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Abstract

In this paper, we present a paral-
lel context sensitive graph rewriting
formalism for a dependency-oriented
generation grammar. The paral-
lel processing of the input structure
makes an explicit presentation of all
alternative options for its mapping
onto the output structure possible.
This allows for the selection of the
linguistic realization that suits best
the communicative and contextual
criteria available.

1 Introduction

Graph-rewriting formalisms received a con-
siderable attention in generation grammar
implementations and in the area of transfer in
machine translation. A graph-rewriting for-
malism is either sequential or parallel (Rozen-
berg, 1997). A sequential graph-rewriting for-
malism gradually transforms an input struc-
ture specified in the formal language £ into
an output structure, which is specified in the
formal language Lo, by using explicitly or
implicitly defined rewriting rules.! Explicit
rewriting rules may have the format of clas-
sic rewriting rules, as, e.g., in (Frank, 1999)
or of bidirectional rules that establish a cor-
respondence relation between minimal struc-
tures of £y and Ly, as, e.g., in (lordanskaja
et al., 1988; Lavoie and Rambow, 1997). ITm-
plicit rewriting rules are encoded in terms of
L-constraints that are associated with struc-
ture chunks and lexical items of Ly; see, e.g.,

Note that £; and £ may be identical, but do not
need to be so.

(Nicolov et al., 1996; Beale et al., 1998; Stede,
1999).

A parallel graph-rewriting formalism maps
a given input structure to an output struc-
ture instead of transforming the former into
the latter. Although parallel graph-rewriting
shows several advantages when compared to
sequential graph rewriting (see Section 3), se-
quential graph-rewriting formalisms are much
more common.

In this paper, we present the implementa-
tion of a parallel graph rewriting formalism
for the grammar of the Meaning-Text The-
ory (MTT) (Mel’¢uk, 1981; Mel’¢uk, 1988).
The focus of the presentation is on one of the
major stages of the algorithm: the spelling
out which rules are to be applied to which
fragments of the input structure in order to
achieve its most optimal coverage. This is a
search problem.

In the next section, a brief introduction to
MTT and its formal basics is given. In Sec-
tion 3 we present the stages of processing in
parallel graph rewriting. Section 4 explains
the search algorithm in detail and presents an
example of how the search algorithm works in
practice. Section 5 discusses some of the re-
lated work in this area. In Section 6, finally,
a summary and some conclusions are given.

2 The Meaning-Text Theory
2.1 Linguistic Foundations

The Meaning-Text Theory is a multistratal
dependency theory. Five of its strata are im-
mediately relevant for generation: (1) the se-
mantic stratum, (2) the deep-syntactic stra-
tum, (3) the surface-syntactic-stratum, (4)



the deep-morphological stratum, and (5) the
surface-morphological stratum, which is the
linearized surface structure. Linguistic struc-
tures at the semantic stratum are predicate-
argument structures, i.e., directed acyclic
graphs in which nodes stand for predicates
and objects, and edges establish relations be-
tween predicates and their arguments (with
each edge being labelled by the number of
the respective argument). Linguistic struc-
tures at both syntactic strata are dependency
trees with lexemes being represented as nodes
and syntactic relations as edges. At the
deep-syntactic stratum, the encoded syntac-
tic relations are actant or participant rela-
tions. The actant relations are not named
(as, e.g., in the systemic grammar), but sim-
ply numbered by I, II, III, ...). As (gram-
matical) functions in the fstructure in LFG,
actant relations are assumed to be univer-
sal. At the surface-syntactic stratum, the en-
coded syntactic relations are language-specific
grammatical functions (such as subject, di-
rect object, etc.). Linguistic structures at the
morphological strata are (ordered) sequences
of word forms. Figure 1 shows the deep-
syntactic structure and the surface-syntactic
structure for the sentence The assembly forced
Socrates to drink the cup of hemlock in the
dawn. In the deep-syntactic structure, the
dashed line represents the referential link be-
tween the two ‘Socrates’ nodes.

At all levels of representation, the nodes
of linguistic structures are, in fact, fea-
ture structures. They are defined in
terms of attribute-value pairs (such as, e.g.,
‘lex = Socrates’, ‘cat = verb’, ‘voice =
passive’, etc.). For instance, the node
force carries the attribute-value pairs cat =
verb, form = finite, tense = past, voice
= active. In the graphic representation, the
attribute-value pairs of a node are shown only
upon request. Both the nodes and the at-
tributes are typed.?

The grammar in MTT is a priori an equative

2As a matter of fact, the linguistic structures and
the rules in MTT can be represented in terms of typed
feature structures; see (Mel'¢cuk and Wanner, forth-
coming).
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Figure 1: Deep-syntactic and surface-

syntactic structures of the sentence The as-
sembly forced Socrates to drink the cup of
hemlock in the dawn.

device (Kahane, forthcoming). It consists of a
set of rules that establish the correspondence
between minimal structures at two adjacent
strata—with a minimal structure being a fea-
ture of a node, a node, a relation between two
nodes, or a configuration of relations. Fig-
ure 2 shows a sample grammar rule as imple-
mented in MATE (Bohnet et al., 2000). This
rule maps the deep-syntactic relation II (the
second actant) onto the surface-syntactic re-
lation dobjective (i.e., direct object). The
rule applies if there is the first actant avail-
able (i.e.., the relation I is specified in the in-
put structure), the verbal head of the struc-
ture contains the attribute-feature pair ‘cat
= verb’, and no attribute-value pair ‘voice =
passive’.® The relation I is specified as being
in the context. That is, it is not “consumed”
by the rule; it rather serves as a constraint for

3Note that if there would be no actant I available,
in order to get a grammatical sentence, the second
actant would have to be realized as subjective. In
other words, in such a case, passivization would take
place.



context: ?7Xds -I-> 7Zds
left-h.s.: ?Xds -II-> 7Yds
conditions: ?Xds.cat = verb

NOT ?Xds.voice = passive
right-h.s.: ?Xss -dobjective-> 7Yss

correspondences:?7Xss <=>7Xds
7Y¥ss <=>7Yds

Figure 2: A sample grammar rule.

the application of the rule.

In the process of generation, a compiler ap-
plies grammar rules to an input structure. If
a fragment of the structure matches with the
left-hand side of a rule, and the constraints
specified in context and in the condition slots
of this rule are met, the fragment is mapped
onto the substructure specified at the right-
hand side of the rule.

Our grammar formalism is intended to be
bidirectional,* i.e., to be applicable for gener-
ation and for parsing. Therefore (and because
of the general policy adopted in MTT), in
grammar rules, only purely linguistic criteria
are specified as conditions. No criteria, e.g.,
from the situational context are considered.
As a result, the grammar might well produce
several output structures. It is left to spe-
cific submodules of sentence planning (such
as lexicalization, syntacticticization, etc.) to
further restrict and monitor the realization of
an input structure by the grammar.
ever, we do not discuss the interaction of these
modules with the grammar in what follows.
Rather, we restrict ourselves to the presenta-
tion of the grammar formalism.

How-

2.2 Formal Description

From the formal viewpoint, linguistic struc-
tures can be considered as attributed graphs
with a variant degree of freedom.

Definition 1 (Attributed Graph) Let
Yo, Y0 and XV*h.n be sets with ¥° being
the set of edge labels, 3* the set of attributes
used in node descriptions, and Y"1 the
set of possible attribute values.

*When a generation rule as shown in Figure 2 is
reversed, the conditions in the conditions-slot become
right-hand side statements. The context information
does not need to be modified since the formalism al-
lows for ‘right-hand side contexts’.

Then a directed attributed graph is a triple
G; = (N,E,A) where N is a finite set of
nodes, F is a subset of ¥* x N x N, A
is a subset of N x ((o! x ¥vhy u ... U
(6™ x ¥viln)) and o/ € ¥, and i €
{Sem, DSynt, SSynt, DMorph,SMorph}.

In (e, n1,n2) € F, ny is the source node and
ng is the target node of the edge e.

In this context, an MTT- grammar rule is a
graph rule of the following kind:

Definition 2 (Graph Rule) A graph rule
is a quintuple GR = (G|, G,,C, R,c). Gy is
the left-hand side (connected) graph and G, is
the right-hand side graph as defined in Defini-
tion 1. C' is the set of conditions which must
hold in order for the rule to be applicable. R
is the relation between parts of Gy and G,. ¢
is a function that is defined for each node, and
edge: c(z) = {y|(z,y) € C,} with C, = N X

{context consume}UFE x {context consume}.

R is a subset of N x N; it is what in graph
grammar literature is called “ embedding”. In
the most simple case, R holds between nodes
of G; and G,.

Due to space restrictions, we don’t intro-
duce the definition of the conditions here.
The interested reader can consult the MATE-
Manual (Bohnet et al., 2001a).

A graph grammar GG consists thus of a
set of static rules of the above kind. A graph
system compiles then a given “source” graph
using GG into a “destination” graph—in our
scenario a structure at a given stratum into a
structure at the stratum adjacent to the for-
mer. It can thus be defined as outlined in the
next section.

3 Graph Systems
3.1 Basic Approaches

Definition 3 (Graph System) A  graph
system is a triple G = (Gg,,GG,Gq,). Gg,
is a set of graphs at a given stratum; GG is
the graph grammar applicable to g € Gg,,
and G, is the set of graphs resulting from
the application of GG to g € Gg,.

The problem one faces when using a Graph
System is to find the optimal strategy for
matching the Gs (see the Definition 2 above)



of the rules with fragments of Gg,. As men-
tioned above, there are two different basic ap-
proaches for how to proceed: (i) sequential
graph rewriting and (ii) parallel graph rewrit-
ing (Rozenberg, 1997).

Sequential graph rewriting systems iden-
tify fragments of the source graph that match
with the left-hand side of one of the given
graph rules and replace these fragments with
the right-hand side of the rule in question.
By a successive application of the rules to the
source graph, the latter is rewritten. In the
course of the process, we have thus an in-
termediate graph that consists partly of the
vocabulary of the source side language and
partly of the vocabulary of the target side
language. The process terminates if there are
no more rules applicable to the intermediate
graph. The main problem one faces when
following the sequential graph rewriting ap-
proach is thus to figure out how to embed a
new chunk gained from the application of a
rule into the intermediate graph produced so
far.

The sequential graph rewriting approach
bears some disadvantages when applied to
generation. For instance, in order to achieve a
predictable resulting structure, the rules must
be ordered before hand. However, a prede-
fined ordering of rules is linguistically not jus-
tified. Furthermore, in generators that sepa-
rate the task of grammar processing from the
tasks of sentence planning (as is the case in
our generator), it must be possible to exam-
ine which alternative structures are possible
in the given situation context so as to invoke
the generation of the most appropriate one.
In a sequential graph rewriting approach, this
requires a non-trivial book keeping overhead
for backtracking or alternative structure pro-
cessing.

Parallel graph rewriting systems identify
parts of the source structure that correspond
to the left-hand side of one of the available
rules in the same way sequential graph rewrit-
ing systems do. However, unlike in a sequen-
tial system where the rules are applied in se-
quence to intermediate graph structure, in a
parallel system, first a “rule binding map” (or

“lock map”; see below) of the source graph is
created. In this map, it is indicated which
rules are applicable to which fragments of the
graph. This allows for the determination of
an optimal “coverage” of the source graph by
the available rules before the rules are actu-
ally executed “in one shot”. That is, no inter-
mediate graph structure is produced and no
unmodified parts of the source graph appear
in the resulting graph. The main problem one
faces when following the parallel graph rewrit-
ing approach is thus to find optimal strategies
for binding rules to the source graph and for
unifying the resulting fragments.

We chose the parallel approach because of
four reasons. First MTT defines the corre-
spondence of meaning and text in terms of
equative rules. This view is supported by the
parallel approach.® Second, the parallel ap-
proach allows for a more powerful concept of
a context sensitive graph rule. That is, a par-
allel graph rewriting rule can contain a dec-
laration of a context—a chunk of the source
graph which must be available for the rule to
be applicable, but which is not “consumed”,
i.e. mapped onto the target side, when the
rule is executed. Contexts provide an indis-
pensable means for making rules as specific
as necessary and as elementary as desired.
This is possible only because the source graph
does not change in the course of the process.
Third, in the parallel approach, the grammar-
ian does not need to take care of the order
in which the rules should be applied. Fur-
thermore, if the same grammatical resources
are to be made available for generation and
parsing, no hard wired order of rule execution
can be accepted. Fourth, the parallel graph
rewriting approach allows for (but does not
enforce) the generation of alternative result
structures. This is useful, e.g., for grammar
maintenance, and for advanced sentence plan-
ning strategies.

% Although, to our knowledge, all so far existing
MTT-based generators use the sequential approach.



3.2 Implementing a Parallel Graph
System for Generation

A parallel graph system cycle. In the re-
alization of a parallel graph system for MTT-
grammars, the mapping between the graphs
of two adjacent strata S; and S;y; is per-
formed in cycles. A cycle consists of five
stages: (1) binding, (2) evaluation, (3) clus-
tering, (4) application and (5) unification.

In what follows, we briefly introduce (1) to
(5). Since the binding stage (in combination
with the evaluation of simple conditions) is
the most difficult (and the most interesting)
part, we discuss it in Section 4 in more detail.

Binding. In the source graph g, € G;, all
parts that match the left-hand side d, € D;
of one or several rules that are available for
S;<S;41 areidentified and bound. Obviously,
a rule may match more than one part in the
source graph. To increase efficiency one-node
(= simple) conditions such as

Lexicon:: (?Xdsyn.lex) .cat = noun
?Ydsynt .theme = yes
NOT ?Ydsynt.perspective = background

are evaluated already during the binding
stage.

Evaluation of complex conditions. Af-
ter the binding stage, the evaluation of com-
plex conditions takes place. Unlike simple
conditions, complex conditions draw on sev-
eral nodes in the input structure; cf., e.g.:

?Xds.form = finite AND ?Yds.form =

infinite

The result of the evaluation stage are sets
of instances of applicable rules.

Clustering. During the clustering stage,
rules that are applicable together to the input
structure in question without contradicting
each other are grouped or “clustered”. Two
rules contradict if they apply to the same frag-
ment of the input structure.

The clusters are retrieved from the “lock
map”, which contains the association of rules
to fragments of the input structure.

Figure 3 shows a screen shot of the lock
map as presented in the inspector of MATE
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Figure 3: The lock map.

while processing the deep-syntactic structure
in Figure 1.
names of instantiated nodes and relations of
the input structure (in parentheses, the num-
bers of instances are given that are used by
the compiler for book keeping). The first row
contains the names of rules that apply to the
given input structure. The application of a
rule to a fragment of the input structure is
marked by an ‘xl’ in the respective slot of the
lock map matrix. ‘xI’
lock”. That is, only one rule is allowed to ap-
ply to a fragment. If two locks occur in one
row, there is a contradiction and two clusters
are built. The numbers in the slots of the
lock map matrix are numbers of rule instances
that lock non-exclusively the respective parts
of the input structure as context.
Application. During the application
stage, the rule clusters specified in the lock
map are applied to the respective parts of the
input structure and thus fragments of the out-
put structure (as specified in the right-hand
sides of the rules) are generated. As Figure 4
shows, the result of this stage are isolated el-
ementary structures that are similar to ele-
mentary trees of a TAG and segments of the

The first column contains the

stands for “exclusive

Segment Grammar.

Unification. During the last stage, the
stage of unification, the elementary structures
are “glued” together. That is, nodes, which
correspond to the same source node are uni-
fied. For each cluster a result structure is gen-
erated. Operations at this stage are equiva-
lent to substitution in a TAG.

Cycle repetition. A repetition of the pro-
cessing cycle as sketched above becomes nec-
essary if one or several rules contain in the
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at the stage oft rule application.

context slot a target substructure (i.e., a
structure produced by the preceding rules).
In this case, the stages (1) to (5) are repeated
with rules which access the target structure
and rules that compete with target structure
accessing rules (i.e., rules that apply to the
same parts of the source structure).

The termination of cycle repetition is en-
sured since no correct grammar rule accesses
only the target structure. In other words,
each rule consumes some source structure in-
The algorithm terminates when
the entire source structure has been “con-

formation.

sumed”.
4 Binding

Above, we introduced as the first stage of
graph processing the binding of the left-hand
side in a source graph and the binding of the
context of a rule that contains a fragment
of the target structure. In this section, we
present the internals of the binding algorithm.
In order to keep the presentation as simple
as possible, we dispense with the discussion
of some advanced features of our approach.
This is for example the use of a rule hierachy,
the reuse of rule instances, and an optimized
strategy for rule evaluation; cf (Bohnet et al.,
2000).

In what follows, the algorithm is presented
and illustrated by an example.

4.1 Basic Algorithm

The binding procedure consists of two stages:
(1) binding the source structure with the left-

hand sides of r; € R (with R being the set of
rules available for the the mapping between
the Strata S; and S;41) and (2) binding (after
the first cycle) the target structure generated
so far with the contexts of r; € R. The output
of the algorithm are instances of applicable
rules. Each instance contains a copy of the
rule in question and a copy of the fragment of
the input structure this rule applies to.
Figure 5 shows the binding of the rule

left-h.s.: ?Xds -I-> 7Yds
conditions: NOT ?Xds.voice = passive
?Xds.form = finite
right-h.s.: ?Xss -subjective-> 7Yss
correspondences:?Xss <=>7Xds
?Yss <=>7Yds

to the input substructure drink -I->
Socrates.
7 THES
drifk ).}{_ds T
" —! subjective
o 3 —» 2 2
cup_of_hemiock | Socrates ey Pag

Figure 5: Example of a rule binding.

(1) and (2) can be divided into (i) search-
ing for the initial node within the input
structure from which the matching procedure
starts; (ii) identify relations that match the
rule structure and the source/target structure
(starting with the initial node found before);
(iii) the actual binding of the nodes and rela-
tions.

4.1.1

The entry node search function loops over
all nodes of the input graph G and over all
candidate rules. If (G is a predicate-argument
structure (i.e., a semantic net), the search
starts from any arbitrary node of G; if G is a
tree structure, from the root node.

In pseudocode, the search function looks as
follows:

searchlodes (G, R)
Iresult — {}
for n; € G do
for r; € R do

Searching for an Entry Node



nlrj + getRuleNode(n;, r;)

flag « evalSimpleConditions(ni,nlrj,rj)
if flag ==
1 ¢« createlnstance(n;, nlrj, r;)
I+ {1}
active-edges + getEdges(anj)
for e; € active-edges do
I + searchEdges(e;, I, r;, G)
[result — Iresult ul
return /resuls

In the inner for-loop, we first pick a node

nl] in r;. For efficiency, this is always the

r
node with the highest number of simple condi-
tions: compared to graph traversal, the eval-
uation of conditions is a “cheap” operation.
Then, we evaluate whether the graph node
under consideration n; matches the conditions

of the node picked, i.e. of nij. If the condi-
tions match, nfnj is associated with (“bound”
to) n;, and the triple <nfnj ,n;,r;) is kept in the
set of bound node instances I. Otherwise, we
loop over the nodes in r; until either a bound-
ing node is found or one of the conditions of all
nodes in r; has been evaluated to F(alse). In
the first case, the incoming and the outgoing
edges of nfnj must be further matched against
the incoming and the outgoing edges of n;.
This is done in the function searchEdges af-
ter the function getEdges retrieved all edges
of which nfnj is either the tail or the head node.
In the second case, r; is rejected.

The bound nodes and edges are kept in the
global variable I,.cgy:.

4.1.2 Searching for Edges to Match

Once an edge efn] in a rule r; has been se-
lected for matching, the task is to identify
edges in the graph to which efn] can be bound.
A rule edge is defined as bound if both its tail
node and its head node are bound. Above,
the node bounding information has been kept
in I (in terms of triples <nij,ni,rj>). There-
fore, the function searchEdges checks first if

I contains instances of both nodes of efnj. If

yes, efn] is immediately added to the set of

bound edges. Otherwise, we proceed with its
bound node nfnj (recall that searchEdges is
invoked after the entry node binding proce-
dure has been performed). If nfnj is the tail

node of eij, all edges for which the graph

node n; is the tail node are plausible bind-
ing candidates. If nfn] is the head node of efn],
all edges for which n; is the head node are
plausible binding candidates. searchEdges
retrieves the graph edges accordingly and in-
vokes the function bindEdges.
searchEdges (e,1,r;, G)

Lresutr {}

for : €1 do

if boundP (tail(e),:) & boundP (head(e) ,z)

Iresult — Iresult U {L}

else

n' = getBoundNode (e,?)

if tailP(n',e)
E <« getOut (getCorrespondence (n',i,G))
else

E « getIn(getCorrespondence(n',i,G))
]result — blndEdgeS (Eyfresulh Ty, G)
return /result

4.1.3 Bind Edges

The function searchEdges thus identifies a
set of edges F in G that potentially match
with an edge e” of the rule r; and calls
bindEdges. The function bindEdges does the
actual evaluation and binding. If the name of
an e; € F matches with the name of €” and the
not yet bound node of e; n.. fulfills the con-
ditions of the not yet bound node of €" n.,,
ni is bound to n[.. The instance of which
e; is part is copied, and the triple (n..,n. ,r;)
is added to the copy 7. before the set of in-
stances dealt with [ is initialized with 7.

If this was the last unbound edge of the
rule r;, the complex conditions of the rule are
If they are fulfilled, the rule and
the fragment of (G it applies to are introduced
into the lock map. If ¢” was not the last un-
bound edge, the function searchEdges is in-
voked with each incoming and each outgoing
edge of n.,.

In pseudocode, the function bindEdges
reads as follows:

checked.

bindEdges (E,i,r;,G)
for e; € FE do

if (name(e;) # name(e”))
next e;

endif

n.r = getUnbound(e”)

n,, = getUnbound(e;)

if 3 condition(nir,n,, ,r;) #1
next e;

endif



1. < copy(2)
1. — 1, U (n'er,n'el,r]>
I {i.}
active-edges ¢ getEdges(n.-)
for e, € active-edges
I « searchEdges(eq, I,r;, G)
]result — Iresult ul
return /resuit

4.2 Example

This section illustrates how the algorithm
that has been presented above functions in
practice. It shows the application of the
rule introduced in Figure 2, which maps
the second syntactic actant onto the surface-
syntactic relation dobjective.

al. Searching for an entry node.

As pointed out above, in tree structures,
the seach of an entry node starts with the
root. In our sample structure, this is the node
force. In the rule, the node with highest
number of simple conditions is 7Xds. force
meets the conditions specified for 7Xds: its
cat feature is set to verb and its voice fea-
ture is set to active (i.e., not passive).
Therefore, force is bound to ?Xds.

?7Xds has two  outgoing edges:
?Xds-I->?Zds and ?Xds-II->?Yds (with
7Xds-I->7Zds being in the context). For
both the function searchEdges is invoked.
b1l. Searching for edges to match.

In ?Xds-I->7Zds, the 7Xds node is bound,
while 7Zds is not. Therefore, we get all edges
in G in which the node to which ?Xds is bound
(= force) is the tail. These are the edges
force-I->assembly, force-II->Socrates,
and force-III->drink.
cl. Binding edges.

In the function bindEdges, the relation I
in force-I->assembly matches with the re-
lation I in ?Xds-I->7Zds, and assembly ful-
fills the conditions specified for ?Zds. There-
fore, ?YZds is bound to assembly and, subse-
quently, the edge 7Xds-I->7Zds is bound to
the edge force-I->assembly.

The node assembly has no other incoming
and outgoing edges. The recursion stops thus
at this point.
c2./c3. Binding edges.

The relation IT in force-II->Socrates

and the relation IIT in force-III->drink
do not match with the relation I in
?Xds-I->7Zds and are thus both rejected.
b2. Searching for edges to match.

As in ?7Xds-I->7Zds, in 7Xds-II->7Yds,
the tail node is bound while the head node
is not. The edges we get at this point
for processing are the same as above for
7Xds-I->7Zds.
c4./c5./c6 Binding edges.

From the three edges evaluated, one,
namely force-II->Socrates, is found
to match the rule edge ?Xds-II->7Yds.
?Xds-II->7Yds is thus bound to it. This is
the last edge of the rule under examination to
be bound. That is, the rule can be applied.
The bounding information is introduced
into the lock map (an exclusive lock for
the left-hand side edge and a rule instance
reference for the context edge).

The other nodes of the input structure are
examined along these lines and another frag-
ment to which the rule in question can be
applied is identified: Socrates <-I- drink
-II-> cup_of_hemlock.

4.3 Some Complexity Considerations

To estimate the complexity of the binding al-
gorithm, we count the binding attempts for
both nodes and edges.

For nodal rules, the cost is |G| x |R|, where
|G| stands for the number of the nodes in the
graph |G| and |R| is the number of rules. The
number of rules can be considered as constant.
That is, we get the complexity of O(n) (with
n = |G]).

For one-edge rules, we get in the worst case
a cost of |G| x (|G| — 1) X |R|. Since, again,
the number of rules can be considered as be-
ing constant, we arrive at O(n?). Given that
the number of types of outgoing and incoming
edges is very restricted. Thus, at the deep-
syntactic stratum there are only nine® (I-VI,
ATTR, COORD, and APPEND), and most
of the rules contain nodal conditions, which
are evaluated first, in practice, the complexity

6We did not introduce all of these relations because
they were not important for the understanding of the
approach.



is near O(n). However, obviously, the com-
plexity rises with the number of edges in the
rules. Especially in cases where more than
five edges of the same type appear in rules
we run into a combinatorial explosion. The
nature of the binding problem, remains, after
all, NP complete. But such rules appear—if
at all—very seldom; the overwhelming ma-
jority of the rules contains no more than four
edges, rather less.

The complexity of clustering depends on
the number of alternative rules for the same
chunk of the input structure. In the (hypo-
thetical) worst case, where all rules in the
grammar are alternative, it is thus again NP
complete. However, this case never occurs:
the number of alternative rules is strictly con-
strained.

In applications, the run time of the algo-
rithm is acceptable: AutoText-UIS (Bohnet et
al., 2001b)-a text generator which uses a -
release of our formalism implementation gen-
erates 60 air pollution reports with five com-
plex sentences each, in about three minutes
on a Pentium II1 PC with 800 MHz.

5 Related Work

Tree rewriting which is the more constrained
version of graph rewriting has been central in
transfer-oriented MT for a long time. In the
last few years, there has been increasing in-
terest in MT in graph rewriting (Emele and
Dorna, 1998; Frank, 1999; Dymetman and
Tendeau, 2000).

Tree rewriting is also used in generation—
for instance, by the MTT-based generator Re-
alPro (Lavoie and Rambow, 1997; Lavoie et
al., 2000). Other well-known MTT-based gen-
erators such as Gossip (lordanskaja et al.,
1988) use a sequential graph rewriting formal-
ism.

Apart from MTT-oriented approaches, there
are several other approaches in generation
that are related to our work. In what follows,
we would like to mention two of them. The
first is (Nicolov et al., 1996)’s work. The dif-
ference between Nicolov et al.’s approach and
ours is threefold. First, Nicolov et al. use a
graph rewriting grammar formalism, while we

use a parallel graph rewriting formalism. Sec-
ond, we strictly separate between grammati-
cal processing and tasks of sentence planning.
Our grammar rules thus do not contain any
but linguistic conditions, while Nicolov et al.’s
rules may also contain pragmatic and situa-
tional conditions. And third, finally, Nicolov
et al. use complex rules which cover whole
fragments of the input structure. As a result,
it may well occur that with the rules chosen
not all of the input structure is rendered into
wording. This makes it necessary to evaluate
the rules at disposal with respect to their po-
tential to (i) cover best the remaining parts of
the input structure and (ii) to be compatible
with the rules already applied. In our ap-
proach, with most of the rules covering only
one edge or node (or even a feature of a node),
the probability of this problem is reduced to
nearly zero. Furthermore, the lock map pro-
vides a full picture of how the different rules
cover the input structure. This allows for an
optimal mapping of the input structure onto
the output structure.

Our approach also resembles Beale’s
constraint-satisfaction based Hunter and
Gatherer-strategy (Beale, 1997; Beale et al.,
1998) in that Hunter and Gatherer is a par-
allel graph rewriting formalism. However,
Beale’s approach is an integrated approach.
It contains all information necessary for gen-
eration in the lexicon (including discourse in-
formation) in terms of structures that can be
interpreted as complex mapping rules. Also,
the binding strategy in Hunter and Gatherer
is different: before the actual binding stage
takes place, chunks of the input structure
that possess a minimal number of relations
to other chunks are recursively identified.
The transformation of chunks with a mini-
mal number of connections to other chunks
reduces the number of conflicting cases dur-
ing the stage of gluing together the resulting
substructures.

6 Conclusions

In this paper, we presented a parallel graph
rewriting formalism and illustrated how this
formalism can be used to implement a gram-



mar for generation. Although the implemen-
tation is for MTT, the algorithm is per se the-
ory independent.

An optimization of the rewriting proce-
dure can be achieved by making use of a
rule generalization hierarchy. Then, the state-
ments that are located higher in the hierarchy
are evaluated first, which means that whole
classes of rules can be excluded from evalu-
ation very early. See (Wanner and Bohnet,
forthcoming) for details.

Unlike in many generators, we consider the
grammar to be a resource (in the same vein as
a knowledge base and a lexicon are resources)
rather than a generation module. This re-
source is used by different sentence planning
modules to render a semantic structure into a
wording according to communicative and con-
textual criteria. However, it is beyond the
scope of this paper to describe how the sen-
tence planning mechanisms make use of the
grammatical resource.
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