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Abstract

We report on a project to derive word
translation relationships automatically
from parallel corpora. Our effort is
distinguished by the use of simpler,
faster models than those used in pre-
vious high-accuracy approaches. Our
methods achieve accuracy on single-
word translations that seems compara-
ble to any work previously reported, up
to nearly 60% coverage of word types,
and they perform particularly well on a
class of multi-word compounds of spe-
cial interest to our translation effort.

1 Introduction

This paper is a report on work in progress aimed
at learning word translation relationships auto-
matically from parallel bilingual corpora. Our ef-
fort is distinguished by the use of simple statisti-
cal models that are easier to implement and faster
to run than previous high-accuracy approaches to
this problem.

Our overall approach to machine translation is
a deep-transfer approach in which the transfer re-
lationships are learned from a parallel bilingual
corpus (Richardson et al., 2001). More specifi-
cally, the transfer component is trained by pars-
ing both sides of the corpus to produce parallel
logical forms, using lexicons and analysis gram-
mars constructed by linguists. The parallel log-
ical forms are then aligned at the level of con-
tent word stems (lemmas), and logical-form trans-
fer patterns are learned from the aligned logical-
form corpus. At run time, the source language

text is parsed into logical forms employing the
source language grammar and lexicon used in
constructing the logical-form training corpus, and
the logical-form transfer patterns are used to con-
struct target language logical forms. These logical
forms are transformed into target language strings
using the target-language lexicon, and a genera-
tion grammar written by a linguist.

The principal roles played by the translation
relationships derived by the methods discussed
in this paper are to provide correspondences be-
tween content word lemmas in logical forms to
assist in the alignment process, and to augment
the lexicons used in parsing and generation, for a
special case described in Section 4.

2 Previous Work

The most common approach to deriving transla-
tion lexicons from empirical data (Catizone, Rus-
sell, and Warwick, 1989; Gale and Church, 1991;
Fung, 1995; Kumano and Hirakawa, 1994; Wu
and Xia, 1994; Melamed, 1995) is to use some
variant of the following procedure:1

� Pick a good measure of the degree of asso-
ciation between words in language L1 and
words in language L2 in aligned sentences
of a parallel bilingual corpus.

� Rank order pairs consisting of a word from
L1 and a word from L2 according to the
measure of association.

1The important work of Brown et al. (1993) is not di-
rectly comparable, since their globally-optimized genera-
tive probabilistic model of translation never has to make a
firm commitment as to what can or cannot be a translation
pair. They assign some nonzero probability to every possible
translation pair.



� Choose a threshold, and add to the transla-
tion lexicon all pairs of words whose degree
of association is above the threshold.

As Melamed later (1996, 2000) pointed out,
however, this technique is hampered by the ex-
istence of indirect associations between words
that are not mutual translations. For exam-
ple, in our parallel French-English corpus (con-
sisting primarily of translated computer soft-
ware manuals), two of the most strongly associ-
ated word lemma translation pairs are fichier/file
and système/system. However, because the
monolingual collocations syst̀eme de fichiers,
fichiers système, file system, and system files
are so common, the spurious translation pairs
fichier/system and système/file also receive rather
high association scores—higher in fact that such
true translation pairs as confiance/trust, par-
allélisme/parallelism, and film/movie.

Melamed’s solution to this problem is not to re-
gard highly-associated word pairs as translations
in sentences in which there are even more highly-
associated pairs involving one or both of the same
words. Since indirect associations are normally
weaker than direct ones, this usually succeeds in
selecting true translation pairs over the spurious
ones. For example, in parallel sentences contain-
ing fichier and système on the French side and file
and system on the English side, the associations of
fichier/system and système/file will be discounted,
because the degrees of association for fichier/file
and système/system are so much higher.

Melamed’s results using this approach extend
the range of high-accuracy output to much higher
coverage levels than previously reported. Our ba-
sic method is rooted the same insight regarding
competing associations for the same words, but
we embody it in simpler model that is easier to
implement and, we believe, faster to run.2 As we
will see below, our model yields results that seem
comparable to Melamed’s up to nearly 60% cov-
erage of the lexicon.

A second important issue regarding automatic
derivation of translation relationships is the as-
sumption implicit (or explicit) in most previous
work that lexical translation relationships involve

2Melamed does not report computation time for the ver-
sion of his approach without generation of compounds, but
our approach omits a number of computationally very ex-
pensive steps performed in his approach.

only single words. This is manifestly not the case,
as is shown by the following list of translation
pairs selected from our corpus:

base de données/database
mot de passe/password
sauvegarder/back up
annuler/roll back
ouvrir session/log on

Some of the most sophisticated work on this
aspect of problem again seems to be that of
Melamed (1997). Our approach in this case is
quite different from Melamed’s. It is more gen-
eral in that it can propose compounds that are dis-
contiguous in the training text, as roll back would
be in a phrase such as roll the failed transac-
tion back. Melamed does allow skipping over
one or two function words, but our basic method
is not limited at all by word adjacency. Also,
our approach is again much simpler computation-
ally than Melamed’s and apparently runs orders
of magnitude faster.3

3 Our Basic Method

Our basic method for deriving translation pairs
consists of the following steps:

1. Extract word lemmas from the logical forms
produced by parsing the raw training data.

2. Compute association scores for individual
lemmas.

3. Hypothesize occurrences of compounds in
the training data, replacing lemmas consti-
tuting hypothesized occurrences of a com-
pound with a single token representing the
compound.

4. Recompute association scores for com-
pounds and remaining individual lemmas.

3Melamed reports that training on 13 million words took
over 800 hours in Perl on a 167-MHz UltraSPARC proces-
sor. Training our method on 6.6 million words took approx-
imately 0.5 hours in Perl on a 1-GHz Pentium III proces-
sor. Even allowing an order of magnitude for the differences
in processor speed and amount of data, there seems to be
a difference between the two methods of at least two or-
ders of magnitude in computation required. Unfortunately
Melamed evaluates accuracy in his work on translation com-
pounds differently from his work on single-word translation
pairs, so we are not able to compare our method to his in that
regard.



5. Recompute association scores, taking into
account only co-occurrences such that there
is no equally strong or stronger association
for either item in the aligned logical-form
pair.

We describe each of these steps in detail below.

3.1 Extracting word lemmas

In Step 1, we simply collect, for each sentence,
the word lemmas identified by our MT system
parser as the key content items in the logical form.
These are predominantly morphologically ana-
lyzed word stems, omitting most function words.
In addition, however, the parser treats certain lexi-
cal compounds as if they were single units. These
include multi-word expressions placed in the lex-
icon because they have a specific meaning or use,
plus a number of general categories including
proper names, names of places, time expressions,
dates, measure expressions, etc. We will refer to
all of these generically as “multiwords”.

The existence of multiwords simplifies learn-
ing some translation relationships, but makes oth-
ers more complicated. For example, we do not,
in fact, have to learn base de données as a com-
pound translation for database, because it is ex-
tracted from the French logical forms already
identified as a single unit. Thus we only need
to learn the base de données/database correspon-
dence as a simple one-to-one mapping. On the
other hand, the disque dur/hard disk correspon-
dence is learned as two-to-one relationship inde-
pendently of disque/disk and dur/hard (which are
also learned) because hard disk appears as a mul-
tiword in our English logical forms, but disque
and dur always appear as separate tokens in our
French logical forms.

3.2 Computing association scores

For Step 2, we compute the degree of association
between a lemma wL1 and a lemma wL2 in terms
of the frequencies with which wL1 occurs in sen-
tences of the L1 part of the training corpus and
wL2 occurs in sentences of theL2 part of the train-
ing corpus, compared to the frequency with which
wL1 and wL2 co-occur in aligned sentences of the
training corpus. For this purpose, we ignore mul-
tiple occurrences of a lemma in a single sentence.

As a measure of association, we use the log-
likelihood-ratio statistic recommended by Dun-

ning (1993), which is the same statistic used by
Melamed to initialize his models. This statis-
tic gives a measure of the likelihood that two
samples are not generated by the same probabil-
ity distribution. We use it to compare the over-
all frequency of wL1 in our training data to the
frequency of wL1 given wL2 (i.e., the frequency
with which wL1 occurs in sentences of L1 that
are aligned with sentences of L2 in which wL2
occurs). Since p(wL1) = p(wL1 jwL2) only if
occurrences of wL1 and wL2 are independent, a
measure of the likelihood that these distributions
are different is, therefore, a measure of the like-
lihood that an observed positive association be-
tween wL1 and wL2 is not accidental.

Since this process generates association scores
for a huge number of lemma pairs for a large
training corpus, we prune the set to restrict our
consideration to those pairs having at least some
chance of being considered as translation pairs.
We heuristically set this threshold to be the degree
of association of a pair of lemmas that have one
co-occurrence, plus one other occurrence each.

3.3 Hypothesizing compounds and
recomputing association scores

If our data were very clean and all transla-
tions were one-to-one, we would expect that in
most aligned sentence pairs, each word or lemma
would be most strongly associated with its trans-
lation in that sentence pair; since, as Melamed
has argued, direct associations should be stronger
than indirect ones. Since translation is symmet-
ric, we would expect that if wL1 is most strongly
associated with wL2 , wL2 would be most strongly
associated withwL1 . Violations of this pattern are
suggestive of translation relationships involving
compounds. Thus, if we have a pair of aligned
sentences in which password occurs in the En-
glish sentence and mot de passe occurs in the
French side, we should not be surprised if mot
and passe are both most strongly associated with
password within this sentence pair. Password,
however, cannot be most strongly associated with
both mot and passe.

Our method carrying out Step 3 is based on
finding violations of the condition that whenever
wL1 is most strongly associated with wL2 , wL2 is
most strongly associated with wL1 . The method
is easiest to explain in graph-theoretic terms. Let



the nodes of a graph consist of all the lemmas of
L1 and L2 in a pair of aligned sentences. For each
lemma, add a link to the uniquely most strongly
associated lemma of the other language.4 Con-
sider the maximal, connected subgraphs of the re-
sulting graph. If all translations within the sen-
tence pair are one-to-one, each of these subgraphs
should contain exactly two lemmas, one from L1
and one from L2. For every subgraph containing
more than two lemmas of one of the languages,
we consider all the lemmas of that language in the
subgraph to form a compound. In the case of mot,
passe, and password, as described above, there
would be a connected subgraph containing these
three lemmas; so the two French lemmas, mot and
passe, would be considered to form a compound
in the French sentence under consideration.

The output of this step of our process is a trans-
formed set of lemmas for each sentence in the cor-
pus. For each sentence and each subset of the
lemmas in that sentence that has been hypothe-
sized to form a compound in the sentence, we
replace those lemmas with a token representing
them as a single unit. Note that this process works
on a sentence-pair by sentence-pair basis, so that
a compound hypothesized for one sentence pair
may not be hypothesized for a different sentence
pair, if the pattern of strongest associations for the
two sentence pairs differ. Order of occurrence is
not considered in forming these compounds, and
the same token is always used to represent the
same set of lemmas.5

Once the sets of lemmas for the training cor-
pus have been reformulated in terms of the hy-
pothesized compounds, Step 4 consists simply in
repeating step 2 on the reformulated training data.

3.4 Recomputing association scores, taking
into account only strongest associations

If Steps 1–4 worked perfectly, we would have
correctly identified all the compounds needed for
translation and reformulated the training data to
treat each such compound as a single item. At this

4Because the data becomes quite noisy if a lemma has no
lemmas in the other language that are very strongly associ-
ated with it, we place a heuristically chosen threshold on the
minimum degree of association that is allowed to produce a
link.

5The surface order is not needed by the alignment proce-
dure intended to make use of the translation relationships we
discover.

point, we should be able to treat the training data
as if all translations are one-to-one. We therefore
choose our final set of ranked translation pairs on
the assumption that true translation pairs will al-
ways be mutually most strongly associated in a
given aligned sentence pair.

Step 5 thus proceeds exactly as step 4, except
that wL1 and wL2 are considered to have a joint
occurrence only if wL1 is uniquely most strongly
associated with wL2 , and wL2 is uniquely most
strongly associated with wL1 , among the lemmas
(or compound lemmas) present in a given aligned
sentence pair. (The associations computed by the
previous step are used to make these decisions.)
This final set of associations is then sorted in de-
creasing order of strength of association.

4 Identifying Translations of “Captoids”

In addition to using these techniques to provide
translation relationships to the logical-form align-
ment process, we have applied related methods to
a problem that arises in parsing the raw input text.
Often in text–particularly the kind of technical
text we are experimenting with–phrases are used,
not in their usual way, but as the name of some-
thing in the domain. Consider, Click to remove
the View As Web Page check mark. In this sen-
tence, View As Web Page has the syntactic form
of a nonfinite verb phrase, but it is used as if it is a
proper name. If the parser does not recognize this
special use, it is virtually impossible to parse the
sentence correctly.

Expressions of this type are fairly easily han-
dled by our English parser, however, because cap-
italization conventions in English make them easy
to recognize. The tokenizer used to prepare sen-
tences for parsing, under certain conditions, hy-
pothesizes that sequences of capitalized words
such as View As Web Page should be treated as
lexicalized multi-word expressions, as discussed
in Section 3.1. We refer to this subclass of mul-
tiwords as “captoids”. The capitalization conven-
tions of French (or Spanish) make it harder to rec-
ognize such expressions, however, because typi-
cally only the first word of such an expression is
capitalized.

We have adapted the methods described in Sec-
tion 3 to address this problem by finding se-
quences of French words that are highly asso-
ciated with English captoids. The sequences of



French words that we find are then added to the
French lexicon as multiwords.

The procedure for identifying translations of
captiods is as follows:

1. Tokenize the training data to separate words
from punctuation and identify multiwords
wherever possible.

2. Compute association scores for items in the
tokenized data.

3. Hypothesize sequences of French words as
compounds corresponding to English mul-
tiwords, replacing hypothesized occurrences
of a compound in the training data with a sin-
gle token representing the compound.

4. Recompute association scores for pairs of
items where either the English item or the
French item is a multiword beginning with a
capital letter.

5. Filter the resulting list to include only trans-
lation pairs such that there is no equally
strong or stronger association for either item
in the training data.

There are a number of key differences from our
previous procedure. First, since this process is
meant to provide input to parsing, it works on to-
kenized word sequences rather than lemmas ex-
tracted from logical forms. Because many of the
English multiwords are so rare that associations
for the entire multiword are rather weak, in Step
2 we count occurrences of the constituent words
contained in multiwords as well as occurrences of
the multiwords themselves. Thus an occurrence
of View As Web Page would also count as an oc-
currence of view, as, web, and page.6

The method of hypothesizing compounds in
Step 3 adds a number of special features to im-
prove accuracy and coverage. Since we know
we are trying to find French translations for En-
glish captoids, we look for compounds only in the
French data. If any of the association scores be-
tween a French word and the constituent words of
an English multiword are higher than the associa-
tion score between the French word and the entire
multiword, we use the highest such score to repre-
sent the degree of association between the French

6In identifying captoid translations, we ignore case dif-
ferences for computing and using association scores.

word and the English multiword. We reserve,
for consideration as the basis of compounds, only
sets of French words that are most strongly as-
sociated in a particular aligned sentence pair with
an English multiword that starts with a capitalized
word.

Finally we scan the French sentence of the
aligned pair from left to right, looking for a cap-
italized word that is a member of one of the
compound-defining sets for the pair. When we
find such a word, we begin constructing a French
multiword. We continue scanning to the right to
find other members of the compound-defining set,
allowing up to two consecutive words not in the
set, provided that another word in the set imme-
diately follows, in order to account for French
function words than might not have high asso-
ciations with anything in the English multiword.
We stop adding to the French multiword once we
have found all the French words in the compound-
defining set, or if we encounter a punctuation
symbol, or if we encounter three or more con-
secutive words not in the set. If either of the lat-
ter two conditions occurs before exhausting the
compound-defining set, we assume that the re-
maining members of the set represent spurious as-
sociations and we leave them out of the French
multiword.

The restriction in Step 4 to consider only asso-
ciations in which one of the items is a mutiword
beginning with a capital letter is simply for effi-
ciency, since from this point onward no other as-
sociations are of interest.

The final filter applied in Step 5 is more strin-
gent than in our basic method. The reasoning is
that, while a single word may have more than one
translation in different contexts, the sort of com-
plex multiword represented by a captoid would
normally be expected to receive the same trans-
lation in all contexts. Therefore we accept only
translations involving captoids that are mutually
uniquely most strongly associated across the en-
tire corpus. To focus on the cases we are most
interested in and to increase accuracy, we require
each translation pair generated to satisfy the fol-
lowing additional conditions:

� The French item must be one of the mulit-
words we constructed.

� The English item must be a multiword, all of



Type Mean Token Total Single-Word Multiword Compound
Coverage Count Coverage Accuracy Accuracy Accuracy Accuracy

0.040 1247.23 0.859 0.902–0.920 0.927–0.934 0.900–0.900 0.615–0.769
0.080 670.88 0.923 0.842–0.870 0.922–0.939 0.879–0.879 0.453–0.547
0.120 457.79 0.945 0.801–0.834 0.908–0.924 0.734–0.766 0.452–0.548
0.160 347.58 0.957 0.783–0.820 0.898–0.913 0.705–0.737 0.455–0.562
0.200 280.17 0.964 0.762–0.797 0.893–0.911 0.638–0.688 0.449–0.527
0.240 234.63 0.969 0.749–0.783 0.887–0.904 0.606–0.658 0.431–0.505
0.280 201.89 0.973 0.728–0.767 0.878–0.898 0.575–0.637 0.411–0.487
0.320 177.11 0.975 0.712–0.752 0.875–0.896 0.577–0.643 0.375–0.449
0.360 158.08 0.979 0.668–0.710 0.860–0.884 0.511–0.578 0.340–0.405
0.400 142.45 0.980 0.654–0.696 0.845–0.871 0.486–0.556 0.329–0.391
0.440 129.60 0.981 0.637–0.677 0.844–0.869 0.485–0.550 0.298–0.354
0.480 118.90 0.982 0.641–0.680 0.848–0.872 0.502–0.566 0.297–0.351
0.520 109.83 0.983 0.643–0.681 0.852–0.875 0.511–0.574 0.291–0.344
0.560 102.15 0.984 0.626–0.664 0.839–0.864 0.503–0.564 0.279–0.329
0.600 95.50 0.986 0.596–0.636 0.823–0.852 0.484–0.541 0.255–0.305
0.632 90.87 0.989 0.550–0.595 0.784–0.819 0.429–0.488 0.232–0.286

Table 1: Results for basic method.

whose constituent words are capitalized.

� The French item must contain at least as
many words as the English item.

The last condition corrects some errors made by
allowing highly associated French words to be left
out of the hypothesized compounds.

5 Experimental Results

Our basic method for finding translation pairs
was applied to a set of approximately 200,000
French and English aligned sentence pairs, de-
rived mainly from Microsoft technical manuals,
resulting in 46,599 potential translation pairs. The
top 42,486 pairs were incorporated in the align-
ment lexicon of our end-to-end translation sys-
tem.7 The procedure for finding translations of
captoids was applied to a slight superset of the
training data for the basic procedure, and yielded
2561 possible translation pairs. All of these were
added to our end-to-end translation system, with
the French multiwords being added to the lexicon
of the French parser, and the translation pairs be-
ing added to the alignment lexicon.

The improvements in end-to-end performance
due to these additions in a French-to-English
translation task are described elsewhere (Pinkham
and Corston-Oliver, 2001). For this report, we
have evaluated our techniques for finding trans-

7As of this writing, however, the alignment procedure
does not yet make use of the general translation pairs involv-
ing compounds, although it does make use of the captoid
translation compounds.

lation pairs by soliciting judgements of transla-
tion correctness from fluent French-English bilin-
guals. There were too many translation pairs to
obtain judgements on each one, so we randomly
selected about 10% of the 42,486 general transla-
tion pairs that were actually added to the system,
and about 25% of the 2561 captoid pairs.

The accuracy of the most strongly associated
translation pairs produced by the basic method
at various levels of coverage is displayed in Ta-
ble 1. We use the terms “coverage” and “accu-
racy” in essentially the same way as Melamed
(1996, 2000). “Type coverage” means the pro-
portion of distinct lexical types in the entire
training corpus, including both French and En-
glish, for which there is at least one translation
given. As with the comparable results reported
by Melamed, these are predominantly single lem-
mas for content words, but we also include oc-
currences multiwords as distinct types. “Mean
count” is the average number of occurrences of
each type at the given level of coverage. “Token
coverage” is the proportion of the total number of
occurrences of items in the text represented by the
types included within the type coverage.

Since the judges were asked to evaluate the
proposed translations out of context, we allowed
them to give an answer of “not sure”, as well as
“correct” and “incorrect”. Our accuracy scores
are therefore given as a range, where the low
score combines answers of “not sure” and “in-
correct”, and the high score combines answers of
“not sure” and “correct”.



Type Mean Token Single-Word
Coverage Count Coverage Accuracy

0.040 1628.57 0.791 0.948–0.948
0.080 909.48 0.884 0.938–0.942
0.120 626.84 0.914 0.926–0.943
0.160 480.50 0.934 0.909–0.924
0.200 389.11 0.945 0.896–0.912
0.240 327.03 0.953 0.891–0.910
0.280 281.76 0.958 0.896–0.913
0.320 247.67 0.963 0.876–0.896
0.360 220.62 0.965 0.876–0.898
0.400 199.42 0.969 0.864–0.887
0.440 181.69 0.971 0.846–0.872
0.480 166.64 0.971 0.843–0.868
0.520 153.90 0.972 0.848–0.872
0.560 143.22 0.974 0.844–0.868
0.600 133.87 0.976 0.830–0.859
0.636 127.46 0.984 0.784–0.819

Table 2: Results for single words only.

Type Mean Token Captoid
Coverage Count Coverage Accuracy

0.020 50.39 0.149 0.913–0.913
0.040 30.19 0.178 0.902–0.902
0.060 21.67 0.192 0.914–0.914
0.080 17.88 0.211 0.911–0.915
0.100 14.79 0.218 0.901–0.904
0.120 12.61 0.223 0.859–0.864
0.140 11.06 0.228 0.860–0.864
0.160 9.95 0.235 0.858–0.862
0.180 9.04 0.240 0.846–0.851
0.194 8.70 0.249 0.841–0.847

Table 3: Results for captoids.

The “total accuracy” column gives results at
different levels of coverage over all the transla-
tion pairs generated by our basic method. For
a more detailed analysis, the remaining columns
provide a breakdown for single-word translations,
translations involving multiwords given to us by
the parser (“multiword accuracy”), and new mul-
tiwords hypothesized by our procedure (“com-
pound accuracy”). As the table shows, our perfor-
mance is quite good on single-word translations,
with accuracy of around 80% even at our cut-off
of 63% type coverage, which represents 99% of
the tokens in the corpus.

To compare our results more directly with
Melamed’s published results on single-word
translation, we show Table 2, where both cover-
age and accuracy are given for single-word trans-
lations only. According to the standard of cor-
rectness Melamed uses that is closest to ours, he
reports 92% accuracy at 36% type coverage, 89%
accuracy at 46% type coverage, and 87% accu-
racy at 90% type coverage, on a set of 300,000

aligned sentence pairs from the French-English
Hansard corpus of Candian Parliament proceed-
ings. Our accuracies at the first two of these cov-
erage points are 88–90% and 84–87%, which is
slightly lower than Melamed, but given the dif-
ferent corpus, different judges, and different eval-
uation conditions, one cannot draw any definite
conclusions about which method is more accu-
rate at these coverage levels. Our method, how-
ever, does not produce any result approaching
90% type coverage, and accuracy appears to start
dropping rapidly below 56% type coverage. Nev-
ertheless, this still represents good accuracy up to
97% token coverage.

Returning to Table 1, we see that our accu-
racy on multiwords is much lower than on single
words, especially the multiwords hypothesized by
our learning procedure. The results are much
better, however, when we look at the results for
our specialized method for finding translations of
captoids, as shown in Table 3. Our accuracy at
nearly 20% type coverage is around 84%, which
is higher than our accuracy for general translation
pairs (76–80%) at the same type coverage level. It
is lower than our single-word translation accuracy
(90–91%) at this coverage level, but it is strik-
ing how close it is, given far less data. At 20%
type coverage of single words, there are 389 to-
kens per word type, while at 20% type coverage
of captoids, there are fewer than 9 tokens per cap-
toid type. In fact, further analysis shows that of
the 2561 captoid translation pairs, 947 have only
a single example of the English captoid in the
training data, yet our accuracy on these is around
82%. We note, however, that our captoid learning
procedure cuts off at around 20% type coverage,
which is only 25% token coverage for these items.

6 Conclusions

We have evaluated our approach and found it to
be comparable in accuracy on single-word trans-
lations to Melamed’s results (which appear to be
the best previous results, as far as one can tell
given the lack of standard test corpora) up to
nearly 60% type coverage and 97% token cover-
age. Space does not permit a detailed compari-
son of Melamed’s methods to ours, but we repeat
that ours are far simpler to implement and much
faster to run. Our approach to generating trans-
lations involving muti-word compounds performs



less well in general, but the special-case modifica-
tion of it to deal with captoids performs with very
high accuracy for those captoids it is able to find
a translation for. Based on these results, the fo-
cus of our future work will be to try to extend our
region of high-accuracy single-word translation to
higher levels of coverage, improve the accuracy of
our general method for finding multiword transla-
tions, and extend the coverage of our method for
translating captoids.
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