
Reusing a Statistical Language Model for Generation

Kevin Humphreys, Mike Calcagno, David Weise
Natural Language Group, Microsoft Corporation

One Microsoft Way
Redmond, WA 98052, USA

{kevinhum,mikecalc,davidw}@microsoft.com

Abstract

A relatively self-contained subtask of
natural language generation is sentence
realization: the process of generating a
grammatically correct sentence from an
abstract semantic / logical
representation. We propose a method
where sentence realization is carried
out using a simplified (context free)
version of a large analysis grammar,
combined with a statistical language
model from the full (context sensitive)
version of the same grammar. The
statistical model provides a measure of
the probability of syntactic
substructures, derived from the analysis
of a corpus with the full grammar, and
is used to guide both subsequent
analysis and generation.

1 Introduction

To date, only limited use of statistically-derived
resources has been made for realization in
natural language generation, notably Knight &
Hatzivassiloglou (1995), Langkilde & Knight
(1998) and Bangalore & Rambow (2000). This
paper reports on new work in that direction, but
with an emphasis on reusing resources originally
produced for analysis purposes. In particular, a
generation grammar is derived from an
extensive analysis grammar in such a way as to
retain the statistical language model built using
the analysis grammar.

2 Statistically-Driven Generation

Work to date on using statistical knowledge for
generation has mainly focused on the sub-task of
surface (in fact, sentence) realization: the
production of a grammatically correct string
from an abstract semantic/logical representation
of linguistic content. This assumes the existence
of a separate higher-level process to produce
such a representation, following the canonical
pipeline architecture of a full generation system
(Reiter, 1994). The approach described here has
the same focus, but attempts to more tightly
integrate the statistical knowledge in the
generation process, and also to avoid the need to
create generation-specific resources.

2.1 Nitrogen

The Nitrogen system (Knight &
Hatzivassiloglou, 1995; Langkilde & Knight,
1998) made the first significant attempt to
integrate statistical knowledge for surface
realization. It uses an extremely simple
generation-specific grammar and generates a
lattice representing all possible strings that the
grammar allows for a particular semantic input.
Then, in a separate stage, simple bigram
statistics are used to rank the alternatives in
terms of ‘fluency’, determined by similarity to
word pairs in the training corpus. The language
model represented by the bigrams is not used
within the generation algorithm itself, rather it
acts as a filter on the proposed output of an
independent generation system. The simplified
grammar is so unconstrained that typically
hundreds of thousands of alternative strings are
generated for a single input, including many
ungrammatical forms. The bigram model then

selects the most probable pairwise combination
of words to select a sentence, considering non-
adjacent words for a fixed set of syntactic
relations, but not representing any context to
allow for true long-distance dependencies or to
avoid multiple expression of the same
constituents.

2.2 Fergus

Bangalore & Rambow (2000) build on the
approach of the Nitrogen system but use a
language model which does encode some
structural information. They use an XTAG
grammar (XTAG-Group, 1999), which is not
generation-specific, with statistically ranked
subtree structures associated with lexical entries.
An initial set of subtrees is chosen for a
particular input, using the model, then a lattice
of all possible combinations licensed by the
grammar is constructed, where each
combination represents an alternative output
string. Then, in the same way as Nitrogen, a
separate trigram model is used to rank the
alternative strings. The subtree combination
phase allows the handling of long-distance
dependencies, and can more accurately control
constraints such as agreement, which Nitrogen
must leave entirely to its bigram model.

3 A Reusable Language Model

The approach presented in this paper places a
strong emphasis on reusing resources originally
developed for analysis applications. Without
requiring a fully reversible analysis system (e.g.
Neumann & van Noord, 1994), it has proved
possible to successfully reuse a language model
developed for analysis in a related generation
system.

3.1 Analysis

The analysis system is built around a broad-
coverage, manually-constructed grammar (a
descendant of that described in Jensen et al.,
1993). The grammar can be viewed as a
context-free backbone of binary phrase-structure
rules, together with an extensive set of detailed,
potentially context-sensitive, conditions on each
rule, referring to lexical, morphological,
syntactic and semantic features.

A statistical language model – a lexicalized
PCFG (similar to that of Collins, 1997) – is

derived from the analysis grammar by
processing a corpus using the same grammar
with no statistical model and recording
frequencies of substructures built by each rule.
The sensitivity of the model can be tuned to
include any of the features referred to by rule
conditions, including neighboring or descendant
nodes.

The training phase for the model requires no
manual annotation of the corpus, although some
manual filtering was done to attempt to exclude
any particularly bad parses. For the
approximately 200 rule grammar, a corpus of
25,000 sentences was used for training, selected
from a variety of sources and genres.

The model is then used in subsequent
analysis with the same grammar to guide
bottom-up rule applications to build the most
probable substructures first, acting to direct the
search through the structures licensed by the
grammar.

3.2 Generation

An equivalent guidance is also required in
generation, although here structures are built
top-down. The analysis grammar cannot be
used directly for generation, though the
statistical model depends on the rules in this
grammar. For generation, then, a simplified
grammar is derived from the full form,
effectively retaining only the context-free
backbone and discarding almost all of the
detailed rule conditions. The statistical model is
therefore still applicable to the derived
generation grammar. Probabilities can be
determined for substructures exactly as in the
analysis grammar, thus retaining the effects of
the rule conditions without requiring reversing
and explicit testing when generating.

The derived, simplified, generation grammar,
because almost all rule conditions have been
discarded, will massively overgenerate.1
However, the statistical language model,
because of the one-to-one correspondence of
rules in the full and simplified grammars,
provides an immediate way to constrain the
overgeneration. Structures allowed by the
generation grammar but which are excluded in

1 This is in addition to the overgeneration known to be part
of the original analysis grammar to allow for certain classes
of ungrammatical input

analysis will simply be assigned extremely low
probabilities, and similarly for ungrammatical
structures, which may be allowed by the analysis
grammar but which occur only rarely in the
training corpus.

At every choice point in the application of
the grammar rules, the statistical model is
available to indicate a preference.

4 The Generation System

The current implementation of the generation
system operates in three distinct stages:

1. the semantic representation (basically, a

representation of argument structure) is
mapped to an unordered set of syntactic
nodes,

2. the generation grammar is used to create a
tree structure to order the syntactic nodes
and insert any additional, syntactically
required, nodes,

3. an inflected form of each leaf node in the
final tree is produced, and a final string
generated.

The input semantic representation is roughly

equivalent to a quasi-logical form (QLF)
(Alshawi, 1992), abstracting away from
structural syntactic dependencies but making
explicit many surface features. In particular,
each input is known to be a sentence unit, and
all lexical choices, including prepositions and
determiners, are fully specified. The remaining
generation tasks are therefore the linear ordering
of the lexical units, and their inflections, each
handled separately by the second and third
stages.

The current application context for the
generation system is in the restatement of
natural language database queries, for
clarification and disambiguation. Analysis of
the queries produces a QLF representation
which is interpreted with respect to a semantic
model of the current database. Interpretation
results in one or more revised QLFs which are
then passed to the realizer for confirmation or
selection by the user before translating to the
database query language.

4.1 Semantic to syntactic mapping

The first stage translates logical form relations
and features to corresponding syntactic terms,
referring to lexical entries where necessary. For
example, the semantic representation:

run (+past)
actor: John
manner: quickly

is translated unit-by-unit to a verb phrase, a
subject noun phrase, and an adverbial phrase
modifier. The syntactic units are linked in a
graph structure, but with no ordering constraints
between them.

In the current prototype system, this stage in
fact enforces a one-to-one mapping of semantic
to syntactic features, though there is clear scope
for extending the use of the statistical language
model to direct the translation here, and to allow
for a one-to-many mapping to be ranked
subsequently. The analysis grammar builds
logical forms compositionally, with individual
grammar rules fully specifying their semantic
contributions, but at present these specifications
are not automatically extracted for the simplified
generation grammar, and the language model is
not yet fully sensitive to the semantic features in
the rules. The extent to which this mapping
stage can be automated is currently being
investigated.

4.2 Linear ordering

The second stage of the system, to determine a
linear ordering for the syntactic nodes using the
generation grammar, integrates the statistical
language model directly with no adaptation
required from its use in analysis.

A root node is selected from the set produced
in the previous stage, currently the node
produced from the root of the logical form
graph, though the selection could be made more
flexible. The simplified generation grammar is
then checked for all rules which apply to the
node, testing features and relations, such as
subject, derived from the semantic relations. To
access the rule probabilities represented in the
language model requires that a substructure is
generated from each applicable rule, and the
language model then assigns a probability to
each substructure. The highest scoring

substructure is not immediately selected though
– a ‘look-ahead’ is carried out to evaluate any
alternative structures which express the same
features.

First the effect of the rule which produced
the initial structure is determined, in terms of
which features or relations the rule ‘expresses’
or ‘consumes’ from the input, e.g. a VP � NP
VP rule, which builds a VP with a subject in
analysis, will ‘consume’ the subject from a root
VP in generation. Alternative generation paths
which consume the same features or relations
are then considered, and the language model
again used to determine a probability for each
substructure expressing the same. If an
alternative path receives a higher ranking than
the substructure produced initially, the initial
substructure is discarded, and the remainder
considered.

For the example input given above, three
alternative rules in the generation grammar
apply to express the adverbial modifier:

S � AVP S (Quickly, John ran)
VP � AVP VP (John quickly ran)
VP � VP AVP (John ran quickly)

The first rule applies to the initial root node,

and the substructure it describes is generated
immediately. The other two rules apply at lower
levels of the tree on alternative paths, and the
respective probabilities obtained from the
language model for the substructures generated
with these particular lexical items are:2

S � AVP S (0.073)
VP � AVP VP (0.061)
VP � VP AVP (0.087)

The best ranked structure is therefore that

produced by the third rule, and so the generation
paths including the first two are discarded. The
remaining paths are then considered for the
expression of the subject relation, selecting a
highly probable VP � NP VP structure, with
unary rules applying at the leaves (VP � Verb,
NP � Noun and AVP � Adverb), until no
further expansion of nodes can be made with the

2 Probabilities may be different for other lexical items, e.g.
with an unambiguously intransitive verb such as “fall”, the
VP � AVP VP rule (John quickly fell) receives the highest
ranking, based on the current training set.

grammar. For any given node, ungrammatical
substructures may be produced, but the language
model will always be able to rank them.

The generation algorithm for the linear
ordering stage can be sketched as follows:

1. Make the syntactic node mapped from the

root node of the logical form, the root node
of the new syntactic tree.

2. For each non-terminal leaf node in the tree:
a. For each generation grammar rule that

applies to the selected node, testing
conditions on the semantically-derived
relations and features (e.g. subject):
i. Generate the substructure described

by the rule.
ii. Determine the probability for the

substructure.
iii. For each generation grammar rule

that applies to the selected node at a
lower level in the tree, and
expresses the same semantic
relations/features as the rule at the
current level:
1. Generate the substructure

described by the rule.
2. Determine the probability for

the substructure.
iv. If a substructure generated at a

lower level has a higher probability
than the substructure generated at
the current level, discard the
substructure at the current level.

b. Add the substructure generated at the
current level with the highest probability
to the current syntactic tree. If no
substructures exist at the current level
(no applicable rules or all discarded),
step down one level (apply a null rule)
and repeat from 2.a.

The algorithm in fact follows a head-driven

node expansion, or search through the grammar,
(as in Shieber et al., 1990), with the head of the
most recently expanded node being selected for
the next expansion (in step 2 of the algorithm
above), until a leaf node is produced. However,
the nature of the grammar is such that no rule
expansion will have side effects on any node
other than the head of its substructure, and so
any search strategy will produce the same final

tree, though more alternative paths may be
considered.

The ‘look-ahead’ in the search (step 2.a.iii),
to find other rules expressing the same features
as a current rule, means that, although the rule
probabilities obtained from the language model
are based entirely on local rule substructures, the
overall path chosen through the grammar is
globally optimal. The current implementation of
the look-ahead is not optimal, however, with
duplicate substructures being created and
evaluated for the same rules along equivalent
paths, and an obvious extension would be the
addition of a simple caching mechanism for
substructures and their probabilities.

One adaptation of the method is to use the
language model to produce an overall score for
the final tree (a simple product of the
substructure scores), and then ‘backtrack’ to
consider alternative derivations. This allows an
exhaustive search through the grammar, instead
of finding only the best path, as described above.
For the example input given above, the grammar
licenses 12 alternative tree structures, with many
producing the same final strings but via rules
which would be excluded by the conditions in
the analysis grammar (e.g. AVP � Pronoun)
and which are assigned extremely low
probabilities by the language model, causing the
overall tree scores to differ typically by several
orders of magnitude.

4.3 Inflection

Once a complete tree has been produced, each
leaf node is passed to the final stage of the
realization process to be inflected. Features
affecting inflection, mainly Person and Number
for agreement in English, are initially obtained
from the logical form input or from the lexicon
in the initial semantic to syntactic mapping
stage, and then passed through to the appropriate
syntactic nodes by the rules selected to expand
the tree structure. The rules may also introduce
additional syntactic features such as Case, which
are then also passed through. Inflected forms
for the final feature set of each leaf node are
then either retrieved from the lexicon or
generated by rule. A single final string is then
read from the completed tree.

5 Performance

The current implementation of the generation
system is as a prototype subsystem within an
existing (C++) analysis system. This allows
direct access to the statistical language model
built for analysis, and which is used unchanged
for generation. The simplified generation
grammar is derived automatically from the
analysis grammar, and much of the rule
application mechanism and representation of
tree structures is reused.

The system, including the analysis grammar
and the statistical model, is under continued
development, but, as is typical of generation
systems, the most significant omission is the
lack of any formal evaluation methodology.
Bangalore & Rambow (2000) propose some
interesting initial metrics, but we have not yet
attempted any comparative experiments.

Informal evaluation on a non-blind training
corpus of 200 logical forms (processed at
approximately 40 per second on a 1GHz PC)
currently shows a roughly 4% error rate
(ungrammatical output) for output sentences
with an average length of 7 words (maximum
14). However the vast majority of these errors
(85%) are from the bad placement of adjective
phrase modifiers, for example “Show [NP the [AJP
larger than Monaco] countries]”, due to a high
probability being assigned for structures with a
modifier phrase on the left. This suggests a
revision of the statistical model to make it more
sensitive to particular modifier types, rather than
a revision of the generation algorithm. Indeed, a
significant benefit of the reversible approach
represented by sharing resources between
analysis and generation, is to drive
improvements to the resources by identifying
weaknesses not apparent in a single processing
mode.

6 Future Work

Planned extensions include the use of an
additional bigram model to assist in cases where
constituent orderings are not constrained by the
grammar, such as sequences of adjectives and
other modifiers. Such information can be
integrated in the initial semantic to syntactic
mapping stage where constituent head-words
can be compared directly, or during rule
selection in the linear ordering stage to indicate

a precedence among otherwise equivalent
constituents.

A further area of investigation is the effect of
retraining the statistical model on specific genre,
rather than general, corpora. This has the
potential to bias selections in the grammar
towards constructions typical of a certain style,
such as prepositional phrase fronting in formal
writing, etc.

The current generation grammar also
excludes punctuation rules, though these are
present in the original analysis grammar, and
experimentation to determine the ability of the
language model to select and place punctuation
is planned.

Of course, the input representation used for
the realization stage assumes that most of the
challenging higher level issues in text and
sentence planning have already been dealt with,
but this is not yet the case.

7 Conclusion

The tight integration of the statistical language
model into the generation process described here
allows a ‘best first’ search through the possible
expansions licensed by a simplified and
overgenerating grammar. This contrasts with
the exhaustive searches through the grammars in
Nitrogen (Langkilde & Knight, 1998) and
Fergus (Bangalore & Rambow, 2000), where the
generation algorithm operates independently of
the statistical resources. Such integration has
the potential to produce easily tunable
generation systems based around a stable
comprehensive grammar, as well as indicate
precisely which statistical language models are
most suited to generation requirements, and
whether these requirements differ at all from
those of analysis.

References
Alshawi, H., ed., (1992) The Core Language Engine,

MIT Press, Cambridge, Massachusetts, USA.

Bangalore S. and Rambow O. (2000) Exploiting a
probabilistic hierarchical model for generation. In
“Proceedings of COLING-2000”, Saarbrücken,
Germany.

Collins, M.J. (1997) Three generative lexicalised
models for statistical parsing. In “Proceedings of
ACL-EACL’97”, Madrid, Spain.

Jensen K., Heidorn G.E. and Richardson S.D., eds.,
(1993) Natural language processing: the PLNLP
approach, Kluwer Academic Publishers, Boston,
Massachusetts, USA.

Knight K. And Hatzivassiloglou V. (1995) Two-level,
Many-Paths Generation. In “Proceedings of
ACL’95”, Cambridge, Massachusetts, USA.

Langkilde I. and Knight K. (1998) Generation that
exploits corpus-based statistical knowledge. In
“Proceedings of COLING-ACL’98”, Montreal,
Canada.

Nuemann G. and van Noord G. (1994) Reversibility
and self-monitoring in natural language
generation. In “Reversible Grammar in Natural
Language Processing”, Strzalkowski T., ed.,
Kluwer Academic Publishers, Dordrecht, The
Netherlands.

Reiter E. (1994) Has a consensus NL generation
architecture appeared, and is it psychologically
plausible? In “Proceedings of the 7th International
Workshop on Natural Language Generation”,
Maine, USA.

Shieber S.M., van Noord G., Moore R.C. and Pereira
C.N. (1990) Semantic-head-driven generation.
Computational Linguistics, 16(1).

XTAG-Group The (1999) A lexicalised Tree
Adjoining Grammar for English. Technical
report, Institute for Research in Cognitive Science,
University of Pennsylvania, USA.

