
Verification and Validation of Language Processing Systems: Is It
Evaluation?

Valerie B. Barr
Department of Computer Science

Hofstra University
Hempstead, NY 11549-1030 USA

vbarr@hofstra.edu

Judith L. Klavans
Center for Research on Information Access

Columbia University
535 West 114th Street, MC 1103

New York, NY 10027 USA
klavans@cs.columbia.edu

Abstract

If Natural Language Processing
(NLP) systems are viewed as
intelligent systems then we should be
able to make use of verification and
validation (V&V) approaches and
methods that have been developed in
the intelligent systems community.
This paper addresses language
engineering infrastructure issues by
considering whether standard V&V
methods are fundamentally different
than the evaluation practices
commonly used for NLP systems, and
proposes practical approaches for
applying V&V in the context of
language processing systems. We
argue that evaluation, as it is
performed in the NL community, can
be improved by supplementing it with
methods from the V&V community.

1 NLP Systems as Intelligent
Systems

Language engineering research is carried out in
areas such as speech recognition, natural
language understanding, natural language
generation, speech synthesis, information
retrieval, information extraction, and inference
(Jurafsky & Martin, 2000). In practice this
means building systems which model human
activities in various language processing tasks.
Therefore, we can quite clearly view language
processing systems as forms of intelligent
systems. This view allows us to draw on work
that has been done within the intelligent systems
community within computer science on
verification and validation of systems. It also

allows us to consider V&V in the context of NL
systems, and evaluation, as carried out on NL
systems, in the context of software engineering
methodologies. This research extends the first
author’s earlier work on software testing
methodologies in the context of expert systems
(Barr, 1995; Barr, 1999).

2 Verification and Validation of
Intelligent Systems

The area of verification and validation of
software systems has suffered from a
multiplicity of definitions (Barr, 2001; Gonzalez
and Barr, 2000). However, the most commonly
used definitions are :

• Verification – ensuring that software
correctly implements specific functions,
that it satisfies its specification.

• Validation – determining that the system
satisfies customer requirements.

These definitions have been re-examined in
order to account for the differences between
‘conventional’ software and intelligent systems.
An intelligent system is built based on an
interpretation of the problem domain, with the
expectation that the system will behave in a
fashion that is equivalent to the behavior of an
expert in the domain. It follows that human
performance is often the benchmark we use to
evaluate an intelligent system.

The usual definitions of verification and
validation can be applied to intelligent systems
with slight modifications to take into account
the presence of a knowledge base and the
necessity of comparing system performance to
that of humans in the problem domain. The core
issue in validation and verification of an
intelligent system boils down to one simple
objective: ensuring that the resulting system will

provide an answer, solution or behavior
equivalent to what an expert in the field would
say if given the same inputs.

Therefore the definitions of verification and
validation have been refined (Gonzalez and
Barr, 2000) in order to account for the differing
aspects of intelligent systems :

• Verification – the process of ensuring 1)
that the intelligent system conforms to
specifications, and 2) its knowledge
base is consistent and complete within
itself.

• Validation – the process of ensuring that
the output of the intelligent system is
equivalent to those of human experts
when given the same inputs.

Consistency of the knowledge base means that
there are no redundancies, conflicts or cycles.
Completeness means that all facts are used, there
are no unreachable conclusions, missing rules
(in the rule-based expert systems context), there
are no dangling conditions. These definitions of
verification and validation retain the standard
definitions used in software engineering, while
also requiring that the knowledge base be free of
internal errors, and letting human performance
be the standard for ‘customer requirements’.

In the realm of language processing, the
‘expert’ can often be any user of language in the
context for which the system has been
developed.

3 Evaluation of NLP Systems

The previous section presented definitions for
V&V. In this section the general paradigms for
evaluation of NLP system is presented.

3.1 Taxonomies of Evaluation within
NLP

Our review of the evaluation literature indicates
that NLP systems have largely been evaluated
using a black-box, functional, approach.
Evaluation is often subdivided into formative
evaluation and summative evaluation (Sparck
Jones & Galliers, 1996). The former determines
if the system meets the objectives that were set
for it. It can be diagnostic, indicating areas in
which the system does not perform well, or
predictive, indicating the performance that can
be expected in actual use. Summative

evaluation is a comparison of different systems
or approaches for solving a single problem.

In a somewhat different taxonomy
(Hirschman and Thompson, 1998), evaluation is
subdivided into

• Adequacy evaluation – determination
of the fitness of a system for its intended
purpose. Will it do what is required by
the user, how well, and at what cost?

• Diagnostic evaluation – exposure of
system failures and production of a
system performance profile.

• Performance evaluation –
measurement of system performance in
one or more specific areas. Can be used
to compare alternative implementations
or successive generations of a system.

We can see that performance evaluation
overlaps with summative evaluation, while
adequacy evaluation corresponds to formative
evaluation.

While the evaluation process must consider
the results generated by an NLP system, it also
considers the usability of the system
(Hirschman and Thompson, 1998; White and
Taylor, 1998), its features, and how easily it can
be enhanced. For example, a translation system
may appear to work well in a testbed situation,
but may not function well when embedded into
a larger system. Or it may perform acceptably
when its output is intended for a general
audience, but not when an expert uses the
output.

Sparck Jones and Galliers (1996) discuss
how the evaluation process should take into
account whether the NLP task is part of a larger
system with both linguistic and non-linguistic
components, and determine the impact on
overall performance of each of the subparts. We
call this component performance evaluation.
Additional complexity arises in the evaluation of
component performance within multi-faceted
systems, such as embodied conversational
agents, where assessment of how well the
system works is based on more than strict
language aspects, considering also more subtle
features such as gesture and tone (Cassell et al.,
2000). Furthermore, whether or not a system
response is considered to be correct or
acceptable may depend on who is judging it.

In general, NLP systems for various kinds of
tasks require differing views of the evaluation
process, with different criteria, measures, and

methods. For example, consider the ways in
which evaluation of machine translation (MT)
systems is carried out. Notice that not all
aspects of validation and verification, as
discussed in section 2, are represented.
Evaluation of machine translation (MT) systems
has to consider the pre-processing of input and
the post-editing of output. Black-box evaluation
of MT systems can measure the percentage of
words that are incorrect in the entire output text
(based on how post-editing changes raw output
text to fix it). But whether or not a word is
considered incorrect in the output may depend
on the task of the system. So functional
evaluation of an MT system may have to be
augmented by a subjective determination of
whether the output text carries the same
information as the input text, and whether the
output is intelligible (Sparck Jones and Galliers
1996). Another example is the case of speech
interfaces and spoken dialogue systems. the
evaluation process typically focuses on the
accuracy, coverage, and speed of the system,
with increasing attention paid to user
satisfaction (James et al. 2000, Walker and
Hirschman 1999). Notice that in just these two
examples, various kinds of evaluation are called
into play. We will argue in section 4 that V&V
techniques extend these evaluation methods,
providing system coverage analysis that assesses
completeness and consistency.

3.2 Factors which impact evaluation

Evaluation of NLP systems must also take
into account the kinds of inputs we expect a
system to work on after its testing phase is
complete. Wacholder (1997) demonstrates the
extent to which the linguistic complexity of
documents is one of the factors responsible for
the weakness of applications that process natural
language texts. The ability to categorize test
data by complexity will help distinguish
between a failure of an NLP system that results
from extraordinary document complexity
(beyond that of the data on which the system
was tested) and a failure that results from
inadequate testing of the NLP tool. The former
should be predictable, while the latter should
rarely happen if a system has been adequately
tested. It is certainly possible that a tool may be
very well tested, functionally and with regard to
consistency and completeness, on text of certain

degree of complexity, but still fail on text that is
more complex or from a different domain.

3.3 Comparative evaluation efforts

There are NLP evaluation methods that,
although in a different problem domain, closely
mirror the approach typically used with expert
systems, comparing machine results to human
results. For example, the TAUM-AVIATION
machine translation system was evaluated in
1980, in part by comparing the raw translation
produced by the system to several human
translations. Then revised and post-edited
translations (human and machine) were rated
and ranked by a number of potential users
(Sparck Jones and Galliers, 1996). This is
essentially the same testing method that was
used for the MYCIN expert system (Yu, 1985)
and many additional systems. However, within
the expert systems area several methods have
been developed in subsequent years that address
the weaknesses of strictly functional evaluation
approaches (e.g. Barr, 1999; Grossner, 1993).

 There are also well-known evaluation
efforts such as EAGLES (Sparck Jones and
Galliers, 1996) and the Paradise evaluation
framework (Walker et al., 1997). In addition,
many researchers have participated in the
comparative evaluation efforts characterized by
the Text Retrieval Conferences (TREC)1, the
Message Understanding Conferences (MUC)2

and Document Understanding Conferences
(DUC)3, the Cross-Language Evaluation Forum
(CLEF)4, and the summarization evaluation
effort (SUMMAC) (for a very comprehensive
list of evaluation related links, see
http://www.limsi.fr/TLP/CLASS/prj.eval.links.h
tml).

Evaluation of NLP systems is aided by the
fact that there is considerable test data available.
There are substantial repositories of data, such
as the TREC collection that includes, among
other data, Associated Press wire feeds;
Department of Energy documents; Federal
Register documents; Wall Street Journal full
texts; and sources from Ziff-Davis Publishing.

1 http://trec.nist.gov/
2

http://www.itl.nist.gov/iaui/894.02/related_projects/ti
pster/muc.htm
3 http://www-nlpir.nist.gov/projects/duc/index.html
4 http://www.iei.i.cnr.it/DELOS/CLEF/

It is important to note that the DARPA/ARPA
sponsored conferences (MUC, TIPSTER, and
TREC, for example), while making considerable
data available, promote functional testing by
stressing black-box performance of a system.
The metrics used in the MUC program are
oriented toward functional testing, focusing on
the number of spots in a template that are
correctly filled in by a particular MUC system,
along with various error-based measures. For
database query systems the emphasis has been
on functional testing, supplemented with
evaluations of the system by users, given the
desire to create marketable systems.

An issue that arises in comparative
evaluation efforts, particularly because there is
so much test data available, is what it means to
compare the behavior of two systems designed
to carry out the same task, based on their
performance on a common set of test data.
Allen (1995) argues that evaluation results for
individual systems, and any comparison of
results across systems, should not be given
much credence until they reach “some
reasonably high level of performance.”
Certainly the MUC and TREC programs are
based on comparing performance of multiple
systems on a common task. One of the purposes
of our research is to show that without
assessment of consistency and completeness, the
quality of the functional testing alone may not
be sufficient for predicting reliability of an NLP
system and V&V methods will improve the
situation.

3.4 Additional comments on functional
testing

We have referred to functional testing in
prior paragraphs in the context of various
aspects of evaluation. Recent literature (Declerk
et al., 1998; Rubio et al., 1998; Klavans et al.,
1998; Jing et al., 1998) shows that functional
testing is still very much in use for evaluation of
NLP systems and larger systems of which NLP
components are a part. Where other evaluation
mechanisms are in use, they are still based on
the behavior of the system under test, not based
on an analysis of how test case execution
exercises the system. For example, White and
Taylor (1998) propose evaluating machine
translation (MT) systems based on what kind of
text handling tasks could be supported by the
output of the MT system. They examine the text

handling tasks (publishing, gisting, extraction,
triage, detection, filtering) to determine how
good a translation has to be in order for it to be
useful for each task. They then rank the text
handling tasks in such a way that if an MT
system’s output can facilitate a task, it can also
facilitate tasks lower on the scale, but is unlikely
to facilitate tasks higher on the scale. This kind
of evaluation is functional in nature, though the
assessment of the quality of the MT system’s
output is based not on an examination of the
output but on a subsequent use of the output.

The notion of functional glass-box testing
does not assess coverage of the system itself, but
is essentially an assessment of how well a
system carries out its task. It relies on the
programmer or tester’s idea of how a component
should carry out its task for a particular test
input (Sparck Jones and Galliers 1996). At the
same time, black-box evaluation is a very
important and powerful testing approach,
particularly because it works from the
perspective of the user, without concern for
implementation.

4 Applying V&V to NLP – Is it
Evaluation?

In the previous section we outlined many
different types of evaluation that are performed
on NL systems. Our claim at the beginning of
the paper was that evaluation, as it is performed
in the NL community, can be improved by
adopting V&V approaches. In this section we
show specifically what the relationship is
between V&V, as it is typically applied in
software development, and evaluation as it is
carreid out in the context of NLP systems.

In considering whether V&V and evaluation
are equivalent, we need to consider whether the
evaluation process achieves the goals of
verification and validation. That is, does the
evaluation process demonstrate that

• the system is correct and conforms to its
specification

• the knowledge inherent in the system is
consistent and complete

• the output is equivalent to that of human
‘experts’.

It is apparent that summative, adequacy and
diagnostic evaluation are all in some way
equivalent to validation. The evaluation steps

involve black-box exercise of test data through
the system, which then allows for a comparison
of actual results to expected results. This
facilitates an assessment of whether the output is
equivalent to that of human experts (who
provide the expected results).

The usual evaluation processes, through
formative evaluation, also facilitate one aspect
of verification, in that they allow us to determine
if a system conforms to its specification. That
is, based on the specification for a system, a
domain-based test set can be constructed for
evaluation which will then demonstrate whether
or not a system meets the specification.

It is the second aspect of verification,
determining whether the knowledge represented
within the system is consistent and complete,
that seems not to be taken into account by the
evaluation processes in NLP. The difficulty lies
in the fact that a domain based test set can never
completely test the actual system as built.
Rather, it tests the linguistic assumptions that
motivated construction of the system. A domain
based test set can determine if the system
behaves correctly over the test data, but may not
adequately test the full system. In particular,
any inconsistencies in the knowledge
represented within the system, or missing
knowledge, may not be identified by an
evaluation process that relies on domain-based
test data.

To address this issue, we need to apply
additional testing techniques, based on coverage
of the actual system, in order to achieve the full
breadth of verification activities on a language
processing system. Furthermore, we may not
need larger test sets, but we may need different
test cases in the test set.

5 Applying V&V to NLP – How Do
We Do It?

In our research we are in the early stages of
experiments wherein we apply existing V&V
tools to a number of NL systems for indexing
and significant topics detection. We expect the
results of these experiments will support our
claim that V&V techniques will positively
enhance the evaluation process.

The actual software testing tools we
have chosen are based on the implementation
paradigms that are used in the specific NL

systems. For example, for a C based system for
automatic indexing (Wacholder et al., 2001), we
have selected the Panorama C/C++ package5.
Various features of this tool facilitate testing of
the system as built, based on code coverage
rather than domain coverage. This approach
effectively tests the knowledge base for
consistency and completeness, which we cannot
do as successfully with a domain based test set.

Regular expressions are frequently used
to implement components of NL systems. We
are studying a component (Evans et al., 2000) of
a significant topics identification system that
uses regular expressions. The software testing
community has not yet developed tools for
addressing coverage (completeness and
consistency) testing of regular expressions. In
this case we will construct a tool, building on
theoretical work (Yannakakis and Lee, 1995)
that has been carried out in the network protocol
research community for testing finite-state
machines.

Clearly we propose adding additional
steps to the testing process. However, this does
not necessarily imply that huge amounts of
additional test data will be necessary. In a
typical testing protocol, a developer can start the
V&V phase with a domain based test set.
Additional test cases are then added
incrementally as needed until the test set is
adequate for coverage of the system as built, and
for assessment of the consistency and
completeness of the system’s knowledge.

6 Open Questions

The question we intend to address in future
research is whether different natural language
application areas can profitably benefit from
different techniques utilized in the software
testing/V&V world. For example, the issues
involved with grammars and parsers are
undoubtedly quite different from those that
come into play in machine translation systems.
With grammars and parsers it is quite tempting
to test the grammar by running the parser and
vice versa. Yet the grammar and parser are
essentially built concurrently, and an error in
one would easily carry over as an error in the
other. Typical testing strategies make it quite

5 http://www.softwareautomation.com

difficult to expose these sorts of errors. A
testing approach is necessary which will help
expose errors or incompletenesses that exist in
both a grammar and its parser. An effort by
Bröker (2000) applies code instrumentation
techniques to grammar analysis. However, the
kinds of errors that may occur in a translation
system or a language generation system are of a
different nature and will require different testing
strategies to expose.

7 Acknowledgements

This research was partially supported by the
National Science Foundation under NSF
POWRE grant #9973855. We also thank
Bonnie Webber, of the University of Edinburgh,
and the Columbia University Natural Language
Processing Group, particularly Kathy McKeown
and Nina Wacholder, for their helpful
discussions.

References

Allen, James (1995). Natural Language
Understanding. Benjamin/Cummings, Redwood
City, CA.

Barr, Valerie (1995). TRUBAC: A Tool for
Testing Expert Systems with Rule-Base Coverage
Measures. Proceedings of the 13th Annual Pacific
Northwest Software Quality Conference, Portland,
OR.

Barr, Valerie (1999). Applications of Rule-Base
Coverage Measures to Expert System Evaluation.
Journal of Knowledge Based Systems, Volume 12
(1999), pp. 27-35.

Barr, Valerie (2001). A quagmire of terminology.
Proceedings of Florida Artificial Intelligence
Research Symposium 2001.

Bröker, Norbert (2000). The use of instrumentation
in grammar engineering. Proceedings of COLING
2000.

Cassell, Justine, Joseph Sullivan, Scott Prevost,
and Elizabeth Churchill (2000). Embodied
Conversational Agents. MIT Press, Cambridge, MA.

Declerk, Thierry et al. (1998). Evaluation of the
NLP Components of an Information Extraction
System for German. Proceedings of the 1st

International Conference on Language Resources
and Evaluation, Granada, Spain, May 1998, pgs.
293-297.

Evans, David K. et al. (2000). Document
Processing with LinkIT, Proceedings of RIAO 2000
(Recherche d’Informations Assistee par Ordinateur),
Paris.

Gonzalez, Avelino and Valerie Barr (2000).
Validation and verification of intelligent systems –
what are they and how are they different? Journal of
Experimental and Theoretical Artificial Intelligence,
12(4).

Grossner, C. et al. (1993). Exploring the structure
of rule based systems. Proceedings, AAAI-93,
Washington, D.C., pp. 704-709.

Hirschman, Lynette and Henry S. Thompson
(1998). Overview of Evaluation in Speech and
Natural Language Processing in Survey of the State
of the Art in Human Language Technology, Giovanni
Varile and Antonio Zampolli, eds., Cambridge
University Press, New York.

James, Frankie et al. (2000). Accuracy, Coverage,
and Speed: What Do They Mean to Users? See
http://www.riacs.edu/doc/2000/htmlo/chi_nl_worksh
op.html

Jing, Hongyan et al. (1998). Summarization
Evaluation Methods: Experiments and Analysis.
AAAI Symposium on Intelligent Summarization,
March 1998, Stanford University.

Jurafsky, Daniel and James Martin (2000). Speech
and Language Processing. Prentice-Hall, NJ.

Klavans, Judith L., Kathleen McKeown, Min-Yen
Kan, and Susan Lee (1998). Resources for
Evaluation of Summarization Techniques.
Proceedings of the First International Conference on
Language Resources and Evaluation, Granada,
Spain, 1998, pgs. 899-902.

Rubio, A. et.al. (1998). On the Comparison of
Speech Recognition Tasks. Proceedings of the First
International Conference on Language Resources
and Evaluation, Granada, Spain, 1998.

Sparck Jones, Karen and Julia Galliers (1996).
Evaluating Natural Language Processing Systems.
Springer-Verlag, Berlin.

Wacholder, Nina. (1997). POWRE:
Computationally Tractable Methods for Document
Analysis. CS Report, Dept. of Computer Science,
Columbia University (NSF funded project).

Wacholder, Nina, et al. (2001). Automatic
Generation of Indexes for Digital Libraries. IEEE-
ACM Joint Conference on Digital Libraries.

Walker, M., et.al. (1997). PARADISE: A
Framework for evaluating spoken dialogue agents.
Proceedings of Association of Computational
Linguists 35th Annual Meeting.

Walker, M. and L. Hirschman (1999). DARPA
Communicator Evaluation Proposal.
www.research.att.com/~walker/eval/evalplan6.rtf

White, John S. and Kathryn B. Taylor (1998). A
Task-Oriented Evaluation Metric for Machine
Translation. Proceedings of the First International
Conference on Language Resources and Evaluation,
Granada, Spain, May 1998, pgs. 21-25.

Yannakakis, Mihalis and David Lee (1995).
Testing Finite State Machines : Fault Detection .
Journal of Computer and Systems Sciences, Volume
50, pages 209-227.

Yu, V.L. et.al. (1985). An evaluation of MYCIN’s
advice. In Rule-Based Expert Systems, Bruce
Buchanan and Edward Shortliffe (Eds.), Addison-
Wesley, Reading, MA.

