will be inserted. The re-
sult will be the paraphrase (21b). A small ad-
dition to this procedure makes it possible to
generate the paraphrases of negative answers
such as (21c) as well.

The generator can produce paraphrases for
all phenomena that the parser and the resolu-
tion procedure of SHARDS currently handle.
These are bare NP fragments and bare wh-
sluices, embedded fragments and polar ques-
tions of the kind illustrated in the preceding
sections.

5 Conclusion and Future Research

Most work on NL generation such as (Shieber
et al., 1990; Kay, 1996; McKeown, 1985; Ni-
colov and Mellish, 2000) has formulated the
problem in abstract terms as the produc-
tion of a lexical string to encode a seman-
tic representation. We have situated genera-
tion within the context of dialogue interpreta-
tion, specifically fragment resolution. In do-
ing so, we have been able to eliminate much of
the indeterminacy which characterizes classi-
cal generation systems by exploiting the rich
syntactic and phonological information pro-
duced in the course of dialogue interpretation.

While there are undoubtly generation prob-
lems to which this approach does not apply,
the work described here does suggest the pos-
sibility of efficient generation through the ex-
ploitation of the results of dialogue interpreta-
tion in an important class of NL applications.

The research on the system we introduced
in the preceding sections is part of a larger
project of dialogue management at King’s
College, London. We are extending our sys-
tem in several directions. We plan to incorpo-
rate the handling of ellipsis structures (VP-
ellipsis and gapping) into the SHARDS sys-
tem, and the generation component will be
developed to deal with these constructions. In
addition, we are currently doing corpus work
with the British National Corpus, which will

eventually result in a typology of fragment
types. We will use the examples of ellipsis
that we find in this corpus to evaluate and im-
prove our generation system. We are also in
the process of extending the lexicon to achieve
broader coverage for our parser and fragment
interpretation components.

6 Acknowledgements

We are grateful to two anonymous reviewers
for helpful comments on an earlier draft of
this paper. The dialogue project of which
the work described here is a part is funded
by grant number R00022269 of the Economic
and Social Research Council of the United
Kingdom. Some of the research presented in
this paper was done in the summer of 2000,
when the second author was a Visiting Aca-
demic at the IBM T.J. Watson Research Cen-
ter in Hawthorne, NY. During this time he
worked with the fourth author on the design
and implementation of an initial version of the
generation algorithm.

References

Tilman Becker and Stephan Busemann, editors.
1999. May I Speak Freely? Between Templates
and Free Choice in Natural Language Gener-
ation. Workshop at the 23rd German Annual
Conference for Artificial Intelligence (KI ’99),
Saarbriicken. DFKI.

R. Cooper, S. Larsson, M. Poesio, D. Traum, and
C. Matheson. 1999. Coding instructional dia-
logue for information states. In Task Oriented
Instructional Dialogue (TRINDI): Deliverable
1.1. University of Gothenburg, Gothenburg.

Gregor Erbach. 1996. ProFIT: Prolog with fea-
tures, inheritance and templates. In Proceed-
ings of the Tth European Conference of the As-

sociation for Computational Linguistics, pages
180-187.

Jonathan Ginzburg and Ivan Sag. 2000. En-
glish Interrogative Constructions. Studies in
Constraint-based Lexicalism. CSLI Publica-
tions, Stanford, California.

Jonathan Ginzburg, Howard Gregory, and Shalom
Lappin. 2001. SHARDS: Fragment resolution
in dialogue. In Harry Bunt, Ielka van der Sluis,
and Elias Thijse, editors, Proceedings of the jth
International Workshop on Computational Se-
mantics (IWCS-4), pages 156172, Tilburg.

Jonathan Ginzburg. 2001. Clarification ellipsis
and nominal anaphora. In H. Bunt, editor,
Computing meaning, volume 2. Kluwer, Dor-
drecht.

Howard Gregory and Shalom Lappin. 1999. An-
tecedent contained ellipsis in HPSG. In G. We-
belhuth, J. P. Koenig, and A. Kathol, editors,
Lexical and Constructional Aspects of Linguis-
tic Fzplanation, pages 331-356. CSLI Publica-
tions, Stanford.

Martin Kay. 1996. Chart generation. In Proceed-
ings of the 34th Annual Meeting of the ACL,
pages 200-204.

K. R. McKeown. 1985. Text Generation: Using
Discourse Strategies and Focus Constraints to
Generate Natural Language Texrt. Cambridge
University Press, Cambridge.

Nicolas Nicolov and Chris Mellish. 2000. PRO-
TECTOR: Efficient Generation with Lexical-
ized Grammars. In Recent Advances in Natural
Language Processing, Current Issues in Linguis-
tic Theory (CILT 189), pages 221-243. John
Benjamin, Amsterdam & Philadelphia.

Carl Pollard and Ivan Sag. 1994. Head Driven
Phrase Structure Grammar. University of
Chicago Press and CSLI Publications, Chicago.

Ehud Reiter. 1995. NLG vs. templates. In Pro-
ceedings of the Fifth FEuropean Workshop on
Natural-Language Generation (ENLGW-1995),
Leiden, The Netherlands.

Ivan Sag. 1997. English relative clause construc-
tions. Journal of Linguistics, 33:431-484.

Stuart Shieber, Fernando Pereira, Gertjan van
Noord, and Robert Moore. 1990. Semantic-
head-driven generation. Computational Lin-
guistics, 16:30-42.

