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Abstract

Statistical NLP systems are fre-
quently evaluated and compared on
the basis of their performances on
a single split of training and test
data. Results obtained using a single
split are, however, subject to sam-
pling noise. In this paper we ar-
gue in favour of reporting a distri-
bution of performance figures, ob-
tained by resampling the training
data, rather than a single num-
ber. The additional information
from distributions can be used to
make statistically quantified state-
ments about differences across pa-
rameter settings, systems, and cor-
pora.

1 Introduction

The common practice in evaluating statistical
NLP systems is using a standard corpus (e.g.,
Penn TreeBank for parsing, Reuters for text
categorization) along with a standard split be-
tween training and test data. As systems im-
prove, it becomes harder to achieve additional
improvements, and the performance of vari-
ous state-of-the-art systems is approximately
identical. This makes performance compar-
isons difficult.

In this paper, we argue in favour of studying
the distribution of performance, and present
conclusions drawn from studying the recall
distribution. This distribution provides mea-
sures for answering the following questions:

Q1: Comparing systems on given data: Is

classifier A better than classifier B for
given training and test data?

Q2: Adequacy of training data to test data:
Is a system trained on dataset X ade-
quate for analysing dataset Y ? Are fea-
tures from X indicative in Y ?

Q3: Comparing data sets with a given sys-
tem: If a different training set improves
the result of system A on dataset Y1, will
this be the case on dataset Y2 as well?

The answers to these questions can provide
useful insight into statistical NLP systems.
In particular, about sensitivity to features in
the training data, and transferability. These
properties can be different even when similar
performance is reported.

A statistical treatment of Question 1 is
presented by Yeh (2000). He tests for the
significance of performance differences on
fixed training and test data sets. In other
related works, Martin and Hirschberg (1996)
provides an overview of significance tests
of error differences in small samples, and
Dietterich (1998) discusses results of a num-
ber of tests.

Questions 2 and 3 have been frequently
raised in NLP, but not explicitly addressed,
since the prevailing evaluation methods pro-
vide no means of addressing them. In this
paper we propose addressing all three ques-
tions with a single experimental methodology,
which uses the distribution of recall.

2 Motivation

Words, parts-of-speech (POS), words, or any
feature in text may be regarded as outcomes



of a statistical process. Therefore, word
counts, count ratios, and other data used in
creating statistical NLP models are statisti-
cal quantities as well, and as such prone to
sampling noise. Sampling noise results from
the finiteness of the data, and the particular
choice of training and test data.

A model is an approximation or a more ab-
stract representation of training data. One
may look at a model as a collection of es-
timators analogous, e.g., to the slope calcu-
lated by linear regression. These estimators
are statistics with a distribution related to the
way they were obtained, which may be very
complicated. The performance figures, being
dependent on these estimators, have a distri-
bution function which may be difficult to find
theoretically. This distribution gives rise to
intrinsic noise.

Performance comparisons based on a single
run or a few runs do not take these noises into
account. Because we cannot assign the result-
ing statements a confidence measure, they are
more qualitative than quantitative. The de-
gree to which we can accept such statements
depends on the noise level and more generally,
on the distribution of performance.

In this paper, we use recall as a perfor-
mance measure (cf. Section 4.4 and Section
3.2 in (Yeh, 2000)). Recall samples are ob-
tained by resampling from training data and
training classifiers on these samples.

The resampling methods used here are
cross-validation and bootstrap (Efron and
Gong, 1983; Efron and Tibshirani, 1993,
cf. Section 3). Section 4 presents the experi-
mental goals and setup. Results are presented
and discussed in Section 5, and a summary is
provided in Section 6.

3 The Bootstrap Method

The bootstrap is a re-sampling technique
designed for obtaining empirical distribu-
tions of estimators. It can be thought
of as a smoothed version of k-fold cross-
validation (CV). The method has been ap-
plied to decision tree and bayesian classifiers
by Kohavi (1995) and to neural networks by,
e.g., LeBaron and Weigend (1998).

In this paper, we use the bootstrap method
to obtain the distribution of performance of a
system which learns to identify non-recursive
noun-phrases (base-NPs). While there are a
few refinements of the method, the intention
of this paper is to present the benefits of ob-
taining distributions, rather than optimising
bias or variance. We do not aim to study the
properties of bootstrap estimation.

Let a statistic S = S(x1, . . . , xn) be a func-
tion of the independent observations {xi}ni=1

of a statistical variable X. The bootstrap
method constructs the distribution function
of S by successively re-sampling x with re-
placements.

After B samples, we have a set of bootstrap
samples {xb1, . . . , xbn}Bb=1, each of which yields
an estimate Ŝb for S. The distribution of Ŝ is
the bootstrap estimate for the distribution of
S. That distribution is mostly used for esti-
mating the standard deviation, bias, or confi-
dence interval of S.

In the present work, xi are the base-NP in-
stances in a given corpus, and the statistic S
is the recall on a test set.

4 Experimental Setup

The aim of our experiments is to test whether
the recall distribution can be helpful in an-
swering the questions Q1–Q3 mentioned in
the introduction of this paper.

The data and learning algorithms are pre-
sented in Sections 4.1 and 4.2. Section 4.3
describes the sampling method in detail. Sec-
tion 4.4 motivates the use of recall and de-
scribes the experiments.

4.1 Data

We used Penn-Treebank (Marcus et al., 1993)
data, presented in Table 1. Wall-Street Jour-
nal (WSJ) Sections 15-18 and 20 were used
by Ramshaw and Marcus (1995) as training
and test data respectively for evaluating their
base-NP chunker. These data have since be-
come a standard for evaluating base-NP sys-
tems.

The WSJ texts are economic newspaper
reports, which often include elaborated sen-
tences containing about six base-NPs on the



Source Sentences Words Base
NPs

WSJ 15-18 8936 229598 54760
WSJ 20 2012 51401 12335
ATIS 190 2046 613
WSJ 20a 100 2479 614
WSJ 20b 93 2661 619

Table 1: Data sources

average.
The ATIS data, on the other hand, are

a collection of customer requests related to
flight schedules. These typically include short
sentences which contain only three base-NPs
on the average. For example:

I have a friend living in Denver
that would like to visit me
here in Washington DC .

The structure of sentences in the ATIS data
differs significantly from that in the WSJ
data. We expect this difference to be reflected
in the recall of systems tested on both data
sets.

The small size of the ATIS data can influ-
ence the results as well. To distinguish the
size effect from the structural differences, we
drew two equally small samples from WSJ
Section 20. These samples, WSJ20a and
WSJ20b, consist of the first 100 and the fol-
lowing 93 sentences respectively. There is a
slight difference in size because sentences were
kept complete, as explained Section 4.3.

4.2 Learning Algorithms

We evaluated base-NP learning systems based
on two algorithms: MBSL (Argamon et al.,
1999) and SNoW (Muñoz et al., 1999).

MBSL is a memory-based system which
records, for each POS sequence containing a
border (left, right, or both) of a base-NP, the
number of times it appears with that border
vs. the number of times it appears without
it. It is possible to set an upper limit on the
length of the POS sequences.

Given a sentence, represented by a sequence
of POS tags, the system examines each sub-
sequence for being a base-NP. This is done
by attempting to tile it using POS sequences

that appeared in the training data with the
base-NP borders at the same locations.

For the purpose of the present work, suffice
it to mention that one of the parameters is
the context size (c). It denotes the maximal
number of words considered before or after a
base-NP when recording sub-sequences con-
taining a border.

SNoW (Roth, 1998, “Sparse Network of
Winnow”) is a network architecture of Win-
now classifiers (Littlestone, 1988). Winnow
is a mistake-driven algorithm for learning a
linear separator, in which feature weights are
updated by multiplication. The Winnow al-
gorithm is known for being able to learn well
even in the presence of many noisy features.

The features consist of one to four consec-
utive POSs in a 3-word window around each
POS. Each word is classified as a beginning of
a base-NP, as an end, or neither.

4.3 Sampling Method

In generating the training samples we sampled
complete sentences. In MBSL, an un-marked
boundary may be counted as a negative ex-
ample for the POS-subsequences which con-
tains it. Therefore, sampling only part of the
base-NPs in a sentence will generate negative
examples.

For SNoW, each word is an example, but
most of the words are neither a beginning nor
an end of a base-NP. Random sampling of
words might generate a sample with an im-
proper balance between the three classes.

To avoid these problems, we sampled
full sentences instead of words or instances.
Within a good approximation, it can be as-
sumed that base-NP patterns in a sentence do
not correlate. The base-NP instances drawn
from the sampled sentences can therefore be
regarded as independent.

As described at the end of Sec. 4.1, the
WSJ20a and WSJ20b data were created so
that they contain 613 instances, like the ATIS
data. In practice, the number of instances
exceeds 613 slightly due to the full-sentence
constraint. For the purpose of this work, it is
enough that their size is very close to the size
of ATIS.



Dataset Sentences Base-NPs
Training 8938 ± 48 54763 ± 2

Unique: 5648 ± 34

Table 2: Sentence and instant counts for the
bootstrap samples. The second line refers to
unique sentences in the training data.

We used the WSJ15-18 dataset for train-
ing. This dataset contains n0 = 54760 base-
NP instances. The number of instances in a
bootstrap sample depends on the number of
instances in the last sampled sentence. As
Table 2 shows, it is slightly more than n0.

For k-CV sampling, the data were divided
into k random distinct parts, each containing
n0
k ±2 instances. Table 3 shows the number of

recall samples in each experiment (MBSL and
SNoW experiments were carried out seper-
ately).

Method MBSL SNoW
Bootstrap 2200 1000
CV (total folds) 1500 1000

Table 3: Number of bootstrap samples and
total CV folds.

4.4 Experiments

We trained SNoW and MBSL; the latter us-
ing context sizes of c=1 and c=3. Data sets
WSJ20, ATIS, WSJ20a, and WSJ20b were
used for testing. MBSL runs with the two
c values were conducted on the same training
samples, therefore it is possible to compare
their results directly.

Each run yielded recall and precision. Re-
call may be viewed as the expected 0-1 loss-
function on the given test sample of instances.
Precision, on the other hand, may be viewed
as the expected 0-1 loss on the sample of in-
stances detected by the learning system. Care
should be taken when discussing the distribu-
tion of precision values because this sample
varies from run to run. We will therefore only
analyse the distribution of recall in this work.

In the following, r1 and r3 denote recall
samples of MBSL with c = 1 and c = 3,
with standard deviations σ1 and σ3. ρ13 de-

notes the cross-correlation between r1 and r3.
SNoW recall and standard deviation will be
denoted by rSN and σSN.

To approach the questions raised in the in-
troduction we made the following measure-
ments:

Q1: System comparison was addressed by
comparing r1 and r3 on the same test data.
With samples at hand, we obtained an esti-
mate of P (r3 > r1).

Q2: We studied training and test adequacy
through the effect of more specific features on
recall, and on its standard deviation.

Setting c = 3 takes into account sequences
with context of two and three words in ad-
dition to those with c = 1. Sequences with
larger context are more specific, and an im-
provement in recall implies that they are in-
formative in the test data as well.

For particular choices of parameters and
test data, the recall spread yields an estimate
of the training sampling noise. On inade-
quate data, where the statistics differ signif-
icantly from those in the training data, even
small changes in the model can lead to a no-
ticeable difference in recall. This is because
the model relies on statistics which appear
relatively rarely in the test data. Not only
do these statistics provide little information
about the problem, but even small differences
in weighting them are relatively influential.

Therefore, the more training and test data
differ from each other, the more spread we can
expect in results.

Q3: For comparing test data sets with a
system, we used cross-correlations between r1,
r3, or rSN samples obtained on these data sets.
We know that WSJ data are different from
ATIS data, and so expect the results on WSJ
to correlate with ATIS results less than with
other WSJ results.

5 Results and Discussion

For each of the five test datasets, Table 4 re-
ports averages and standard deviations of r1,
r3, and rSN obtained by 3, 5, 10, and 20-fold
cross-validation, and by bootstrap. ρ13 and
P (r3 > r1) are reported as well.

We discuss our results by considering to



what extent they provide information for an-
swering the three questions:

Q1 – Comparing systems on given data:
For the WSJ data sets, the difference between
r3 and r1 was well above their standard de-
viations, and r3 > r1 nearly always. For
ATIS, the standard deviation of the differ-
ence (σ2

r3−r1 = (σ1)2 + (σ3)2 − 2σ1σ3 · ρ13)
was small due to the high ρ13, and r1 > r3

nearly always.

Q2 – The adequacy of training and test
sets: It is clear that adding more specific
features, by increasing the context, improved
recall on the WSJ test data and degraded it
on the ATIS data. This is likely to be an indi-
cation of the difference in syntactic structure
between ATIS and WSJ texts.

Another evidence of structural difference
comes from standard deviations. The spread
of the ATIS results always exceeded that of
the WSJ results, with all three experiments.
That difference cannot be solely attributed
to the small size of ATIS, since WSJ20a
and WSJ20b results displayed a much smaller
spread. Indeed, these results had a wider
standard deviation than WSJ20, probably
due to the smaller size, but not as wide as
ATIS. This indicates that base-NPs in ATIS
text have different characteristics than those
in WSJ texts.

Q3 – Comparing datasets by a system:
Table 5 reports, for each pair of datasets, the
correlation between the 5-fold CV recall sam-
ples of each experiment on these datasets.
The correlations change with CV fold num-
ber, 5-fold results were chosen as they repre-
sent intermediary values.

Both MBSL experiments yielded negligible
correlations of ATIS results with any WSJ
data set, whether large or small. These corre-
lations were always weaker than with WSJ20a
and WSJ20b, which are about the same size.

This is due to ATIS being a different kind
of text. The correlation between WSJ20a and
WSJ20b results was also weak. This may be
due to their small sizes; these texts might not
share enough features to make a significant

correlation.
SNoW results were highly correlated for all

pairs. That behaviour is markedly different
from the MBSL results, and indicates a high
level of noise in the SNoW features. Indeed,
Winnow is able to learn well in the presence
of noise, but that noise causes the high corre-
lations observed here.

5.1 Further Observations

The decrease of ρ13 with CV fold number is
related to stabilization of the system. As the
folds become larger, training samples become
more similar to each other, and the spread of
results decreases. This effect was not visible
in the SNoW data, most likely due to the high
level of noise in the features. This noise also
contributes to the higher standard deviation
of SNoW results.

6 Summary and Further Research

In this work, we used the distribution of re-
call to address questions concerning base-NP
learning systems and corpora. Two of these
questions, of training and test adequacy, and
of comparing data sets using NLP systems,
were not addressed before.

The recall distributions were obtained using
CV and bootstrap resampling.

We found differences between algorithms
with similar recall, related to the features they
use.

We demonstrated that using an inadequate
test set may lead to noisy performance results.
This effect was observed with two different
learning algorithms. We also reported a case
when changing a parameter of a learning al-
gorithm improved results on one dataset but
degraded results on another.

We used classifiers as “similarity rulers”,
for producing a similarity measure between
datasets. Classifiers may have various prop-
erties as similarity rulers, even when their re-
calls are similar. Each classifier should be
scaled differently according to its noise level.
This demonstrates the way we can use clas-
sifiers to study data, as well as use data to
study classifiers.



Test Method MBSL SNoW
data E(r1)± σ1 E(r3)± σ3 ρ13 P (r3 > r1) E(rSN)± σSN

3-CV 89.64 ± 0.16 91.26 ± 0.12 0.36 100% 90.18 ± 1.01
5-CV 89.75 ± 0.14 91.43 ± 0.10 0.30 100% 90.37 ± 1.03

WSJ 20 10-CV 89.80 ± 0.12 91.53 ± 0.08 0.25 100% 90.47 ± 1.11
20-CV 89.81 ± 0.11 91.56 ± 0.07 0.28 100% 90.51 ± 1.19
Bootstrap 89.58 ± 0.17 91.16 ± 0.14 0.42 100% 89.83 ± 0.93
E(·) 89.74 91.58 91.23
3-CV 85.70 ± 2.03 83.99 ± 1.87 0.82 3% 83.70 ± 4.11
5-CV 85.76 ± 1.87 83.69 ± 1.57 0.79 1% 83.53 ± 4.52

ATIS 10-CV 85.90 ± 1.31 84.78 ± 0.92 0.78 4% 83.38 ± 5.14
20-CV 85.78 ± 1.16 83.28 ± 0.85 0.77 0% 83.23 ± 5.36
Bootstrap 85.72 ± 1.95 84.69 ± 1.95 0.81 16% 83.50 ± 3.35
E(·) 85.81 83.20 85.48
3-CV 89.45 ± 0.42 91.25 ± 0.56 0.33 100% 90.84 ± 1.04
5-CV 89.66 ± 0.36 91.64 ± 0.54 0.32 100% 91.07 ± 1.15

WSJ 20a 10-CV 89.79 ± 0.28 91.85 ± 0.49 0.20 100% 91.14 ± 1.26
20-CV 89.82 ± 0.23 91.89 ± 0.44 0.18 100% 91.11 ± 1.39
Bootstrap 89.42 ± 0.47 91.55 ± 0.57 0.33 99% 90.76 ± 1.00
E(·) 89.73 92.18 90.07
3-CV 88.95 ± 0.41 90.12 ± 0.39 0.37 99% 89.79 ± 0.81
5-CV 89.03 ± 0.36 90.15 ± 0.31 0.31 99% 89.81 ± 0.84

WSJ 20b 10-CV 89.06 ± 0.33 90.14 ± 0.22 0.28 99% 89.83 ± 0.86
20-CV 89.07 ± 0.27 90.13 ± 0.18 0.22 100% 89.87 ± 0.88
Bootstrap 89.00 ± 0.44 90.17 ± 0.44 0.38 98% 89.93 ± 0.80
E(·) 89.01 91.55 90.79

Table 4: Recall statistic summary for MBSL with contexts c = 1 and c = 3, and SNoW. The
E(·) figures were obtained using the full training set. Note the monotonic change of standard
deviation with fold number. The s.d. of the bootstrap samples are closest to those of low-fold
CV samples.

5-CV WSJ 20b WSJ 20a ATIS
r1 r3 rSN r1 r3 rSN r1 r3 rSN

WSJ 20 0.33 0.19 0.72 0.26 0.29 0.78 0.08 0.02 0.76
ATIS -0.01 0.00 0.59 0.02 -0.01 0.63
WSJ 20a 0.07 0.04 0.59

Table 5: Cross-correlations between recalls of the three experiments on the test data for five-fold
CV. Correlations of r1 capture dataset similarity in the best way.



By using MBSL with different context sizes,
our results provide insights into the relation
between training and test data sets, in terms
of general and specific features. That issue be-
comes important when one plans to use a sys-
tem trained on certain data set for analysing
an arbitrary text. Another approach to this
topic, examining the effect of using lexical
bigram information, which is very corpus-
specific, appears in (Gildea, 2001).

In our experiments with systems trained on
WSJ data, there was a clear difference be-
tween their behaviour on other WSJ data and
on the ATIS data set, in which the structure
of base-NPs is different. That difference was
observed with correlations and standard devi-
ations. This shows that resampling the train-
ing data is essential for noticing these struc-
ture differences.

To control the effect of small size of the
ATIS dataset, we provided two equally-small
WSJ data sets. The effect of different genres
was stronger than that of the small-size.

In future study, it would be helpful to study
the distribution of recall using training and
test data from a few genres, across genres,
and on combinations (e.g. “known-similarity
corpora” (Kilgarriff and Rose, 1998)). This
will provide a measure of the transferability
of a model.

We would like to study whether there is a
relation between bootstrap and 2 or 3-CV re-
sults. The average number of unique base-
NPs in a random bootstrap training sample
is about 63% of the total training instances
(Table 2). That corresponds roughly to the
size of a 3-CV training sample. More work is
required to see whether this relation between
bootstrap and low-fold CV is meaningful.

We also plan to study the distribution of
precision. As mentioned in Sec. 4.4, the pre-
cisions of different runs are now taken from
different sample spaces. This makes the boot-
strap estimator unsuitable, and more study is
required to overcome this problem.
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