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Abstract

GrammarAssociatioris atechniqudor

MachineTranslatiorandLanguagéJn-

derstandingntroducedin 1993 by Vi-

dal, Pieracciniand Levin. All the sta-
tistical and structuralmodelsinvolved

in the translationprocessare automat-
ically built from bilingual examples,
andthe optimaltranslationof nen sen-
tencescan be efficiently found by Dy-

namic Programmingalgorithms. This

paperpresentsanddiscusse&rammar
Associationstateof the art, includinga

new statisticalmodel:Loco _C.

1 Introduction

GrammarAssociationis a promising technique
for facing Machine Translationand Language
Understandingtasks! first proposedby Vidal,
Pieraccini, and Levin (1993). This technique
combinesstatisticaland structuralmodels,all of
which can be automaticallybuilt from a set of
bilingual sentencepairs. Moreover, the optimal
translationof new input sentencesan be effi-
ciently found by Dynamic Programmingalgo-
rithms.

Basically a GrammarAssociationsystemcon-
sistsof threemodels:(1) aninput grammarmod-
elling the input languageof the translationtask;
(2) an outputgrammarmodellingits outputlan-
guage;(3) an associationmodeldescribinghow
the use of certain elements(rules) of the input

We view LanguageUnderstandingas a particularcase

of MachineTranslationwherethe outputlanguagés aimed
atrepresentinghe meaningof input sentences.

grammaiis related(in the translationtask)to the
useof their correspondinglementsn the output
grammar Using thesemodels,the systemper
forms the translationof input sentencess fol-
lows: (1) first, the input sentences parsedusing
theinput grammay giving riseto aninput derva-
tion; (2) given the input derivation, the associa-
tion model assignsa weight to eachrule of the
outputgrammary3) in the (how weighted)output
grammay a searchfor the optimal outputderiva-
tion is carriedout; (4) the sentencessociatedo
thatderivationis conjecturedastranslationof the
inputsentence.

We areinterestedn designingMachineTrans-
lation systemsbasedon the principlesof Gram-
mar Associationand within a statisticalframe-
work. Somestepswve have takentowardsthisfinal
endarepresentedhn thiswork.

2 Grammar Association into a statistical
framewor k

In most of the papersdescribingstatistical ap-
proachedo MachineTranslation,Bayes'’rule is
appliedgiving rise to the following Fundamental
Equation,

Y*(X) =argmaxPr (Y | X)
YeLo

=argmaxPr(Y)-Pr(X |Y),
YeLo
meaningthatthe optimaltranslationY™ of anin-
put sentenceX, the mostprobablesentenc&” in
the outputlanguageL,, given X € L;, canbe
foundby maximizingthe productof two factors:

e The a priori probability of the output sen-
tence,Pr (Y). In practice,it is computecdby



using a statisticalmodel of the output lan-
guageL,.

e The conditional probability Pr (X | Y') of
the input sentenceX, giventhe outputone
Y. In practice,t is computecdby usingasta-
tistical model of the reversetranslationpro-
cess.

This decompositiorhasthe advantageof modu-
larity in the modelling. An ad hoc statisticallan-
guagemodelencapsulatethefeatureghatarein-
herentto the outputlanguage while the reverse
translationmodelcanfocuson relationsbetween
input and outputwords, assigningscoresto sen-
tencepairswithout takinginto accountf the out-
put sentencés well-formed? An alternatve, di-
rectstatisticalapproactwith amodelfor comput-
ing Pr (Y | X') seemdo requirethissinglemodel
to be complex enoughto assignhigh scoresonly
to pairs wherethe output sentenceverifies two
conditions:it is well-formedandmeanghesame
that the input one. Hence,for the sale of sim-
plified modelling, Bayes’ decompositiorhasbe-
comeatypical choicein MachineTranslation.

However, in the GrammarAssociationcontext,
when developing (using Bayes’ decompaosition)
thebasicequation®f thesystenpresentedh (Vi-
dal etal., 1993),it is saidthatthe reversemodel
for Pr(X | Y) “does not seemto admita sim-
ple factorizationwhich is also correct and con-
venient”, so“crude heuristics” were adoptedn
the mathematicatlevelopmentof the expression
to be maximized. We aregoingto shav that, by
meansof a direct modelling, GrammarAssocia-
tion can be setinto a rigorous statisticalframe-
work without renouncinga corvenientfactoriza-
tion for the searchof the optimaltranslationto be
efficient. Moreover, themainadwantageof Bayes’
decompositionmodularity is inherentlypresent
in GrammarAssociationsystems: relationsbe-
tweeninput and output are mainly modelledby
a (direct) statisticalassociatiormodeland struc-
turalfeatureof the outputlanguagearemodelled
by agrammarwhichrestrictsthesearctspacdor
thebesttranslation.

2Note that model behaiour for syntacticallyincorrect
input sentencess not importantbecausenput sentences
known andthe searchis just over the outputlanguage.

Let us begin assuminghereare unambiguous
grammargs; andG, describingrespectiely, the
input languageL; andthe outputone L,. Thus,
thereis aone-to-onecorrespondencia eachlan-
guagerelating sentenceso their derivationsand
we canwrite

Pr(Y | X) = Pr(Dg, (Y) | Dg; (X)) ,

whereDg (S) denotegheonly derivationof sen-
tenceS in grammarG. Moreover, let ussuppose
the output grammaris contet-free and rewrit-
ing probability of an outputnon-terminalusinga
certainrule is independenbf which otheroutput
rules have beenemplgyed in the output deriva-
tion. Then, it follows that the probability of an
outputderivation D, given aninput one D; can
beexpresseds

Pr(D, | Di) = [] Pr(ro|left(ro),Ds),
To€ D,

with atermin the sumfor eachparticipationof a
ruler, in thederwvation D,, andleft (r,) denoting
the left-handside non-terminalof thatrule. So,
finally, we canfind the mostprobabletranslation
Y* (X) of aninput sentenceX asthe sentence
associatedb the outputderivationgivenby

arg max H Pr(ro | left (o), Dg; (X))
DoeD(Go) ro€D,

whereD (G,) standsfor the setof all possible
deriationsin G,.

In practice,input andoutputgrammarswill be
approximationsnferredfrom samplesand, more
specifically they will be agyclic finite-stateau-
tomata. The restrictionfrom contet-free gram-
marsto regularonesis dueto the wide availabil-
ity of inferencetechniquedor theseformal ma-
chinesandto computationatornvenience Onthe
otherhand,the outputgrammarhasto be agyclic
becauseof a more subtle point: the most prob-
able derivation in the grammarwill never make
useof a cycle (no matterhow high its probability
is, avoiding the cycle always malkes the deriva-
tion moreprobable) Hence,if we allowedthein-
ferencealgorithmto modelsomefeaturesof the
outputlanguageusingcycles,systemtranslations



would never exhibit suchfeatures. Finally, for
the sale of homogeneitywe chooseto forcein-
putgrammairto beagyclic too.

We can concludethis sectionsayingthat, in-
ferring deterministicand agyclic finite-stateau-
tomata,f we areableto learnassociatiormodels
for estimatingfor eachoutputrule, the probabil-
ity of usingthat rule conditionedon having em-
ployed its left-hand side and the identity of the
input derivation, then an efficient Dynamic Pro-
grammingsearchfor the optimal outputderiva-
tion® can be usedin order to provide the most
probabletranslation.

3 Using ECGI language models

The ECGI algorithm (Rulot and Vidal, 1987)is
a heuristictechniquefor the inferenceof agyclic
finite-stateautomatafrom positve samples,and
determinismcan be imposeda posteriori by a
well-knowvn transformatiorfor regulargrammars.
Therefore,in principle, ECGI provides exactly
thekind of languagemodelGrammarAssociation
needsMoreover, it was(withoutimposingdeter
minism)theinferencetechniqueeamployedin (Vi-
daletal., 1993).

Informally, ECGI works asfollows. With the
first samplesentenceit builds aninitial automa-
ton consistingin a linear path representinghe
sentenceWordslabelstateginsteadof arcs)and
therearetwo specialnon-labelledstates:the ini-
tial oneandthefinal one.For eachnew sentence,
if it is alreadyrecognizeddy the automatorbuilt
sofar, nothinghappensptherwise,if the current
modeldoesnot recognizethe sentencenen arcs
andstatesareaddedo the mostsuitablepath(ac-
cordingto a minimum-costriterion)for recogni-
tion to be possible.In asenseit is like construct-
ing anew pathfor thenewv sentencandthenfind-
ing a maximalmege with a pathin the automa-
ton.

For further discussioron somefeaturesof the
ECGlalgorithm,let usfirst considethefollowing
setof five sentencesfl) "some shakes eat

rats" ; (2) "some people eat snakes" ;
(3) "some people eat rats" ;(4)"some
people are dangerous" ; (5) "snakes

are dangerous" . Figurel shavs how ECGI

30bviously, ary algorithmfor finding the minimum-cost
pathin agraphis applicable.

[0 |—~(some) (s~ et ) s )] 0 |

(a)"some snakes eat

rats"

BEGIN

(b)"some people eat snakes"

(c)"some people are dangerous"

BEGIN

(d) "snakes

are dangerous”

Figurel: TheECGI algorithm:anexample.

incrementallybuilds an automatoraebleto recog-
nize the whole training set and, morewer, per
forms some generalizations. For instance,af-
ter consideringthe two first sentencegsubfig-
ureb), two moresentencearealsorepresenteth
the currentautomaton: "some shakes eat
snakes" and"some people eat rats"
Thus,whenthislastsentencés actuallypresented
to thealgorithm,thereis no needfor theautoma-
ton to be updated. On the contrary sentenceg
and 5 imply the addition of new elementsand
the finally inferred automatonis the one shawvn
in subfigured.

Though successfulapplicationof ECGI to a
variety of taskshasbeenreported’ the method

“For instance,ECGI has beenappliedto problemsas
differentas speechunderstandindgPrietoandVidal, 1992),
hand-writterdigit recognition(Vidal etal., 1995),andmusic
composition(CruzandVidal, 1997)



Figure2: An alternatve automaton.

suffers from some drawvbacks. For instance,
the level of generalizationis sometimeslower
than expected. In the example presentedin
Figurel, when"snakes are dangerous"
is employed for updatingthe model in subfig-
ure c, insteadof addinga new state and two
arcsto the pathcorrespondingo "some peo-
ple are dangerous" , the solutionin Fig-
ure2 seemso beanappealinglternatve: adding
just two arcs, more reasonablaeyeneralizationis
obtained. NeverthelessECGI chooseghe solu-
tion in Figure 1 becauset searchedor just one
path to be modified with a minimal number of
newv elements,and does not take into account
combinationsof differentpaths.

On the other hand, ECGI can suffer from in-
adequatgeneralizationespeciallyat earlystages
of the incrementalconstructionof the automa-
ton. If "some people eat snakes" and
"snakes are dangerous" were the first
two sentencepresentedo ECGI, the algorithm
would try to make use of the state"snakes"
of the initial model for representingthe oc-
currenceof that word in the secondsentence,
leadingto an automatorwhich would recognize
“sentencesas"some people eat snakes
are dangerous" ,orsimply"snakes" .The
situationthat produceghis kind of undesiredbe-
haviour of themethodis characterizethy thecon-
fluenceof a coupleof circumstancesawordin a
new sentencés alsopresenin thecurrentmodel,
but with a differentfunction, andthatautomaton
has not enoughadequatestructuralinformation
for offering a bettermeiging to the new sentence.

As pointedout by Prietoand Vidal (1992), a
properorderingof the setof sentencepresented
to ECGI canprovide more compactmodels,and
we think that betteronestoo. The orderingwe
proposeheresimply follows, first, a decreasing-
length criterion and then, for breakingties, ap-
plies ary dictionary-like ordering. Thus, we try

to avoid the problemdiscussedn the previous
paragraphby providing the inferencealgorithm
with asmuchaspossiblestructuralinformationat
first stagesof automatorconstructiorand, more-
over, dictionary-like orderinginside eachlength
is aimed at frequently presentingto ECGI new
sentencethataresimilarto the previousones.

Furthermore,a very commonway to reduce
the compleity of problemsinvolving languages
is the definition of word cateories, which can
be manuallydesignedor automaticallyextracted
from data(Martin etal., 1995). We think cateyo-
rizationhelpsin solvingthe problemof undesired
megesandalsoin increasingthe generalization
abilitiesof ECGI. In orderto illustratethis point,
let us considera cateory <animals> consisting
of words"snakes" |, "rats" and"people”
in the very simple example of Figure 1. Words
can be substitutedfor the appropriatecategyory
in the original sentencesthen,the modified sen-
tencesare presentedo the inferencealgorithm;
finally, cateyoriesin theautomatorareexpanded.
Figure3 shavstheautomatahataresuccessiely
built in thatprocess.

As saidat the beginning of this section,deter
minismmustbeimposeda posteriorifor thelan-
guagemodelsto fit our formal frameawork. In ad-
dition, we will applythemaminimizationprocess
in orderto simplify the problemthat the corre-
spondingassociationmodelwill have to solve.

4 Loco_C: A new association model

Following a data-drven approach,a Grammar
Associationsystemneedsto learn from exam-
plesanassociatioomodelcapablgo estimatethe
probabilitiesrequiredby our recentlydeveloped
framawork, thatis, the probability of eachrule
in the grammarthat modelsthe outputlanguage,
conditionedon its left-handside and the derva-
tion of theinputsentence.

Among the different associationmodels we
have studied(Prat,1998),it is worthemphasizing
one we have specifically developedfor playing
that role in GrammarAssociationsystems:the
Loco _-C model.We basedur designonthe|BM
modelsl and 2 (Brown et al., 1993), but taking
into accountthat our model must generatecor
rect derivationsin a given grammay not ary se-



(a)"some <ani mal s> eat <ani mal s>"

(d) Expansiorof <animals>

Figure 3: Using a catgory <animals> for
"snakes" ,"rats" and"people" intheex-
ampleof Figurel.

quenceof rules® Moreover, we wantedto model
the probability estimationfor each output rule
as an adequatelyweightedmixture® alongwith
keepingthemaximume-likelihoodre-estimatiorof
its parametersvithin the growth transformation
framavork (Baum and Eagon,1967; Gopalaks

5In thosesimple IBM translationmodels,an outputse-
guence(of words)is randomlygeneratedrom a given in-
put oneby first choosingits lengthandthen,for eachposi-
tion in the outputsequenceindependentlychoosingan ele-
ment(word). If therelationbetweerinputandoutputderiva-
tions (sequencesf rules)hasto be explicitly modelled,the
choicesof outputelementxannolongerbeindependenibe-
causearule is only applicableif its left-handside hasjust
appearedn the outputderiation.

8In IBM models,all wordsin the input sequencénave
the sameinfluencein the randomchoice of output words
(model 1) or they have a relative influence dependingon
their positions(model2). In the caseof derivations,we are
interestedn modellingthoserelative influencesaking into
accountule identities(insteadof rule positions).

ishnanetal., 1991). After exploring somesimilar
alternatves(anddiscardinghembecaus®f their
poor resultsin a few translationexperiments),
Loco _Cwasfinally definedasexplainedbelaw.’

The Loco _.C modelassumes randomgener
ation process(of an outputderivation, given an
input one)which beginswith the startingsymbol
of the outputgrammarasthe “current sentential
form” andthen,while the currentsententiaform
containsa non-terminaliteratively performsthe
following sequenceof two randomchoices: in
Choicel, oneof therulesin theinputderivationis
chosenjn Choice2, the non-terminalin the cur
rentsententiaform is rewritten usingarandomly
choserrule of theoutputgrammar

The behaiour of the model dependson two
kinds of parameterseachoneguiding oneof the
choicesmentionedabore. Formally, givenanin-
put derivation D; andan outputnon-terminakn,,
to be rewritten, the probability of an input rule
r; € D; to bechoserin Choicel depend®n pa-
rametersof the form « (r; | n,) and canbe ex-
presseds

a (ri | no)
Z a(r{ | no)
'I‘;EDi

On the other hand, once a patrticularinput rule
r; is chosen,the probability of an output rule
ro, Whoseleft-hand side is n, to be chosenin
Choice? is directly given by a parametenof the
form p(r, | 7). Hence, Pr(r, | left (ro) , D)
takesin Loco _Ctheform

a(ri | left (ro))
Ti%;i Z a (rl, | left (7"0))

T';EDi

P (7o | 1)

of aweightedmixture dependingon two kinds of
trainableparameters:

e «a(r; | ny): Measuresheimportanceof r; in
choosinganadequateewriting rule for n,.2

"Full detailsonthediscardednodels,Loco _1, Loco _A,
and Loco _B, can be found (in Spanish)in pages52—60
of (Prat,1998).

8Note that learningtheseparameterperformsa sort of
“automaticvariableselection”of theinputrulesthatarerel-
evantfor discriminatizely choosingamongthe next applica-
ble outputrules.



MLA Task

Spanish: "un circulo  oscuro est a
encima de un circulo"

English: "a dark circle is above a
circle”

Spanish: "se elimina el cuadrado os-
curo que est a debajo del
circulo y del tri angulo"

English: "the dark square which is
below the circle and the
triangle is removed"
Simplified Tourist Task

Spanish: "nos vamos a ir el dia diez
a la una de la tarde."

English: "we are leaving on the tenth
at one in the afternoon."

Spanish: "¢puedo pagar la cuenta con
dinero en efectivo?"

English: "can | pay the bill in
cash?"

Figure4: Examplesf sentenceairs.

e p(ro | mi): Measurehov muchr; agreesn
usingtheruler,.

Consequent|ythecorrespondindjk elihoodfunc-

tion is not polynomial, but rational, so Baum-
Eagoninequality (1967) cannotbe applied and
Gopalakrishnaret al. inequality (1991) must
be used,instead,in orderto develop a Loco C

model re-estimationalgorithm basedon growth

transformations.Fortunately both the computa-
tional complity of the resulting re-estimation
algorithm(sameorderaswith IBM modell) and
the experimentakesultsaresatishctory

5 Experimental results

In afirst seriesof experimentswe wereinterested
in knowing whetheror not our proposalsactually
improve GrammarAssociatiorstateof theart. To
this end, a simple artificial Machine Translation
taskwasemplog/ed. The corpusconsistsof pairs
of sentenceslescribingtwo-dimensionalscenes
with circles,squaresndtrianglesin Spanishand
English(someexamplescanbefoundin Figure4,
wherethetaskis referredto asMLA TasK). There
are29 wordsin the Spanishvocalulary and25 in

Table1: Resultsof an English-to-Spanistrans-
lation experimentwith the original GrammarAs-
sociationsystemusing 10,000 pairsof the MLA

Taskfor trainingand200 for testing.

Sentence  Minimum Length Correct
Sorting  Deterministic Constraint Translations
No No No 84.5%
No No Yes 88.0%
No Yes No 95.5%
No Yes Yes 97.0%
Yes No No 82.5%
Yes No Yes 87.0%
Yes Yes No 99.5%
Yes Yes Yes 99.5%

the Englishone.

Let us begin consideringEnglish-to-Spanish
translationwith 10,000 pairsfor trainingthe sys-
temsand200 differentonesfor testingpurposes.
We carefullyimplementedhe original Grammar
Association systemdescribedin (Vidal et al.,
1993), tunedempirically a couple of smoothing
parameterstrainedthe modelsand, finally, ob-
tainedan 84.5% of correcttranslations. Then,
we studiedtheimpactof: (1) sorting,asproposed
in Section3, the set of sentencegpresentedo
ECGI; (2) makinglanguageamodelsdeterministic
and minimum; (3) constrainingthe besttransla-
tion searcho thosesentencewhoselengthshave
beenseenjn thetrainingset,relatedto thelength
of the input sentence.As shavn in Table 1, all
theproposedneasuresverebeneficiandwe got
afinal 99.5% of correcttranslationgthatis, just
onetranslatiorwaswrong). Hencewe decidedo
apply thosemeasurego all our GrammarAsso-
ciationsystemsand,in particular to our Loco _-C
one.Thissystemaftertuningsomeminorparam-
eters(for instancethe numberof re-estimatiorit-
erationsfor the model was fixed to 500), got a
99.0% of correcttranslations.

Then,in orderto furthercompareour two sys-
tems(which will bereferredto aslIOGA, for Im-
proved Original GrammarAssociation,and sim-
ply Loco _C) without more manualtuning, both
were testedwith 1,000 new sentencepairs: in
this case,IOGA got a 99.4% and Loco _C got

°For eachbilingual sentencepair (X,Y") emploed for
testinga systemwe considerthatthe systemachievesacor-
recttranslationonly if it producesxactlythesentenc&” as
outputwhenit is providedwith the sentenceX asinput.



a99.9%.

In a secondseriesof experimentswe wanted
to compareour bestsystem,Loco _C, with Re-
ConTra, the recurrentconnectionistsystemde-
scribed in (Castéio and Casacuberta,1997),
wherea 98.4% of correcttranslationss reported
on the Spanish-to-EnglistMLA Task with just
3,000 pairsfor training. In the sameconditions,
Loco _C gota92.8% of correcttranslationson a
1,000 pairtestset(IOGA, justan81.6%).

Sincethe MLA Taskis anatrtificial taskwhere
eachlanguagecan be exactly modelledby an
agyclic finite-stateautomatonwe decidedto use
thoseexact automatan our systemsin orderto
measurethe impact of perfect languagemod-
elling. In this case,Loco _C reachedperfectre-
sults (100.0%), while IOGA gota 95.0%. As a
conclusionto this secondseriesof experiments,
we canpointoutthatour systemsarequite sensi-
tive to the quality of languagemodelsand, also,
thatLoco _Cis avery goodassociatiormodel.

Our lastseriesof experimentswverecarriedout
on a different, more complex task (but artificial
too). It wasextractedfrom thetaskdefinedfor the
first phaseof the EUTRANS project(Amengualet
al., 1996) and covers just a small subsetof the
situationstourists can face when leaving hotels
(someexamplescanbefoundin Figure4, where
thetaskis referredto as Simplified Tourist Task).
Thereare 178 wordsin the Spanishvocalulary
and 140 in the Englishone. We defineda stan-
dardscenarian which Spanish-to-Englistrans-
lation mustbe performedon 1,000 sentencegf-
ter training the correspondingnodelswith 5,000
pairs.

In that scenario,Loco _C achiezed an 80.8%
of correcttranslations,where errors are mainly
dueto lack of coveragein the languagemodels,
especiallyin the input one: only 85.7% of the
Spanistsentencem thetestsetcouldbecorrectly
parsedwith theinferredmodel,sowe decidedto
apply word categyoriesto improve the generaliza-
tion capabilitiesof ECGI as exemplifiedin Sec-
tion 3. Using automaticcateyorization(Martin et
al., 1995)for extracting75 Spanishword classes
and50 Englishones theresultinglanguagenod-
els achiered perfect coverageand the Loco _.C
systemperformancencreasedo 98.0%.

In order to put the previous figure into con-

text, it is worth sayingthatthebestresultobtained
by ReConTa in the samescenariowas 91.1%.
On the other hand, combining automaticbilin-
gual categorizationand Subsequentialransduc-
ersasdescribedn (BarrachinaandVilar, 1999),
a 98.4% of correcttranslationscan be achieved
for an adequatechoice of the numberof word
classeg60), thoughonly a 68.7% is obtainedby
the samesystemin theabsencef cateyorization.

6 Concluding remarks

Ourwork presentsa setof improvementson pre-

vious stateof the art of GrammarAssociation:
first, by providing betterlanguagemodelsto the

original systemdescribedn (Vidal etal., 1993);

second,by settingthe techniqueinto a rigorous
statistical framework, clarifying which kind of

probabilitieshave to be estimatedby association
models; third, by developing a novel and espe-
cially adequat@associatiormodel:Loco _C.

Ontheotherhand,thoughexperimentakresults
arequite good,we find themparticularlyrelevant
for pointing out directionsto follow for further
improvementof the GrammarAssociationtech-
nigue. Oneof thesedirectionsconsistsn explor-
ing betterlanguagemodels,refining the cateyo-
rizationmethodsmployedin thiswork or substi-
tuting ECGI for somekind of meige-basednfer-
encealgorithm(Thollardetal., 2000).Exploiting
data-drven bilingual cateyorization (Barrachina
andVilar, 1999)is anothempromisingway to im-
prove the performancef our system.

Finally, let us saythat, olbviously, the experi-
mentalresultson simpleartificial taskspresented
in this work are not intendedfor corvincing the
readerthat our Grammar Association systems
could obtain similar performanceson comple
tasksas, for instance,the Hansads (the bilin-
gual proceedingsof the Canadianparliament).
Our controlled experimentswere mainly aimed
at shawing that our proposalsimprove Gram-
marAssociation alongwith comparingthistech-
nique with a couple of different onesand pro-
viding easy-to-analyseesults. For thesesimple
purposes,we find our experimentalwork ade-
guate. However, naturaltranslationtasksshould
be facedsoon,in the next stageof our research.
Thisimplies,for instancetrying to copewith se-
vere datasparsenesslin this regard, we are op-



timistic: on onehand,becauseave trustin bilin-
gual cateyorizationfor reducingthe negative ef-
fects of sparsenesgVilar et al., 1995); on the
otherhand,becaussomeadditionalexperiments
carriedoutwith GrammarAssociatiorsystem®n
the Spanish-to-EnglistMLA Task with just 500
pairsfor training shawv acceptableesults.For in-
stance,our Loco _C achieved an 88.3% of cor
rect translation®’ while, in the samescenario,
ReConTa performanceadropsto 53.1% (Castdéo
andCasacubertd,997).
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