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Abstract 

A relatively self-contained subtask of 
natural language generation is sentence 
realization: the process of generating a 
grammatically correct sentence from an 
abstract semantic / logical 
representation.  We propose a method 
where sentence realization is carried 
out using a simplified (context free) 
version of a large analysis grammar, 
combined with a statistical language 
model from the full (context sensitive) 
version of the same grammar.  The 
statistical model provides a measure of 
the probability of syntactic 
substructures, derived from the analysis 
of a corpus with the full grammar, and 
is used to guide both subsequent 
analysis and generation. 

1 Introduction 

To date, only limited use of statistically-derived 
resources has been made for realization in 
natural language generation, notably Knight & 
Hatzivassiloglou (1995), Langkilde & Knight 
(1998) and Bangalore & Rambow (2000).  This 
paper reports on new work in that direction, but 
with an emphasis on reusing resources originally 
produced for analysis purposes.  In particular, a 
generation grammar is derived from an 
extensive analysis grammar in such a way as to 
retain the statistical language model built using 
the analysis grammar. 
 

2 Statistically-Driven Generation 

Work to date on using statistical knowledge for 
generation has mainly focused on the sub-task of 
surface (in fact, sentence) realization: the 
production of a grammatically correct string 
from an abstract semantic/logical representation 
of linguistic content.  This assumes the existence 
of a separate higher-level process to produce 
such a representation, following the canonical 
pipeline architecture of a full generation system 
(Reiter, 1994).  The approach described here has 
the same focus, but attempts to more tightly 
integrate the statistical knowledge in the 
generation process, and also to avoid the need to 
create generation-specific resources. 

2.1 Nitrogen 

The Nitrogen system (Knight & 
Hatzivassiloglou, 1995; Langkilde & Knight, 
1998) made the first significant attempt to 
integrate statistical knowledge for surface 
realization.  It uses an extremely simple 
generation-specific grammar and generates a 
lattice representing all possible strings that the 
grammar allows for a particular semantic input.  
Then, in a separate stage, simple bigram 
statistics are used to rank the alternatives in 
terms of ‘fluency’, determined by similarity to 
word pairs in the training corpus.  The language 
model represented by the bigrams is not used 
within the generation algorithm itself, rather it 
acts as a filter on the proposed output of an 
independent generation system.  The simplified 
grammar is so unconstrained that typically 
hundreds of thousands of alternative strings are 
generated for a single input, including many 
ungrammatical forms.  The bigram model then 



selects the most probable pairwise combination 
of words to select a sentence, considering non-
adjacent words for a fixed set of syntactic 
relations, but not representing any context to 
allow for true long-distance dependencies or to 
avoid multiple expression of the same 
constituents. 

2.2 Fergus 

Bangalore & Rambow (2000) build on the 
approach of the Nitrogen system but use a 
language model which does encode some 
structural information.  They use an XTAG 
grammar (XTAG-Group, 1999), which is not 
generation-specific, with statistically ranked 
subtree structures associated with lexical entries.  
An initial set of subtrees is chosen for a 
particular input, using the model, then a lattice 
of all possible combinations licensed by the 
grammar is constructed, where each 
combination represents an alternative output 
string.  Then, in the same way as Nitrogen, a 
separate trigram model is used to rank the 
alternative strings.  The subtree combination 
phase allows the handling of long-distance 
dependencies, and can more accurately control 
constraints such as agreement, which Nitrogen 
must leave entirely to its bigram model. 

3 A Reusable Language Model 

The approach presented in this paper places a 
strong emphasis on reusing resources originally 
developed for analysis applications.  Without 
requiring a fully reversible analysis system (e.g. 
Neumann & van Noord, 1994), it has proved 
possible to successfully reuse a language model 
developed for analysis in a related generation 
system.   

3.1 Analysis 

The analysis system is built around a broad-
coverage, manually-constructed grammar (a 
descendant of that described in Jensen et al., 
1993).  The grammar can be viewed as a 
context-free backbone of binary phrase-structure 
rules, together with an extensive set of detailed, 
potentially context-sensitive, conditions on each 
rule, referring to lexical, morphological, 
syntactic and semantic features.   

A statistical language model – a lexicalized 
PCFG (similar to that of Collins, 1997) – is 

derived from the analysis grammar by 
processing a corpus using the same grammar 
with no statistical model and recording 
frequencies of substructures built by each rule.  
The sensitivity of the model can be tuned to 
include any of the features referred to by rule 
conditions, including neighboring or descendant 
nodes. 

The training phase for the model requires no 
manual annotation of the corpus, although some 
manual filtering was done to attempt to exclude 
any particularly bad parses.  For the 
approximately 200 rule grammar, a corpus of 
25,000 sentences was used for training, selected 
from a variety of sources and genres. 

The model is then used in subsequent 
analysis with the same grammar to guide 
bottom-up rule applications to build the most 
probable substructures first, acting to direct the 
search through the structures licensed by the 
grammar. 

3.2 Generation 

An equivalent guidance is also required in 
generation, although here structures are built 
top-down.  The analysis grammar cannot be 
used directly for generation, though the 
statistical model depends on the rules in this 
grammar.  For generation, then, a simplified 
grammar is derived from the full form, 
effectively retaining only the context-free 
backbone and discarding almost all of the 
detailed rule conditions.  The statistical model is 
therefore still applicable to the derived 
generation grammar.  Probabilities can be 
determined for substructures exactly as in the 
analysis grammar, thus retaining the effects of 
the rule conditions without requiring reversing 
and explicit testing when generating. 

The derived, simplified, generation grammar, 
because almost all rule conditions have been 
discarded, will massively overgenerate.1 
However, the statistical language model, 
because of the one-to-one correspondence of 
rules in the full and simplified grammars, 
provides an immediate way to constrain the 
overgeneration.  Structures allowed by the 
generation grammar but which are excluded in 

                                                           
1 This is in addition to the overgeneration known to be part 
of the original analysis grammar to allow for certain classes 
of ungrammatical input 



analysis will simply be assigned extremely low 
probabilities, and similarly for ungrammatical 
structures, which may be allowed by the analysis 
grammar but which occur only rarely in the 
training corpus. 

At every choice point in the application of 
the grammar rules, the statistical model is 
available to indicate a preference. 

 

4 The Generation System 

The current implementation of the generation 
system operates in three distinct stages: 
 
1. the semantic representation (basically, a 

representation of argument structure) is 
mapped to an unordered set of syntactic 
nodes, 

2. the generation grammar is used to create a 
tree structure to order the syntactic nodes 
and insert any additional, syntactically 
required, nodes, 

3. an inflected form of each leaf node in the 
final tree is produced, and a final string 
generated. 

 
The input semantic representation is roughly 

equivalent to a quasi-logical form (QLF) 
(Alshawi, 1992), abstracting away from 
structural syntactic dependencies but making 
explicit many surface features.  In particular, 
each input is known to be a sentence unit, and 
all lexical choices, including prepositions and 
determiners, are fully specified. The remaining 
generation tasks are therefore the linear ordering 
of the lexical units, and their inflections, each 
handled separately by the second and third 
stages. 

The current application context for the 
generation system is in the restatement of 
natural language database queries, for 
clarification and disambiguation.  Analysis of 
the queries produces a QLF representation 
which is interpreted with respect to a semantic 
model of the current database.  Interpretation 
results in one or more revised QLFs which are 
then passed to the realizer for confirmation or 
selection by the user before translating to the 
database query language. 

 
 

4.1 Semantic to syntactic mapping 

The first stage translates logical form relations 
and features to corresponding syntactic terms, 
referring to lexical entries where necessary.  For 
example, the semantic representation: 
 

run (+past) 
actor: John 
manner: quickly 
 

is translated unit-by-unit to a verb phrase, a 
subject noun phrase, and an adverbial phrase 
modifier.  The syntactic units are linked in a 
graph structure, but with no ordering constraints 
between them. 

In the current prototype system, this stage in 
fact enforces a one-to-one mapping of semantic 
to syntactic features, though there is clear scope 
for extending the use of the statistical language 
model to direct the translation here, and to allow 
for a one-to-many mapping to be ranked 
subsequently.  The analysis grammar builds 
logical forms compositionally, with individual 
grammar rules fully specifying their semantic 
contributions, but at present these specifications 
are not automatically extracted for the simplified 
generation grammar, and the language model is 
not yet fully sensitive to the semantic features in 
the rules.  The extent to which this mapping 
stage can be automated is currently being 
investigated. 

4.2 Linear ordering 

The second stage of the system, to determine a 
linear ordering for the syntactic nodes using the 
generation grammar, integrates the statistical 
language model directly with no adaptation 
required from its use in analysis. 

A root node is selected from the set produced 
in the previous stage, currently the node 
produced from the root of the logical form 
graph, though the selection could be made more 
flexible.  The simplified generation grammar is 
then checked for all rules which apply to the 
node, testing features and relations, such as 
subject, derived from the semantic relations.  To 
access the rule probabilities represented in the 
language model requires that a substructure is 
generated from each applicable rule, and the 
language model then assigns a probability to 
each substructure.  The highest scoring 



substructure is not immediately selected though 
– a ‘look-ahead’ is carried out to evaluate any 
alternative structures which express the same 
features. 

First the effect of the rule which produced 
the initial structure is determined, in terms of 
which features or relations the rule ‘expresses’ 
or ‘consumes’ from the input, e.g. a VP � NP 
VP rule, which builds a VP with a subject in 
analysis, will ‘consume’ the subject from a root 
VP in generation.  Alternative generation paths 
which consume the same features or relations 
are then considered, and the language model 
again used to determine a probability for each 
substructure expressing the same.  If an 
alternative path receives a higher ranking than 
the substructure produced initially, the initial 
substructure is discarded, and the remainder 
considered. 

For the example input given above, three 
alternative rules in the generation grammar 
apply to express the adverbial modifier: 

 
S � AVP S  (Quickly, John ran) 
VP � AVP VP (John quickly ran) 
VP � VP AVP (John ran quickly) 
 
The first rule applies to the initial root node, 

and the substructure it describes is generated 
immediately.  The other two rules apply at lower 
levels of the tree on alternative paths, and the 
respective probabilities obtained from the 
language model for the substructures generated 
with these particular lexical items are:2 

 
S � AVP S  (0.073) 
VP � AVP VP (0.061) 
VP � VP AVP (0.087) 
 
The best ranked structure is therefore that 

produced by the third rule, and so the generation 
paths including the first two are discarded.  The 
remaining paths are then considered for the 
expression of the subject relation, selecting a 
highly probable VP � NP VP structure, with 
unary rules applying at the leaves (VP � Verb, 
NP � Noun and AVP � Adverb), until no 
further expansion of nodes can be made with the 

                                                           
2 Probabilities may be different for other lexical items, e.g. 
with an unambiguously intransitive verb such as “fall”, the 
VP � AVP VP rule (John quickly fell) receives the highest 
ranking, based on the current training set. 

grammar.  For any given node, ungrammatical 
substructures may be produced, but the language 
model will always be able to rank them. 

The generation algorithm for the linear 
ordering stage can be sketched as follows: 
 
1. Make the syntactic node mapped from the 

root node of the logical form, the root node 
of the new syntactic tree.  

2. For each non-terminal leaf node in the tree:  
a. For each generation grammar rule that 

applies to the selected node, testing 
conditions on the semantically-derived 
relations and features (e.g. subject):  
i. Generate the substructure described 

by the rule. 
ii. Determine the probability for the 

substructure. 
iii. For each generation grammar rule 

that applies to the selected node at a 
lower level in the tree, and 
expresses the same semantic 
relations/features as the rule at the 
current level: 
1. Generate the substructure 

described by the rule. 
2. Determine the probability for 

the substructure. 
iv. If a substructure generated at a 

lower level has a higher probability 
than the substructure generated at 
the current level, discard the 
substructure at the current level. 

b. Add the substructure generated at the 
current level with the highest probability 
to the current syntactic tree. If no 
substructures exist at the current level 
(no applicable rules or all discarded), 
step down one level (apply a null rule) 
and repeat from 2.a. 

 
The algorithm in fact follows a head-driven 

node expansion, or search through the grammar, 
(as in Shieber et al., 1990), with the head of the 
most recently expanded node being selected for 
the next expansion (in step 2 of the algorithm 
above), until a leaf node is produced.  However, 
the nature of the grammar is such that no rule 
expansion will have side effects on any node 
other than the head of its substructure, and so 
any search strategy will produce the same final 



tree, though more alternative paths may be 
considered. 

The ‘look-ahead’ in the search (step 2.a.iii), 
to find other rules expressing the same features 
as a current rule, means that, although the rule 
probabilities obtained from the language model 
are based entirely on local rule substructures, the 
overall path chosen through the grammar is 
globally optimal.  The current implementation of 
the look-ahead is not optimal, however, with 
duplicate substructures being created and 
evaluated for the same rules along equivalent 
paths, and an obvious extension would be the 
addition of a simple caching mechanism for 
substructures and their probabilities. 

One adaptation of the method is to use the 
language model to produce an overall score for 
the final tree (a simple product of the 
substructure scores), and then ‘backtrack’ to 
consider alternative derivations.  This allows an 
exhaustive search through the grammar, instead 
of finding only the best path, as described above.  
For the example input given above, the grammar 
licenses 12 alternative tree structures, with many 
producing the same final strings but via rules 
which would be excluded by the conditions in 
the analysis grammar (e.g. AVP � Pronoun) 
and which are assigned extremely low 
probabilities by the language model, causing the 
overall tree scores to differ typically by several 
orders of magnitude. 

 

4.3 Inflection 

Once a complete tree has been produced, each 
leaf node is passed to the final stage of the 
realization process to be inflected.  Features 
affecting inflection, mainly Person and Number 
for agreement in English, are initially obtained 
from the logical form input or from the lexicon 
in the initial semantic to syntactic mapping 
stage, and then passed through to the appropriate 
syntactic nodes by the rules selected to expand 
the tree structure.  The rules may also introduce 
additional syntactic features such as Case, which 
are then also passed through.  Inflected forms 
for the final feature set of each leaf node are 
then either retrieved from the lexicon or 
generated by rule.  A single final string is then 
read from the completed tree. 
 

5 Performance 

The current implementation of the generation 
system is as a prototype subsystem within an 
existing (C++) analysis system.  This allows 
direct access to the statistical language model 
built for analysis, and which is used unchanged 
for generation.  The simplified generation 
grammar is derived automatically from the 
analysis grammar, and much of the rule 
application mechanism and representation of 
tree structures is reused. 

The system, including the analysis grammar 
and the statistical model, is under continued 
development, but, as is typical of generation 
systems, the most significant omission is the 
lack of any formal evaluation methodology.  
Bangalore & Rambow (2000) propose some 
interesting initial metrics, but we have not yet 
attempted any comparative experiments. 

Informal evaluation on a non-blind training 
corpus of 200 logical forms (processed at 
approximately 40 per second on a 1GHz PC) 
currently shows a roughly 4% error rate 
(ungrammatical output) for output sentences 
with an average length of 7 words (maximum 
14).  However the vast majority of these errors 
(85%) are from the bad placement of adjective 
phrase modifiers, for example “Show [NP the [AJP 
larger than Monaco] countries]”, due to a high 
probability being assigned for structures with a 
modifier phrase on the left.  This suggests a 
revision of the statistical model to make it more 
sensitive to particular modifier types, rather than 
a revision of the generation algorithm.  Indeed, a 
significant benefit of the reversible approach 
represented by sharing resources between 
analysis and generation, is to drive 
improvements to the resources by identifying 
weaknesses not apparent in a single processing 
mode. 

6 Future Work 

Planned extensions include the use of an 
additional bigram model to assist in cases where 
constituent orderings are not constrained by the 
grammar, such as sequences of adjectives and 
other modifiers.  Such information can be 
integrated in the initial semantic to syntactic 
mapping stage where constituent head-words 
can be compared directly, or during rule 
selection in the linear ordering stage to indicate 



a precedence among otherwise equivalent 
constituents. 

A further area of investigation is the effect of 
retraining the statistical model on specific genre, 
rather than general, corpora.  This has the 
potential to bias selections in the grammar 
towards constructions typical of a certain style, 
such as prepositional phrase fronting in formal 
writing, etc. 

The current generation grammar also 
excludes punctuation rules, though these are 
present in the original analysis grammar, and 
experimentation to determine the ability of the 
language model to select and place punctuation 
is planned. 

Of course, the input representation used for 
the realization stage assumes that most of the 
challenging higher level issues in text and 
sentence planning have already been dealt with, 
but this is not yet the case. 

7 Conclusion 

The tight integration of the statistical language 
model into the generation process described here 
allows a ‘best first’ search through the possible 
expansions licensed by a simplified and 
overgenerating grammar.  This contrasts with 
the exhaustive searches through the grammars in 
Nitrogen (Langkilde & Knight, 1998) and 
Fergus (Bangalore & Rambow, 2000), where the 
generation algorithm operates independently of 
the statistical resources.  Such integration has 
the potential to produce easily tunable 
generation systems based around a stable 
comprehensive grammar, as well as indicate 
precisely which statistical language models are 
most suited to generation requirements, and 
whether these requirements differ at all from 
those of analysis. 
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