
Variant Transduction: A Method for Rapid Development of
Interactive Spoken Interfaces

Hiyan Alshawi and Shona Douglas

AT&T Labs Research

180 Park Avenue

Florham Park, NJ 07932, USA

fhiyan,shonag@research.att.com

Abstract

We describe an approach (\vari-
ant transduction") aimed at reduc-
ing the e�ort and skill involved
in building spoken language inter-
faces. Applications are created
by specifying a relatively small set
of example utterance-action pairs
grouped into contexts. No interme-
diate semantic representations are
involved in the speci�cation, and
the con�rmation requests used in
the dialog are constructed automat-
ically. These properties of vari-
ant transduction arise from combin-
ing techniques for paraphrase gen-
eration, classi�cation, and example-
matching. We describe how a spo-
ken dialog system is constructed
with this approach and also provide
some experimental results on vary-
ing the number of examples used to
build a particular application.

1 Introduction

Developing non-trivial interactive spoken lan-
guage applications currently requires signi�-
cant e�ort, often several person-months. A
major part of this e�ort is aimed at coping
with variation in the spoken language input
by users. One approach to handling varia-
tion is to write a large natural language gram-
mar manually and hope that its coverage is
su�cient for multiple applications (Dowding
et al., 1994). Another approach is to cre-
ate a simulation of the intended system (typ-
ically with a human in the loop) and then

record users interacting with the simulation.
The recordings are then transcribed and an-
notated with semantic information relating to
the domain; the transcriptions and annota-
tions can then be used to create a statistical
understanding model (Miller et al., 1998) or
used as guidance for manual grammar devel-
opment (Aust et al., 1995).

Building mixed initiative spoken language
systems currently usually involves the design
of semantic representations speci�c to the ap-
plication domain. These representations are
used to pass data between the language pro-
cessing components: understanding, dialog,
con�rmation generation, and response gener-
ation. However, such representations tend to
be domain-speci�c, and this makes it di�cult
to port to new domains or to use machine
learning techniques without extensive hand-
labeling of data with the semantic represen-
tations. Furthermore, the use of intermediate
semantic representations still requires a �nal
transduction step from the intermediate rep-
resentation to the action format expected by
the application back-end (e.g. SQL database
query or procedure call).

For situations when the e�ort and exper-
tise available to build an application is small,
the methods mentioned above are impracti-
cal, and highly directed dialog systems with
little allowance for language variability are
constructed.

In this paper, we describe an approach to
constructing interactive spoken language ap-
plications aimed at alleviating these prob-
lems. We �rst outline the characteristics of
the method (section 2) and what needs to
be provided by the application builder (sec-

tion 3). In section 4 and section 5 we ex-
plain variant expansion and the operation of
the system at runtime, and in section 6 we
describe how con�rmation requests are pro-
duced by the system. In section 7 we give
some initial experimental results on varying
the number of examples used to construct a
call-routing application.

2 Characteristics of our approach

The goal of the approach discussed in this pa-
per (which we refer to as \variant transduc-
tion") is to avoid the e�ort and specialized
expertise used to build current research pro-
totypes, while allowing more natural spoken
input than is handled by spoken dialog sys-
tems built using current commercial practice.
This led us to adopt the following constraints:

� Applications are constructed using a rel-
atively small number of example inputs
(no grammar development or extensive
data collection).

� No intermediate semantic representa-
tions are needed. Instead, manipulations
are performed on word strings and on ac-
tion strings that are �nal (back-end) ap-
plication calls.

� Con�rmation queries posed by the sys-
tem to the user are constructed automat-
ically from the examples, without the use
of a separate generation component.

� Dialog control should be simple to spec-
ify for simple applications, while allowing
the
exibility of delegating this control
to another module (e.g. an \intelligent"
back-end agent) for more complex appli-
cations.

We have constructed two telephone-based
applications using this method, an applica-
tion to access email and a call-routing appli-
cation. These two applications were chosen
to gain experience with the method because
they have di�erent usage characteristics and
back-end complexity. For the e-mail access
system, usage is typically habitual, and the

system's mapping of user utterances to back-
end actions needs to take into account dy-
namic aspects of the current email session.
For the call-routing application, the back-end
calls executed by the system are relatively
simple, but users may only encounter the sys-
tem once, and the system's initial prompt is
not intended to constrain the �rst input spo-
ken by the user.

3 Constructing an application with
example-action contexts

An interactive spoken language application
constructed with the variant transduction
method consists of a set of contexts. Each
context provides the mapping between user
inputs and application actions that are mean-
ingful in a particular stage of interaction be-
tween the user and system. For example the
e-mail reader application includes contexts for
logging in and for navigating a mail folder.

The actual contexts that are used at run-
time are created through a four step process:

1. The application developer speci�es (a
small number of) triples he; a; ci where
e is a natural language string (a typical
user input), a is an application action
(back-end application API call). For in-
stance, the string read the message from

John might be paired with the API call
mailAgent.getWithSender("jsmith@att.com").
The third element of a triple, c, is an
expression identifying another (or the
same) context, speci�cally, the context
the system will transition to if e is the
closest match to the user's input.

2. The set of triples for each context is ex-
panded by the system into a larger set
of triples. The additional triples are of
the form hv; a0; ci where v is a \variant"
of example e (as explained in section 4
below), and a0 is an \adapted" version of
the action a.

3. During an actual user session, the set of
triples for a context may optionally be
expanded further to take into account

the dynamic aspects of a particular ses-
sion. For example, in the mail access ap-
plication, the set of names available for
recognition is increased to include those
present as senders in the user's current
mail folder.

4. A speech recognition language model is
compiled from the expanded set of ex-
amples. We currently use a language
model that accepts any sequence of sub-
strings of the examples, optionally sepa-
rated by �ller words, as well as sequences
of digits. (For a small number of exam-
ples, a statistical N-gram model is inef-
fective because of low N-gram counts.) A
detailed account of the recognition lan-
guage model techniques used in the sys-
tem is beyond the scope of this paper.

In the current implementation, actions are
sequences of statements in the Java language.
Constructors can be called to create new ob-
jects (e.g. a mail session object) which can be
assigned to variables and referenced in other
actions. The context interpreter loads the re-
quired classes and evaluates methods dynam-
ically as needed. It is thus possible for an
application developer to build a spoken inter-
face to their target API without introducing
any new Java classes. The system could eas-
ily be adapted to use action strings from other
interpreted languages.
A key property of the process described

above is that the application developer needs
to know only the back-end API and English
(or some other natural language).

4 Variant compilation

Di�erent expansion methods can be used in
the second step to produce variants v of an
example e. In the simplest case, v may be
a paraphrase of e. Such paraphrase vari-
ants are used in the experiments in section 7,
where domain-independent \carrier" phrases
are used to create variants. For example, the
phrase I'd like to (among others) is used as a
possible alternative for the phrase I want to.
The context compiler includes an English-to-
English paraphrase generator, so the applica-

tion developer is not involved in the expan-
sion process, relieving her of the burden of
handling this type of language variation. We
are also experimenting with other forms of
variation, including those arising from lexical-
semantic relations, user-speci�c customiza-
tion, and those variants uttered by users dur-
ing �eld trials of a system.
When v is a paraphrase of e, the adapted

action a0 is the same string as a. In the more
general case, the meaning of variant v is dif-
ferent from that of e, and the system attempts
(not always correctly) to construct a0 so that
it re
ects this di�erence in meaning. For ex-
ample, including the variant show the message

from Bill Wilson of an example read the mes-

sage from John, involves modifying the ac-
tion mailAgent.getWithSender("jsmith@att.com")

to mailAgent.getWithSender("wwilson@att.com").
We currently adopt a simple approach to

the process of mapping language string vari-
ants to their corresponding target action
string variants. The process requires the
availability of a \token mapping" t between
these two string domains, or data or heuristics
fromwhich such a mapping can be learned au-
tomatically. Examples of the token mapping
are names to email addresses as illustrated in
the example above, name to identi�er pairs in
a database system, \soundex" phonetic string
spelling in directory applications, and a bilin-
gual dictionary in a translation application.
The process proceeds as follows:

1. Compute a set of lexical mappings be-
tween the variant v and example e. This
is currently performed by aligning the
two string in such a way as that the align-
ment minimizes the (weighted) edit dis-
tance between them (Wagner and Fis-
cher, 1974).

2. The token mapping t is used to map
substitution pairs identi�ed by the align-
ment (hread; showi and hJohn, Bill Wil-

soni in the example above) to corre-
sponding substitution pairs in the action
string. In general this will result in a
smaller set of substitution strings since
not all word strings will be present in

the domain of t. (In the example, this re-
sults in the single pair hjsmith@att.com,
wwilson@att.comi.)

3. The action substitution pairs are applied
to a to produce a0.

4. The resulting action a0 is checked for
(syntactic) well-formedness in the action
string domain; the variant v is rejected if
a0 is ill-formed.

5 Input interpretation

When an example-action context is active
during an interaction with a user, two com-
ponents (in addition to the speech recognition
language model) are compiled from the con-
text in order to map the user inputs into the
appropriate (possibly adapted) action:

Classi�er A classi�er is built with training
pairs hv; ai where v is a variant of an
example e for which the example action
pair he; ai is a member of the unexpanded
pairs in the context. Note that the clas-
si�er is not trained on pairs with adapted
examples a0 since the set of adapted
actions may be too large for accurate
classi�cation (with standard classi�ca-
tion techniques). The classi�ers typically
use text features such as N-grams ap-
pearing in the training data. In our ex-
periments, we have used di�erent classi-
�ers, including BoosTexter (Schapire and
Singer, 2000), and a classi�er based on
Phi-correlation statistics for the text fea-
tures (see Alshawi and Douglas (2000)
for our earlier application of Phi statis-
tics in learning machine translation mod-
els from examples). Other classi�ers
such as decision trees (Quinlan, 1993) or
support vector machines (Vapnik, 1995)
could be used instead.

Matcher The matcher can compute a dis-
tortion mapping and associated distance
between the output s of the speech rec-
ognizer and a variant v. Various match-
ers can be used such as those suggested
in example-based approaches to machine

translation (Sumita and Iida, 1995). So
far we have used a weighted string edit
distance matcher and experimented with
di�erent substitution weights including
ones based on measures of statistical sim-
ilarity between words such as the one
described by Pereira et al. (1993). The
output of the matcher is a real number
(the distance) and a distortion mapping
represented as a sequence of edit opera-
tions (Wagner and Fischer, 1974).

Using these two components, the method
for mapping the user's utterance to an exe-
cutable action is as follows:

1. The language model derived from con-
text c is activated in the speech recog-
nizer.

2. The speech recognizer produces a string
s from the user's utterance.

3. The classi�er for c is applied to s to pro-
duce an unadapted action a.

4. The matcher is applied pairwise to com-
pare s with each variant va derived from
a triple he; a; c0i in the unexpanded ver-
sion of c.

5. The triple hv; a0; c0i for which v pro-
duces the smallest distance is selected
and passed along with e to the dialog con-
troller.

The relationship between the input s, vari-
ant v, example e, and actions a and a0 is
depicted in Figure 1. In the �gure, f is
the mapping between examples and actions
in the unexpanded context; r is the relation
between examples and variants; and g is the
search mapping implemented by the classi�er-
matcher. The role of e0 is related to con�rma-
tions as explained in the following section.

6 Con�rmation and dialog control

Dialog control is straightforward as the reader
might expect, except for two aspects de-
scribed in this section: (i) evaluation of next-
context expressions, and (ii) generation of

p (prompt): say a mailreader command

s (words spoken): now show me messages from Bill

v (variant): show the message from Bill Wilson

e (example): read the message from John

a (associated action): mailAgent.getWithSender("jsmith@att.com")
a0 (adapted action): mailAgent.getWithSender("wwilson@att.com")
e0 (adapted example): read the message from Bill Wilson

Figure 2: Example

Figure 1: Variant Transduction mappings

con�rmation requests based on the examples
in the context and the user's input.

As noted in section 3 the third element c

of each triple he; a; ci in a context is an ex-
pression that evaluates to the name of the
next context (dialog state) that the system
will transition to if the triple is selected. For
simple applications, c can simply always be
an identi�er for a context, i.e. the dialog state
transition network is speci�ed explicitly in ad-
vance in the triples by the application devel-
oper.

For more complex applications, next con-
text expressions c may be calls that evalu-
ate to context identi�ers. In our implemen-
tation, these calls can be Java methods ex-
ecuted on objects known to the action in-
terpreter. They may thus be calls on the
back-end application system, which is appro-

priate for cases when the back-end has state
information relevant to what should happen
next (e.g. if it is an \intelligent agent"). It
might also be a call to component that imple-
ments a dialog strategy learning method (e.g.
Levin and Pieraccini (1997)), though we have
not yet tried such methods in conjunction
with the present system.

A con�rmation request of the form do you

mean e0 is constructed for each variant-action
pair (v; a0) of an example-action pair (e; a).
The string e0 is constructed by �rst comput-
ing a submapping h0 of the mapping h rep-
resenting the distortion between e and v. h0

is derived from h by removing those edit op-
erations which were not involved in mapping
the action a to the adapted action a0. (The
matcher is used to compute h except when
the process of deriving (v; a0) from (e; a) al-
ready includes an explicit representation of h
and t(h).)

The restricted mapping h0 is used instead of
h to construct e0 in order to avoid misleading
the user about the extent to which the ap-
plication action is being adapted. Thus if h
includes the substitution w ! w0 but t(w) is
not a substring of a then this edit operation is
not included in h0. This way, e0 includes w un-
changed, so that the con�rmation asked of the
user does not carry the implication that the
change w ! w0 is taken into account in the
action a0 to be executed by the system. For
instance, in the example in Figure 2, the word
\now" in the user's input does not correspond
to any part of the adapted action, and is not
included in the con�rmation string. In prac-
tice, the con�rmation string e0 is computed
at the same time that the variant-action pair

(v; a0) is derived from the original example
pair (e; a).
The dialog
ow of control proceeds as fol-

lows:

1. The active context c is set to a distin-
guished initial context c0 indicated by
the application developer.

2. A prompt associated with the current ac-
tive context c is played to the user using
a speech synthesiser or by playing an au-
dio �le. For this purpose the application
developer provides a text string (or audio
�le) for each context in the application.

3. The user's utterance is interpreted as ex-
plained in the previous section to pro-
duce the triple hv; a0; c0i.

4. A match distance d is computed as the
sum of the distance computed for the
matcher between s and v and the dis-
tance computed by the matcher between
v and e (where e is the example from
which v was derived).

5. If d is smaller than a preset threshold, it
is assumed that no con�rmation is neces-
sary and the next three steps are skipped.

6. The system asks the user do you mean:

e0. If the user responds positively then
proceed to the next step, otherwise re-
turn to step 2.

7. The action a0 is executed, and any string
output it produces is read to the user
with the speech synthesizer.

8. The active context is set to the result of
evaluating the expression c0.

9. Return to step 2.

Figure 2 gives an example showing the
strings involved in a dialog turn. Handling
the user's verbal response to the con�rmation
is done with a built-in yes-no context.

The generation of con�rmation requests
requires no work by the application de-
veloper. Our approach thus provides

an even more extreme version of auto-
matic con�rmation generation than that used
by Chu-Carroll and Carpenter (1999) where
only a small e�ort is required by the devel-
oper. In both cases, the bene�ts of care-
fully crafted con�rmation requests are being
traded for rapid application development.

7 Experiments

An important question relating to our method
is the e�ect of the number of examples on
system interpretation accuracy. To measure
this e�ect, we chose the operator services call
routing task described by Gorin et al. (1997).
We chose this task because a reasonably large
data set was available in the form of actual
recordings of thousands of real customers call-
ing AT&T's operators, together with tran-
scriptions and manual labeling of the de-
sired call destination. More speci�cally, we
measure the call routing accuracy for uncon-
strained caller responses to the initial context
prompt AT&T. How may I help you?. An-
other advantage of this task was that bench-
mark call routing accuracy �gures were avail-
able for systems built with the full data set
(Gorin et al., 1997; Schapire and Singer,
2000). We have not yet measured interpreta-
tion accuracy for the structurally more com-
plex e-mail access application.
In this experiment, the responses to How

may I help you? are \routed" to �fteen des-
tinations, where routing means handing o�
the call to another system or human operator,
or moving to another example-action context
that will interact further with the user to elicit
further information so that a subtask (such as
making a collect call) can be completed. Thus
the actions in the initial context are simply
the destinations, i.e. a = a0, and the matcher
is only used to compute e0.
The �fteen destinations include a destina-

tion \other" which is treated specially in that
it is also taken to be the destination when the
system rejects the user's input, for example
because the con�dence in the output of the
speech recognizer is too low. Following previ-
ous work on this task, cited above, we present
the results for each experimental condition as

an ROC curve plotting the routing accuracy
(on non-rejected utterances) as a function of
the false rejection rate (the percentage of the
samples incorrectly rejected); a classi�cation
by the system of \other" is considered equiv-
alent to rejection.

The dataset consists of 8,844 utterances of
which 1000 were held out for testing. We refer
to the remaining 7,884 utterances as the \full
training dataset".

In the experiments, we vary two conditions:

Input uncertainty The input string to the
interpretation component is either a hu-
man transcription of the spoken utter-
ance or the output of a speech recog-
nizer. The acoustic model used for au-
tomatic speech recognition was a gen-
eral telephone speech HHM model in all
cases. (For the full dataset, better re-
sults can be achieved by an application-
speci�c acoustic model, as presented by
Gorin et al. (1997) and con�rmed by our
results below.)

Size of example set We select progres-
sively larger subsets of examples from
the full training set, as well as showing
results for the full training set itself. We
wish to approximate the situation where
an application developer uses typical
examples for the initial context without
knowing the distribution of call types.
We therefore select k utterances for each
destination, with k set to 3, 5, and 10,
respectively. This selection is random,
except for the provision that utterances
appearing more than once are preferred,
to approximate the notion of a typical
utterance. The selected examples are
expanded by the addition of variants, as
described earlier. For each value of k,
the results shown are for the median of
three runs.

Figure 3 shows the routing accuracy ROC
curves for transcribed input for k = 3; 5; 10
and for the full training dataset. These re-
sults for transcribed input were obtained with
BoosTexter (Schapire and Singer, 2000) as the

classi�er module in our system because we
have observed that BoosTexter generally out-
performs our Phi classi�er (mentioned earlier)
for text input.

Figure 4 shows the corresponding four ROC
curves for recognition output, and an ad-
ditional �fth graph (the top one) showing
the improvement that is obtained with a do-
main speci�c acoustic model coupled with a
trigram language model. These results for
recognition output were obtained with the
Phi classi�er module rather than BoosTex-
ter; the Phi classi�er performance is generally
the same as, or slightly better than, Boos-
Texter when applied to recognition output.
The language models used in the experiments
for Figure 4 are derived from the example
sets for k = 3; 5; 10 (lower three graphs) and
for the full training set (upper two graphs),
respectively. As described earlier, the lan-
guage model for restricted numbers of exam-
ples is an unweighted one that recognizes se-
quences of substrings of the examples. For the
full training set, statistical N-gram language
models are used (N=3 for the top graph and
N=2 for the second to top) since there is suf-
�cient data in the full training set for such
language models to be e�ective.

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

False rejection %

%
 C

or
re

ct
 a

ct
io

ns

full training set
10 examples/action + variants
5 examples/action + variants
3 examples/action + variants

Figure 3: Routing accuracy for transcribed
utterances

Comparing the two �gures, it can be seen
that the performance shortfall from using
small numbers of examples compared to the
full training set is greater when speech recog-

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

False rejection %

%
 C

or
re

ct
 a

ct
io

ns

full training set, trigrams, domain acoustics
full training set, bigrams
10 examples/action + variants, subsequences
5 examples/action + variants, subsequences
3 examples/action + variants, subsequences

Figure 4: Routing accuracy for speech recog-
nition output

nition errors are included. This suggests that
it might be advantageous to use the examples
to adapt a general statistical language model.
There also seem to be diminishing returns as
k is increased from 3 to 5 to 10. A likely
explanation is that expansion of examples by
variants is progressively less e�ective as the
size of the unexpanded set is increased. This
is to be expected since additional real exam-
ples presumably are more faithful to the task
than arti�cially generated variants.

8 Concluding remarks

We have described an approach to construct-
ing interactive spoken interfaces. The ap-
proach is aimed at shifting the burden of han-
dling linguistic variation for new applications
from the application developer (or data col-
lection lab) to the underlying spoken language
understanding technology itself. Applications
are speci�ed in terms of a relatively small
number of examples, while the mapping be-
tween the inputs that users speak, variants
of the examples, and application actions, are
handled by the system. In this approach, we
avoid the use of intermediate semantic rep-
resentations, making it possible to develop
general approaches to linguistic variation and
dialog responses in terms of word-string to
word-string transformations. Con�rmation
requests used in the dialog are computed au-
tomatically from variants in a way intended to

minimize misleading the user about the appli-
cation actions to be executed by the system.
The quantitative results we have pre-

sented indicate that a surprisingly small num-
ber of training examples can provide use-
ful performance in a call routing application.
These results suggest that, even at its cur-
rent early stage of development, the vari-
ant transduction approach is a viable option
for constructing spoken language applications
rapidly without specialized expertise. This
may be appropriate, for example, for boot-
strapping data collection, as well as for situa-
tions (e.g. small businesses) for which devel-
opment of a full-blown system would be too
costly. When a full dataset is available, the
method can provide similar performance to
current techniques while reducing the level of
skill necessary to build new applications.

References

H. Alshawi and S. Douglas. 2000. Learning
dependency transduction models from unan-
notated examples. Philosophical Transactions
of the Royal Society (Series A: Mathematical,
Physical and Engineering Sciences), 358:1357{
1372, April.

H. Aust, M. Oerder, F. Seide, and V. Steinbiss.
1995. The Philips automatic train timetable
information system. Speech Communication,
17:249{262.

Jennifer Chu-Carroll and Bob Carpenter. 1999.
Vector-based natural language call routing.
Computational Linguistic, 25(3):361{388.

J. Dowding, J. M. Gawron, D. Appelt, J. Bear,
L. Cherny, R. Moore, and D. Moran. 1994.
Gemini: A Natural Language System For
Spoken-Language Understanding. In Proc.
ARPA Human Language Technology Workshop
'93, pages 43{48, Princeton, NJ.

A.L. Gorin, G. Riccardi, and J.H. Wright. 1997.
How may I help you? Speech Communication,
23(1-2):113{127.

E. Levin and R. Pieraccini. 1997. A stochas-
tic model of computer-human interaction for
learning dialogue strategies. In Proceedings of
EUROSPEECH97, pages 1883{1886, Rhodes,
Greece.

Scott Miller, Michael Crystal, Heidi Fox, Lance
Ramshaw, Richard Schwartz, Rebecca Stone,

Ralph Weischedel, and the Annotation Group.
1998. Algorithms that learn to extract informa-
tion { BBN: description of the SIFT system as
used for MUC-7. In Proceedings of the Seventh
Message Understanding Conference (MUC-7),
Fairfax, VA. Morgan Kaufmann.

F. Pereira, N. Tishby, and L. Lee. 1993. Distribu-
tional clustering of english words. In Proceed-
ings of the 31st meeting of the Association for
Computational Linguistics, pages 183{190.

J.R. Quinlan. 1993. C4.5: Programs for Machine
Learning. Morgan Kaufmann, San Mateo, CA.

Robert E. Schapire and Yoram Singer. 2000.
BoosTexter: A Boosting-based System for
Text Categorization. Machine Learning,
39(2/3):135{168.

Eiichiro Sumita and Hitoshi Iida. 1995. Het-
erogeneous computing for example-based trans-
lation of spoken language. In Proceedings of
the 6th International Conference on Theoretical
and Methodological Issues in Machine Transla-
tion, pages 273{286, Leuven, Belgium.

V.N. Vapnik. 1995. The Nature of Statistical
Learning Theory. Springer, New York.

Robert A. Wagner and Michael J. Fischer.
1974. The String-to-String Correction Prob-
lem. Journal of the Association for Computing
Machinery, 21(1):168{173, January.

