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Abstract

Existing studiesshawv that a weighted
contt-free transductiorof reasonable
quality canbe effectively learnedfrom
examples. This paperinvestigateshe
approximationof suchtransductiorby
meansof weightedrational transduc-
tion. The adwantageis increasedpro-
cessing speed, which benefits real-
time applicationgnvolving spolenlan-
guage.

1 Intr oduction

Several studieshave investigatedautomatic or
partly automatidearningof transductiongor ma-
chinetranslation.Someof thesestudieshave con-
centratedon finite-stateor extendedfinite-state
machinerysuchas(Vilar andothers,1999),oth-
ers have chosenmodels closer to contet-free
grammarsand contet-free transductionsuchas
(Alshawi etal., 2000; Watanabeet al., 2000; Ya-
mamoto and Matsumoto, 2000), and yet other
studiescannotbe comfortablyassignedo either
of thesewo frameworks,suchas(Brown andoth-
ers,1990)and(TillmannandNey, 2000).

In this paperwe will investigateboth context-
free and finite-statemodels. The basisfor our
studyis contet-free transductionsincethatis a
powerful modelof translationwhich canin mary
casesadequatelydescribethe changesof word
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order betweentwo languagesand the selection
of appropriatelexical items. Furthermore,for
limited domains,automaticlearningof weighted
contet-free transductiondrom examplesseems
to bereasonablyguccessful.

However, practical algorithmsfor computing
themostlikely contet-free derivation have a cu-
bic time compleity, in terms of the length of
the input string, or in the caseof a graph out-
put by a speechrecognizerin termsof the num-
berof nodesin the graph. For certainlexicalized
contet-free modelswe even obtain higher time
compl«ities whenthe sizeof thegrammairis not
to beconsideredsaparamete(EisnerandSatta,
1999). This may poseproblems,especiallyfor
real-timespeechsystems.

Thereforewe have investigatedapproximation
of weightedcontet-free transductionby means
of weightedrationaltransductionThefinite-state
machineryfor implementingthe latter kind of
transductionin generalallows fasterprocessing.
We can also more easily obtain robustness.We
hopetheapproximatingnodelis ableto presere
someof theaccurag of the context-free model.

In thenext sectionwe discusgpreliminarydef-
initions, adaptedfrom existing literature, mak-
ing no morethansmall changesn presentation.
In Section3 we explain how contet-free trans-
ductiongrammarsanberepresentetly ordinary
contet-free grammars plus a phaseof postpro-
cessing.The approximationis discussedn Sec-
tion 4. As shawvn in Section5, we may easily
processnputin arobustway, ensuringve always
obtainoutput. Section6 discussegmpiricalre-
sults,andwe endthe papemwith conclusions.



2 Preliminaries

2.1 hierarchical alignment

Theinput to our algorithmis a corpusconsisting
of pairs of sentenceselatedby an hierarchical
alignment(Alshawi etal.,2000).In whatfollows,
theformalizationof this concepthasbeenslightly
changedwith respectto the above referenceto
suitour purposesn theremaindeof this article.

Thehierarchicallyalignedsentenceairsin the
corpusare 5-tuples(vy, vo, f1, fo,r) satisfying
thefollowing. Thefirst two componentsy; and
vg, are strings, called the source string and the
target string, respectiely, the lengthsof which
aredenotedby n; = |vi| andng = |va2|. We
let N7 and N5 denotethe setsof string positions
{1,...,n1} and{1, ... na} respectiely.

Further f, (resp.f2) is a mappingfrom posi-
tionsin N7 U {0} (resp.N> U {0}) to pairs of
lists of positionsfrom N; (resp.\>), satisfying
thefollowing: if a position: is mappedo a pair
(I1,12), thenthe positionsin thelist [; - [i] - I are
in strictly increasingorder;welet“-” denotelist-
concatenationand|i] represents list consisting
of asingleelementi.

Eachpositionin N7 (resp.N3) shouldoccur
at mostoncein theimageof f; (resp.f2). This
meansthat f; and f; assigndependenc struc-
turesto the sourceandtargetstrings.

A further restriction on f; and fo requires
some auxiliary definitions. Let f be either f;
or fo. We definef as the function that maps
each position ; to the list of posjtionsf(jl) .

e fGm) - i - f(h1) - ..o - flhm,) when
f(Z) = ([]17 7jm1]7 [hla-'- ahmg])- If visa
stringas - - - a,, andl isalist [j1, . . . , j,,] Of string

positionsin v, then v#l[ representghe string
aj, - - - aj,,. If i isasingleposition,thenv#:i rep-
resentghe symbola;.

We now saythat f is projectiveif f mapseach
position i to someintenal of positions|p,p +
1,---,q — 1,q]. We will assumethat both f;
and fy areprojectve. (Strictly speaking,our al-
gorithm would still be applicableif they were
not projective, but it would treatthe hierarchical
alignmentasif the symbolsin the sourceandtar
get strings had beenreorderedto make f; and
f2 projective.) Furthermore,a reasonabléier
archicalalignmentsatisfiesf (0) = [0,1,...,n],

wheren = ny orn = ng whenf = fyor f = fo,
respectrely, which meanghatall symbolsin the
string areindirectly linked to the ‘dummy’ posi-
tion 0.

Lastly, » istheunionof {(0,0)} andasubsebf
N7 x N> thatrelatespositionsin thetwo strings.
It is suchthat (i1, ), (i2,7) € rimply iy = i2
and (i, j1), (i,52) € rimply j; = jo; in other
words,apositionin onestringis relatedto atmost
onepositionin the other Furthermorefor each
(i,7) € r —{(0,0)} thereis a pair (i',j') € r
suchthati occursin oneof thetwo lists of f; (i)
andj occursin oneof thetwo lists of f5(5); this
meansthat positionscanonly be relatedif their
respectre “mother” positionsarerelated.

Note that this paperdoesnot discusshow hi-
erarchicallignmentsanbe obtainedrom unan-
notatedcorporaof bitexts. This is the subjectof
existing studies suchas(Alshawi etal., 2000).

2.2 context-freetransduction

Contet-free transductionwas originally called
syntax-diected transductionin (Lewis Il and
Stearns,1968), but sincein modernformal lan-
guagetheory and computationallinguistics the
term “syntax” hasa muchwider rangeof mean-
ings thanjust “context-free syntax”, we will not
usetheoriginaltermhere.

A (contt-free) transductiongrammaris a 5-
tuple (N, X4, 3, P, S), whereN is afinite setof
nonterminalsS € N is thestartsymbol,>; and
Y5 arethe sourceandtamgetalphabetsand P is a
finite setof productionsof theform A — («a, ),
whered € N,a € (NUX;)*andf € (NUX9)*,
suchthat eachnonterminalin « occursexactly
oncein # andeachnonterminalin 3 occursex-
actly oncein a.

If we wereto replaceeachRHS pair by only
its first part o, we would obtain a contet-free
grammalrfor the sourcelanguageandif we were
to replaceeachRHS pair by its secondpart 3,
we would obtaina contet-free grammarfor the
talget language. The combinationof the two
halves of sucha RHS indicateshow a parsefor

INote that we ignore the casethat a single nonterminal
occurstwice or morein « or 3; if we wereto includethis
case,sometediouscomplicationsof notationwould result,
without ary theoreticalgain suchasanincreaseof genera-
tive power. Wereferto (Lewis Il andStearns1968)for the
generakase.



the sourcelanguagecanbe relatedto a parsefor
the taget language andthis definesa transduc-
tion betweerthelanguages anobviousway.

An exampleof atransductiorgrammaiis:

S — (Subj-IObj “lik €” Obj-Subj,
Obj-Subj Subj-IObj “plait’)
Subj-I0bj — (1" ,“me”)
Obj-Subj — (*him” ,“iI" )

This transductiondefinesthat a sentenceél like
him” canbetranslatedby “il me plait”.

We canreducehegeneratie power of context-
freetransductiorgrammargy a syntacticrestric-
tion thatcorrespondso the bilexical context-free
grammargEisnerandSatta,1999). Let usdefine
a bilexical transductiongrammaras a transduc-
tion grammarmwhichis suchthat:

¢ thereis amappingfrom the setof nontermi-
nalsto 1 x ¥5. Duetothisproperty we may
write eachnonterminalas Ala, b to indicate
that it is mappedto the pair (a,b), where
a € Y1 andb € Yy, whereA is asocalled
deleicalizednonterminal.We may write .S
as A[, ], wheret is a dummy symbol at
thedummystring position0. Further

e eachproductionis of one of the following

fiveforms:
Ala,b] — (B[a,b]C|c,d], Bla,b]Clc,d))
Ala, bl — (Ba,b]C[c,d], C[c,d]Bla, b))
Ala,b] — (Clec,d]Bla,b], Bla,b]Clc,d))
Ala,b] — (Cle,d]Bla,b], Clc,d]Bla, b))
Ala,b] — (a,b

For corveniencewe alsoallow productionsof
theform:

Ala,b] —  (z1 Bla,b]y1, z2 Bla,b]y2)

wherex,y; € ¥7 andza, ys € 5.

In the experimentsin Section6, we alsocon-
sidernonterminalghatarelexicalizedonly by the
sourcealphabetwhich meansthat thesenonter
minalscanbewrittenasA[a], wherea € ¥;. The
motivation is to restrictthe grammarsizeandto
increasehecoverage.

Bilexical transductiogrammarsreequivalent
to the dependengctransductiormodelfrom (Al-
shawi etal., 2000).

2.3 obtaining a context-freetransduction
from the corpus

We extract a contet-free transductiongrammar
from a corpusof hierarchicalalignments by lo-
cally translatingeachhierarchicalalignmentinto
asetof productions.Theunionof all thesesetsfor
the whole corpusis thenthe transductiongram-
mar. Countingthe numberof times that identi-
cal productionsaregeneratedllows usto assign
probabilitiesto theproductiondy maximumlik e-
lihood estimation.

We will considera methodthat usesonly one
delexicalized nonterminalA. For a pair (i,7') €
r, we have a nonterminal A[vy#i, vo#i'] or a
nonterminald[v; #i], dependingnwhethemon-
terminalsarelexicalizedby bothsourceandtarget
alphabetspr by just the sourcealphabet.Let us
call thatnonterminalNont (7, ').

Eachpair of positions(i,i') € r givesriseto
oneproduction.Supposédhat

fl(l) :([jla"' >hm2])

and each position in this pair is related by r
to some position from A5, which we will call

7jm1}7 [hla' e

Jlseevsdmy Py, . ., B, respeciiely, andsimi-
larly, supposehat
fQ(i/) = ([.71/7 cee 7.7';7/13}7 [hlll ) h;/ru])

and each position in this pair is related by r
to some position from A7, which we will call
J1's ooy dmes Y5 B, . Thenthe production
is givenby

Nont(i,i') —
(Nont(.]h]i) e Nont(jmlvj:nl) Ul#i
Nont(hy,hY) -+ Nont(hum,, hy,, ),
Nont(jilaji”) e NO’th(jZL?), i )U2#i/

JIms
Nont(h|,n{") -+ Nont(h! . h"

mas Pima) )

Notethatbothhalvesof theRHScontainthesame
nonterminaldut possiblyin a differentorder
However, if ary positionin f1(i) or fo(i') is
not relatedto someotherpositionby r, thenthe
productionabore containsjnsteadof a nontermi-
nal,asubstringonwhichthatpositionis projected
by fi or f, respectiely. E.g.if thereis no po-
sition j; suchthat (j1,7;) € r, theninsteadof
Nont(j1, ;) we have thestring vy # f1(j1).



In general,we cannotadaptthe abore algo-
rithm to producetransductiorgrammarshat are
bilexical. For example,a productionof theform:
Ala,d'] — (A[b, V] Ale, ] a, Ale,d] A[b, V] )
cannotbe broken up into smaller bilexical pro-
ductions? However, the hierarchicalalignments
thatwe work with wereproducedy analgorithm
thatensureghatbilexical grammarssufiice. For-
mally, this applieswhenthe following cannotoc-
cur: therearei,i,io € N7 andj, ji,j2 € Na
suchthat (7, j) € r, iy andiy occurin f(i), j1
andj, occurin f(j) and(i1, j1), (i2, j2) € 7, and
eitheri; < io < iandjs < j1 < j,0ri < iy < io
andj < jo < j1,0ri; < is < tandj < j; < jo,
ori < i <igandj; < jo < j.

Forexample if thenon-bileical productiorwe
would obtainis:

Ala,ad'] — (A[b,b'] da Ale, ],

Ale,d] e Alb,b'] a’)

thenthe bilexical transductiorgrammarthat our
algorithmproducesontains:

Ala,d] —  (Ala.d] Ale,d], Ale, ] Ala, d'])
Ala,d'] — (Ala,d], e Ala,d’])

Ala,a] —  (A[b,V] Ala,d’], A[b.V] Ala,a'])
Ala,d'] —  (d Ala,d], Ala,d'])

Ala,d'] — (a, d)

3 Reordering aspostprocessing

In the following sectionwe will discussanalgo-
rithm thatwasdevisedfor contet-freegrammars.
To male it applicableto transductionywe propose
a way to represenbilexical transductiongram-
marsas ordinary contet-free grammars. In the
new productions,symbolsfrom the sourceand
tamget alphabetsoccur side by side, but whereas
sourcesymbolsare matchedby the parserto the
input, thetarget symbolsaregatherednto output
strings. In our case the uniqueoutputstring the
parsereventually producesfrom an input string
is obtainedfrom the mostlikely derivation that
matcheghatinput string.

2That bilexical transductiongrammarsare less power-
ful than arbitrary contet-free transductiongrammarscan

be shavn formally; cf. Section3.2.3 of (Aho and Ullman,
1972).

Thatthe nonterminalsn bothhalvesof aRHS
in the transductiongrammarmay occurin a dif-
ferentorderis solved by introducingthreespecial
symbols,the reorder opemtors, which areinter
pretedafterthe parsingphase Thesethreeopera-
torswill bewrittenas“[”, “|” and“]”. In agiven
string, there should be matchingtriples of these
operatorsin suchaway thatif therearetwo such
triples,thenthey eitheroccurin two isolatedsub-
strings,or oneoccursnestedetweerthe“[” and
the“|” or nestecbetweerthe*|” andthe“]” of the
othertriple. Theinterpretationof an occurrence
of a triple, say in an output string vy [va|vs|vy,
is thatthe two enclosedsubstringsshouldbe re-
orderedsothatwe obtainv; v3vovy.

Both the reorderoperatorsandthe symbolsof
thetametalphabetwill herebe marked by a hor
izontal line to distinguishthem from the source
alphabetFor example,thetwo productions

Ala,a'] — (Ala,d'] Ale,d], Ale,c] Ala,d'])
Ala,a'] — (a, d)

fromthetransductiorgrammaiarerepresentedly
thefollowing two contet-free productions:

Ala,d'] — [Ala,a’]] Ale,c]]
Ala,d’]

In the first production the RHS nonterminalsoc-
curin thesameorderasin theleft half of theorig-
inal production,but reorderoperatorshave been
addedto indicatethat, after parsing,somesub-
stringsof theoutputstringareto bereordered.

Ourreorderoperatorsaresimilarto thetwo op-
erators< and > from (Vilar and others,1999),
but the formeraremorepowerful, sincethe latter
allow only single wordsto be moved insteadof
wholephrases.

— ad

4 Finite-state approximation

There are several methods to approximate
contet-free grammars by regular languages
(Nederhof,2000).We will considethereonly the
socalledRTN method whichis appliedin asim-
plified form 3

3As opposedo (Nederhof,2000), we assumeherethat
all nonterminalsare mutually recursve, and the grammar
containsself-embedding. We have obsered that typical
grammarghatwe obtainin the context of this articleindeed

have the propertythatalmostall nonterminaldelongto the
samemutuallyrecursve set.



A finite automatonis constructedas follows.
For eachnonterminalA4 from thegrammamve in-
troducetwo statesg4 and¢/,. For eachproduc-
tion A — X --- X, weintroducem + 1 states
qo, - - - ,qm, andwe add epsilontransitionsfrom
qa to go andfrom g, to ¢/;. Theinitial stateof
theautomatoris ¢s andtheonly final stateis ¢,
whereS§ is the startsymbolof thegrammar

If asymbol X; in the RHS of a productionis
aterminal,thenwe adda transitionfrom ¢; ; to
q; labelledby X;. If asymbol X; in the RHS s
anonterminalB, thenwe addepsilontransitions
from ¢;_ to ¢p andfrom ¢/ to g;.

The resulting automatonis determinizedand
minimizedto allow fastprocessingf input. Note
thatif we applythe approximationto the type of
contt-free grammardiscussedn Section3, the
transitionsincludesymbolsfrom both sourceand
taigetalphabetshut wetreatbothuniformly asin-
put symbolsfor the purposeof determinizingand
minimizing. This meansthat the driver for the
finite automatorstill encountersiondeterminism
while processin@ninputstring,sinceastatemay
have severaloutgoingtransitiongor differentout-
putsymbols.

Furthermorewe ignoreary weightsthatmight
be attachedo the contet-free productionssince
determinizationis problematicfor weightedau-
tomatain generalandin particularfor the type
of automatonthat we would obtain when carry-
ing over the weightsfrom the contet-free gram-
mar onto the approximatinglanguagefollowing
(Mohri andNederhof,2001).

Instead,weights for the transitionsof the fi-
nite automatonare obtainedby training, using
stringsthat are producedas a side effect of the
computationof the grammarfrom the corpus.
Thesestringscontainthe symbolsfrom both the
sourceandtamget stringsmixedtogetherplusoc-
currence®f the reorderoperatorsvhereneeded.
A English/Frenclexamplemight be:

[ 1 melikeplait | him il |

Theway thesestringswereobtainedensureghat
they areincludedin the languagegeneratedy
the context-free grammay andthey aretherefore
also acceptedby the approximatingautomaton
dueto propertiesof the RTN approximation.The

weightsare the neggative log of the probabilities
obtainedby maximumlik elihoodestimation.

5 Robustness

The approximatingfinite automatoncannoten-
surethatthereorderoperators ", “|” and“]” oc-

cur in matchingtriples in outputstrings. There
aretwo possiblewaysto dealwith this problem.
First, we could extendthe driver of the finite au-
tomatonto only considerderivationsin whichthe
operatorsare matched. This is however counter
to our needfor very efficient processingsincewe

arenotawareof ary practicalalgorithmsfor find-

ing matchingbracletsin pathsin agraphof which

the compleity is lessthancubic.

Therefore we have chosera secondapproach,
viz. to malke the postprocessingohust, by in-
sertingmissingoccurrence®f “[” or “]” andre-
moving redundanbccurrence®f braclets. This
meansthat arny string containingsymbolsfrom
thetalgetalphabetandoccurrencesf thereorder
operatorss turnedinto a string without reorder
operatorswith achangeof word orderwherenec-
essary

Boththetransductiorgrammarand,to alesser
extent, the approximatindfinite automatorsufier
from not beingableto handleall stringsof sym-
bols from the sourcealphabet. With finite-state
processindiowvever, it is rathereasyto obtainro-
bustness,by making the following three provi-
sions:

1. To the nondeterministidinite automatorwe
add one epsilon transition from the initial
stateto ¢4, for eachnonterminalA. This
meansthat from the initial state we may
recognizean arbitrary phrasegeneratedy
somenonterminafrom thegrammar

2. After the training phaseof the weighted
(minimal deterministic)automatonall tran-
sitions that have not beenvisited obtain a
fixed high (but finite) weight. This means
that suchtransitionsare only appliedif all
othersfail.

3. The driver of the automatonis changedso
thatit restartsattheinitial statewhenit gets
stuckat someinput word, andwhenneces-
sary that input word is deleted. The out-



put string with the lowest weight obtained
sofar (preferablyattachedo final statesor
to other stateswith outgoingtransitionsla-
belled by input symbols)is then concate-
natedwith the output string resultingfrom
processingubsequennput.

6 Experiments

We have investigated a corpus of En-
glish/Japanese sentence pairs, related by
hierarchicalalignment(seealso (Bangaloreand
Riccardi, 2001)). We have taken the first 500,
1000,1500,... alignedsentenceairsfrom this
corpusto actastraining corporaof varyingsizes;
we have taken 300 othersentenceairsto actas
testcorpus.

We have constructeda bilexical transduction
grammarfrom eachtraining corpus,in the form
of a contt-free grammayandthis grammarwas
approximatedby a finite automaton. The input
sentencedrom the test corpuswere then pro-
cessedby contet-free and finite-state machin-
ery (in the sequelreferredto by cfg andfa, re-
spectvely). We have also carried out experi-
mentswith robust finite-stateprocessingas dis-
cussedn Section5, which is referredto by ro-
bust.fa. If we append2 after a tag, this mean
that Nont(i,i') = Alvi#i, vo#i'], otherwise
Nont(i,i") = Alvi#i] (seeSection2.3).

The reorderoperatorsfrom the resulting out-
put stringswere appliedin a robust way as ex-
plainedin Section5. The output strings were
then comparedto the referenceoutput from the
corpus,resultingin Figure1. Our metricis word
accurayg, which is basedon edit distance.For a
pair of strings,the edit distanceis definedasthe
minimum numberof substitutionsijnsertionsand
deletionsneededo turn onestringinto the other
Theword accurayg of a string v with regardto a
stringw is definedto be1 — %, whered is theedit
distancebetweenv andw andn is the length of
w.
To allow a comparisonwith more established
techniques(see e.g. (Bangalore and Riccardi,
2001)),we alsotake into consideratiora simple
bigrammodel, trainedon the stringscomprising
bothsourceandtargetsentenceandreorderoper
ators,asexplainedin Section4. For the purposes
of predictingoutputsymbolsa seriesof consecu-

tive target symbolsandreorderoperatordollow-

ing a sourcesymbolin thetraining sentenceare
treatedasa single symbol by the bigram model,
and only thosemay be output after that source
symbol.Sinceour constructionis suchthattarget
symbolsalwaysfollow sourcesymbolsthey area
translationof (accordingto the automaticallyob-
tained hierarchicalalignment),this modification
to thebigrammodelpreventsoutputof totally un-
relatedtarget symbolsthatcould otherwiseresult
from astandardigrammodel. It alsoensureshat
a boundednumberof output symbolsper input
symbolareproduced.

Thefraction of sentencethatweretransduced
(i.e. that were acceptedby the grammaror the
automaton),s indicatedin Figure 2. Sincero-
bust fa(2) andbigram are ableto transduceall
input, they arenotrepresentetiere.Notethatthe
averageword accurag is computedonly with re-
spectto the sentenceshat could be transduced,
which explainsthe high accurag for smalltrain-
ing corporain the casesof cfg(2) and fa(2),
wherethe few sentenceshat can be transduced
aremostlyshortandsimple.

Figure 3 presentsthe time consumptionof
transductionfor the entire test corpus. These
datasupportour concernsaboutthe high costsof
contet-free processingeven thoughour parser
reliesheavily on lexicalization?

Figure4 shaws the sizesof the automataafter
determinizatiorand minimization. Determiniza-
tion for the largestautomatandicatedin the Fig-
ure took more than 24 hoursfor both fa(2) and
robust fa(2) , which suggestshesemethodsbe-
comeunrealisticfor training corpussizesconsid-
erablylargerthan10,000bitexts.

7 Conclusions

For our application contet-free transductiorhas
a relatively high accurag, but it alsohasa high
time consumptionandit may be difficult to ob-
tainrobustnessvithoutfurtherincreasinghetime
costs. Theseare two major obstaclesor usein
spolen languagesystems. We have tried to ob-
tain a rational transductionthat approximatesa

It usesa trie to represenproductions(similar to ELR
parsing(Nederhof,1994)), postponinggeneratiorof output
for a productionuntil all nonterminalsaandall input symbols
from theright-handsidehave beenfound.
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Figure2: Fractionof the sentencethatweretransduced.

contt-free transductionpreservingsomeof its
accurag.

Ourexperimentshav thattheautomatave ob-
tain becomevery large for training corporaof in-
creasingsizes. This posesa problemfor deter
minization.We conjecturghatthemainsourceof
the excessie growth of theautomatdiesin noise
in the bitexts andtheir hierarchicalalignments It
is a subjectfor further studywhetherwe canre-
ducetheimpactof this noise,e.g.by clusteringof
sourcesymbols,or by removing someinfrequent,
idiosyncraticrulesfrom theobtainedransduction
grammar Also, othermethodsof regularapprox-
imationof contet-free grammarsmaybeconsid-
ered.

In comparisonto a simpler model, viz. bi-
grams, our approximatingtransductionsdo not
have a very high accurag, which is especially

worrying sincethe off-line costsof computation
aremuchhigherthanin the caseof bigrams.The

relatively low accurag may be due to sparse-
nesof datawhenattachingveightsto transitions:
the size of the minimal deterministicautomaton
grows much fasterthan the size of the training

corpusit is constructedrom, andthe sametrain-

ing corpusis usedto train theweightsof thetran-

sitions of the automaton. Thereby mary transi-

tions do not obtainaccurateneights,andunseen
input sentencearenot translatedaccurately

The problemsdescribedheremay be avoided
by leaving out the determinizatiorof theautoma-
ton. This however leadsto two newn problems:
training of the weights requiresmore sophisti-
catedalgorithms,andwe may expectanincrease
in the time neededo transduceénput sentences,
sincenow both sourceand tamget symbolsgive
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riseto nondeterminismWhethertheseproblems
canbeovercomerequiresfurtherstudy
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