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Abstract

We presentan algorithm which im-
provestheefficiency of asearchor the
optimally aggrgyatedparagraphwhich
summariseaflat structurednput spec-
ification. We modelthe spaceof possi-
ble paraphraseef possibleparagraphs
asthe spaceof sequencesf composi-
tionsof asetof tree-adjoininggrammar
(TAG) elementantrees.Our algorithm
transformghis to a setwith equivalent
paraphrasingower but bettercompu-
tationalproperties Also, it identifiesan
explicit mappingbetweeninput propo-
sitionsandtheir possiblesurfacereali-
sations.

1 Intr oduction

Summarisatiorof simply structureddataasshort
natural languageparagraphshas recently been
a focus of interest. Shav (1998) and Bental
et al. (1999) looked at generatingtext from
databaseaecords. Robin and McKeavn (1996)
summarisedjuantitatve data. Shav’'s examples
weredravn from patientmedicalrecords;Bental
et al's from online resourcecataloginginforma-
tion. A requirementommonto all thesestudies
hasbeento produceaggregated(ReapeandMel-
lish, 1999)text.

Also in all thesestudies,the structureof the
input datausedwas fairly flat. In particular in
(Shaw, 1998)and(Bentaletal., 1999)eachrecord

*Thiswork is supportecby EPSRCgrantGR/M23106.

is associatedvith aparticularentity (e.g.apatient
or anonline resourcelandis essentiallya list of

attribute-\alue pairs. We refer to pairsasfields

andto attributesasfield names Therelationship
betweena value and the entity with which it is

associateds specifiedby the field name. Most

field namesrepresentis a” or “has a” relation-
shipsandhencemostvaluesrepresentactsabout
the entity. Slightly more comple structuremay
alsobe coercednto this form, but we will focus
onthissimplecase.

For our application (summarisingdata about
educationalresources)we additionally assume
thatwe arerequiredto be ableto summariseary
subsebf fieldsfrom a givenrecord,andthat our
summarymustincludeevery memberof thatsub-
set. The challengefrom this sort of summarisa-
tion is to devise a systemwhich satisfieswo po-
tentially incompatibleconstraints. First, it must
be flexible enoughto model, for any combina-
tion of fields,the optimally aggreyatedparagraph
which expressegshem. Second despitethe very
large searchspacethat suchflexibility probably
implies, it mustbe capableof finding that para-
graphin areasonabléime.

The contritution the presentwork makesis a
setof algorithmswhich prunethis searchspace.
This spaceis specifiedin termsof compositions
of elementarytreesof a tree-adjoininggrammar
(TAG) (Joshi,1986). Thefirst transformsa TAG
into a lexicalisedversionof itself which hasbet-
ter computationapropertieswith respecto sum-
marising a record. The secondremoves those
partsof a TAG which areredundantvith respect
to summarisinga particular record. The third



identifiesan explicit mappingfrom eachfield to
its possiblesurfacerealisationsandhenceallows
a desirablesurface form to be chosenfor each
field. Our partial implementatiornof thesealgo-
rithms hasproducedsomepromisingresults.

Therestof thepapelis organisedasfollows. In
section2 we discussthe problem, our approach
to modellingit, andcharacteristicef the search
spaceimplied by our approach.In section3 we
presentour algorithmsfor searchingthis space.
In sectiond we summariseanddiscuss.

2 Searching for concise,coherent
paragraphs

2.1 Aggregationis a global optimisation
problem

Ouraimis to generatgaragraphsvhich arewell
aggrgyated. This notion should be definedin
termsof concisenesandcoherencewhich terms
are not formally definable. However, somerea-
sonableapproximationto them can be achieved
by specifyingpreferencefor certaintypesof syn-
tacticconstruction®ver others(RobinandMcK-
eann, 1996), possibly by giving eachgenerat-
able constructiona scorewhich reflectsits rela-
tive preferability We thendefinethe bestaggre-
gatedparagrapho bethatwhich achieresthe best
sum of its constituentconstructions’preference
scores.

Robin and McKeawn's (1996) system,
STREAK, generatesaggregated, fact-rich sen-
tences.It addsfactsin orderof the preferability
of their best possiblerealisation. It revisesits
syntactic choices every time an extra fact is
aggrgated. This is computationallyexpensve,
andmalkesmulti-sentencgeneratiorby thesame
meansprohibitively slow. They do suggesthow
to deal with this whenmary of the factsoccur
in fixed positions,but this is not the casein our
corpus.

CASPER (Shav, 1998) delays syntactic
choicesuntil afterit hasdecidedwheresentence
boundarieshouldfall. It therebygainscomputa-
tional efficiengy atthe costof its sentencebeing
lessoptimalaggregations.

Our algorithmsare an attemptto avoid these
problemsandto achieve greaterefficiency by pre-
compilingdetailedsyntacticdecisionstheresults

of which we storein the form of explicit map-

pingsfrom fieldsto surfaceforms. At generation
time, we searchfor the optimal selectionof reali-

sations.This approachdeviatesfrom the pipeline

architectureof NLG systemswhich, it hasbeen
obsered, is not wholly suitedto the generation
of aggr@atedtexts.

The first author to discussthis was Meteer
(1992),who shavedthatthe microplanningstage
of the pipelineis constrainedy surfacerealisa-
tion in two ways. First,amicroplanmustbereal-
isablein the tamgetlanguagesecondarealisable
microplanmust make bestuse of the capacities
thetamgetlanguagdor conciseexpression.

More generallyin orderto generateggreated
text, constraintsmposedby andopportunitiesaf-
fordedby the surfaceform maybetakeninto ac-
countatary stagein thepipeline.ReapeandMel-
lish (1999) provided examplesof different sys-
temseachof which takes aggrgation decisions
at a differentstage. It may not be easyto deter
minewhateffectadecisiontakenatanearlystage
will have atthesurface;anddecisiongakenatone
stagemayprecludeatalaterstageachoicewhich
resultsin a moreaggregyatedsurfaceform. Simi-
larly, it may not be easyto make a decisionat an
early stagewhich makes bestuseof the surface
possibilities.

Consideitheexamplesof figures1 and2. Both
summarisehe samesetof fields; figure 2 sum-
marisesadditionallythefield “subject= science”.
Both paragraphssummarisetheir fields in the
most conciseand coherentmannerpossible(al-
thoughthisis, of courseasubjectve judgement).
Note that they treatthe fields they have in com-
mon differently with respecto orderinganddis-
tribution betweerthe sentences.

Varioustypesof constraintscausethis. Syn-
tacticconstraintdnclude: “science”’may be used
asan adjectie to pre-modify“lessonplan”. Se-
manticconstraintdnclude: “Constellations”lasts
4 hours but ProLogdoesnot. Stylistic constraints
include: ‘MaureenRyff wrote ... is preferableo
‘... waswritten by MaureerRyff’. We suggestas
do StoneandDoran(1997),thatintegratingthese
constraintssimultaneouslyis more efficient then
pipeliningthem.We additionallysuggesthatrep-
resentingtheseconstraintan a unified form can
provide furtherefficiencgy gains.



“Constellations’is a4-hourlessorplanpub-
lishedby online provider ProLog. Maureen
Ryff wroteit for smallgroupteaching.

Figurel: A paragraplwhich summariseshe set
of fieldsof figure 3 in anaggregatedmanner

“Constellations” is a sciencelesson plan
which lasts 4 hours. MaureenRyff wrote
it for small groupteachingand ProLog, an
online provider, is its publisher

Figure 2: A well aggrgated paragraphwhich
summariseshe setof fields of figure 1, together
with field subj ect ="“science”.Noticethenon-
linear effect the additionof a single extra propo-
sition canhave on the structureof the paragraph.

2.2 Modeling paragraphswith TAG

Our approachusesasits primaryrepresentation,
TAG formalism extendedto include unification
basedeaturestructuregVijay-ShanlkerandJoshi,
1991). Joshi (1986) describesthe adwantages
TAG possesseasa syntacticformalismfor NLG.
In generationthe TAG model hasusually been
appliedto generatingclausesandsentencesRe-
cently Webberet al. (1999)outlinedthe benefits
of modelling longer stringsof text by the same
means.

The mostimportantcharacteristicof TAG for
our purposess thelocaldefinabilityof dependen-
cies: constraintsbetweenthe nodesof elemen-
tary treesare presered underadjoiningswhich
increasehe distancedetweenthem. For exam-
ple,in thesentencdragment‘Springerpublished
..., which might be modelledby a singleinitial
tree, the objectis constrainedo be someentity
publishedby Springer If anadjunctionis madeso
that the fragmentbecomes'Springer the largest
publishingcompan in Europe published.”, this
constraintis undisturbed.

Our approachpresupposethe existenceof a
TAG whosestring setis exactly thoseparagraphs
which are comprehensiblsummarief subsets
of fields. We do not discussthe creationof such
aTAG here.We have madeprogresawith design-

ing one; we believe thatit is the flathessof the
input datawhich malesit possible.

Let usrestatethe problemsomeavhatmorefor-
mally. Supposehatwe have a setFj of n fields
whose values we may be requiredto express.
Supposehatfor every C' C Fj thereis atemplate
which expresseC. A templateis a paragraptin
which certainwordsarereplacedoy slots A slot
is areferenceo afield-name. A templateT’ ex-
presses setof fieldsC if the nameof every ele-
mentof C' is referencedy a slot, andevery slot
refersto anelemenof C. WesaythatT expresses
C andthatthe resultingparagraphs the expres-
sionof C with respecto T'. Seefigure 3.

Let e(C) denotethetemplatewhich “best” ex-
pressessome(C C Fy. Supposealso that we
have a TAG Ty with string set.S(7p) suchthat
{e(C)|C C Fy} C S(Tp). Thecreationof Ty is
not discussedhere. Every stringin S(Tp) is the
yield of D, somederivedtreeof Tj.

Eachof a TAG’s derived treesis represented
by a uniquederivation tree. Typically a deriva-
tion tree representseveral (differently ordered)
sequence®f compositionsof (the sameset of)
elementanytrees,all of which resultin the same
derivedtree.

Hence,a derved tree D of a TAG T with el-
ementarytreesFE is the resultof somesequence
of compositionsof the elementsof E which is
equialentto somederivation tree . We write
D = §(E) orjustD = §(T'), Hence ourproblem
is, givenTy andsomeC' C Fp, find somed such
thatd(7p) = e(C).

Therearetwo partsto the problemof finding
e(C). First we mustrecognisee(C), which we
may do, asdescribedn section2.1, by defining
e(C) to betheparagraplwhich achievesthe best
sum of its constituentconstructions’preference
scores.Secondsincethe searchspaceof deriva-
tion treesgrows exponentiallywith thenumberof
treesin the grammay we mustfind its derivation
in areasonableamountof time.

For eachfield to be expressedthe slot which
refersto it may be expressedy meansof oneof
several differentsyntacticconstructionsSo each
slot will contrikute one of several possiblepref-
erencescorego the paragraphn whichit occurs,
dependingon the syntacticform in whichit is re-
alised. However, the syntacticforms by which a



Template

. wrote it for[slot] -

is d slot] published Title

Fields

Field name Value

"Constellations"
Lesson plan

4 hours

small group teachirlg
Maureen Ryff
ProLog

online provider

Type

Duration
Pedagogy.TeachingMethods
Creator.PersonalName
Publisher.Name
Publisher.Role

Figure3: A templatewhich expresses setof fields. The curvesindicatethe field nameto which each
slotrefers.Thefields’ expressiorwith respecto thetemplateis the paragraphn figure 1.

slot may be expressedareanimplicit propertyof
the grammar:it requiressearchto discover what
they are,andthenfurther searchto find their op-
timal configuration.

2.3 The search space

We model possibleparaphrasewith a TAG, the
paraphrasebeing the elementsof its string set.
Thenodesn thesearchspaceare TAG derivation
trees,andanarcfrom A to B representthecom-
positioninto the partial derivation corresponding
to A, of an elementarytree, with resultthe par
tial deriation correspondingo B. The size of
the searchspacemay be reducedby collapsing
certainpathsin it, and by pruning certainarcs.
Theseoperationscorrespondo specificlexicali-
sation and the removal of redundanttreesfrom
thegrammarespectiely.

A treein thegrammaiis redundantf it cannot
contritute to a paragraplwhich expresseshere-
quiredfields; or if it cannotcontritute to a ‘best’
paragraphwhich expresseshosefields. We will
expandon redundang removal after describing
the specific lexicalisation algorithm. The spe-
cific lexicalisationalgorithmcorvertsa TAG into
a specific-lgicalised version of itself, in which
certain pathsin the searchspace,which it can
be known will beusedin ary derivation, arecol-
lapsed.

3 The algorithms

3.1 Specificlexicalisation: creating a clausal
lexicon

We begin by introducing some notation, and
defining somepropertiesof TAGs andtheir ele-

mentarytrees.Let (T, N) denoteT’, a TAG, and
N, somesetof elementanytrees,not necessarily
in T'. A leaf nodeof an elementaryjtree may be
labelledas a slot, which is a specialcaseof the
lexical anchor

An elementantreeis specific-lgicalisedif at
leastoné of its leaf nodesis a slot. An elemen-
tarytreeis A-lexicalisedif it is specific-licalised
or if it hasno substitutionnodesor foot nodes.
A TAG is specific-lgicalisedif all its elementary
treesare \-lexicalised?

Given some (T, N), let ¢t be an elementof
T U N which is not specific-licalised. Let s
beanelementantreeof T'. Supposédhatthereis
somecompositiorof s into ¢ andthattheresulting
treeis specific-l&icalised. Thenwe saythatt is
single-step-beicalisable in (T, N). We call ary
suchresultingtree a single-step-leicalisation at
n oftin (T, N), wheren is thenodeatwhich the
compositionoccurred.

We nowv present the algorithm for
our transformation Specific Lexicalisa-
tion.

1. T =Ty issomeTAG, N = H = (.

2: repeat

3 Add(T,N)toH.

4: forallte TUN do

5 if ¢ is sinlge-stefexicalisablein (T', N)

1This is animportantparameter It specifieshov mary
slotseachelementaryreein thetransformedrAG mayhave
(andconsequenthhon mary timesthe “derivation tree” of
eachof thesetreesbranches).

2This definitionis compatiblewith thatusedin theliter-
ature.A TAG is lexicalised(JoshiandSchabes]1991)if it is
specific-licalisedaccordingto this definition. The impli-
cationdoesnot necessariljoldin reverse.



then

6: if t € T then
7: Remwet fromT.
8: Addt¢to N.
9: endif
10: For somenode of ¢, n, add all the
single-step-leicalisatons atn of ¢ in
(T,N),toT.3
11: endif
12:  endfor

13: until (T,N) € H
14: T is a specific-leicalisatiort of Tj.

To illustrate this procedurewe have provided
somefigures. Considerthe TAG Ti, whoseel-
ementarytreesare shavn in figure 4. We have
chosenfor reason®f spaceandsimplicity, notto
shav thefeaturestructuresattachedo eachnode
of thesetrees. Their approximateform can per
hapsbe deducedyy examinationof thetemplates
modelledby T1, shavnin figure6. A specificlex-
icalisedversionof the TAG, Ty is shawn in figure
5. We have namedeachelementarytreein Ty by
concatenatinghe namesof its constituentdrom
T:. Thetemplategeneratethy 77 (andhencels)
areshavn in figure6.

3.2 Redundancyremoval

We canfurtherremove redundang in a specific-
lexicalisation, 7', of someTAG. Let (T, N) be
a pair asin the previous section. The following
threesubsetof the elementantreesof T' arere-
dundant. First, thosetreest € T which arenot
rootedon thedistinguishedsymbolandfor which
thereisnos € T U N suchthatt canbe com-
posedinto s. Secondthoset € T which have a
substitutiomodeinto whichnos € TU N canbe
substituted.Third, thoset € T suchthatfor each
treer which is the result of the compositionof
somes € TUN intot,r € TU N. Ourprogram

3Notethatthereis a choiceat this step. Ourimplemen-
tation of this algorithm chooses: suchthatthe numberof
single-step-Ieicalisationsat n is maximised. But different
choicegesultin atransformedyrammamith differentprop-
erties.

*We claim that a specific-leicalisationof a TAG is in-
deedspecific-lxicalised. Note that there doesnot neces-
sarily exist a specific-licalisation of a TAG. For certain
pathologicalexamplesof TAGs, the algorithmdoesnot ter-
minate.Note alsothatif a specific-leicalisationexists, it is
notnecessarilynique. Furtherwork is requiredto discover
the propertiesof the variousspecific-lxicalisationsin these
cases.

which implementsthe algorithmin factremoves
theseredundanciesjotonly aftercompletion but
alsoaftereveryiteration.

3.3 Finding the (approximately) global
optimum

Specific-licalisationcauseghe (previously im-
plicit) grammaticatonstruction®y which anel-
ementof C may be expressedo becomeexplicit
propertiesof the transformedgrammar Specifi-
cally, eachelementof C' occursasthe anchorof
eachof anumberof elementaryrees.Let usrefer
to the setof elementarytreesin the transformed
grammaranchoredby ¢ € C asa(c).> Eachof
thesetreescorrespondso a grammaticaform in
whichtheelementmayberealised Hence rather
thanperforminganexhaustve searctof thespace
of deriation treeso(T2), specific-leicalisation
allows usto insteadperformabestfirst search.
Thatis, we chooseexactly oneelementf a(c)
for eachc € C. Let choices(C) denotethe setof
all setswhich containexactly oneelemenof a(c)
for eache € C'. Recallthatwe mayassigrto each
syntacticform in which anelementof C may be
realiseda preferencescore andthateachelement
of a(c) corresponds$o somesyntacticform. So,
for eachelemeniof choices(C') we maysumthe
preferencescoresf its elementsHence we may
imposean order on the elementsof choices(C)
accordingto their sumof preferencescores.We
may thenreferto eachelementof choices(C) as
pref(C,1i), wherei is the elements positionin
the order with pref(C, 1) beingfirst.
Wethensearchijn order thespace®f possible
compositionsof the pref(C,i)s combinedwith
somenecessargupportingreeswhicharenotan-
choredby an elementof C. Call thesespaces
prefs(C,i). In termsof redundang removal,
prefs(C, i) is the specific-licalised TAG with
thosetreeswhich mightberedundantith respect
to the searchfor e(C) removed. We begin the
searchwith prefs(C,1). It is notguaranteedhat
e(C) is in this space. If it is not, we repeatthe
searchusing prefs(C,2), andso on. At worst
(if e(C) € prefs(C,n) wherechoices(C) has
n elements)this procedureexhaustvely searches
the spaceof compositionsof the elementsof Ts.

5This is the family (asthattermis usedby Yanget al.
(1991)andothers)of treesanchoredn c.



s predication predication
I M S
item+  verb+ predication+ a item+ participleclause+
s predication_a predication_part
articipleclause
predication P P
predication* paticipleclause+ participle_p+ item+
adj_pred_partp participleclause
participle_p verb item adjective
published by is adjective+  item* item+
publishedby is item_adjective_adjoin adjective
item item item item item
@<title> @<type> @<publisher.role> @<publisher.name> @-<duration>
item_title item_type item_role item_name item_duration

Figure4: Theelementantreesof asmall TAG, T;. Thetrees’namesarein bold belov them. Substi-
tution nodesareindicatedwith a ‘+’; foot nodesareindicatedwith a**’; the distinguishedsymbolis
‘s’. Slotsareshaovn as' @reference’, where“reference”is thefield to which theslotrefers.Notethat
thefeaturestructuresvhich areassociateavith eachnode,which prohibit certaincompositionsarenot
shavn. Note alsothatthis is not alexicalisedTAG (LTAG). This is somevhat unusual;we intend,as
partof our ongoingwork, to apply ourtechniquego anestablished TAG, suchasXTAG.

@<publisher.name>

adj_pred_partp:participleclause:item_name

@<publisher.role>

item_adjective_adjoin:adjective:item_role

@<publisher.name>

predication_part:participleclause:item_name

item_adjective_adjoin:adjective:item_duration

item
s
e o verb
item verb+ predication+ adjective ftem |
‘ is
item .
@<title> ‘ is
s:item_title @<title>
item_adjective_adjoin:adjective:item_title
predication predication
predication participleclause participleclause participle_p
participle_p+ item participle_p+ item published by
publishedby

item item
predication
- P L item* .
adjective item adje‘ctlve a item
item item
@<type>
@<duration> predication_a:item_type

Figure5: The elementantreesof the TAG T5, a specific-lxicalisedversionof TAG T; in figure 4.
Eachtrees nameis belaw it, in bold. Note that, sincethe featurestructuresare not shawn, it is not
apparentvhy certaintreeswhich the algorithmseemso imply do not occurin this set.



: @xtitle> is a @type>.

: @xtitle> is a @duratiorr @ctype>.

O~NO Ol WNP

: @xtitle> is a @type> publishedby @ publishemame.
: @title> is a @type> publishedby @publisherole> @publishemame.

: @title> is a @duratiorr @type> publishedby @ publishemame.

: @xtitle> is a @duratiorr @ctype> publishedby @ publisherole> @ publishemame.
. @title> is publishedby @publishemame-.

: @xtitle> is publishedby @ publisherole> @publishemame.

Figure6: Thetemplatesnodelledby the TAGsof figures4 and5. Notethatthe expressiorof thefields
in figure 3 with respecto template6 is thefirst sentencef the paragraptof figure 1.

In fact, sincethe pref;(C,n)s do not partition
o(Tz), in theworstcasesghis procedurés slower
thanan exhaustve search.However, ¢(C) is de-
finedin termsof maximalpreferencescoressoit
is likely to befoundin pref(C, i) for “low” i.

For illustration, refer again to the specific-
lexicalisation in figure 5. Notice that @pub-
lishertname> occurs as the anchor of more
than one tree® Thesetrees, predicationpart:-
participleclause:ite_name and adj_pred partp:-
participleclause:it@_namewhichwewill referto
ast; andt, respectiely, representhe formsin
whichthatslotmaybeexpressedHence,@ pub-
lishername> may be realisedasa predicationin
its own right using ¢;, asin templates7 and 8
in figure 6, or as an adjunctto anotherpredi-
cation using the second,asin templates2, 3, 5
and6. Supposehatour preferencescoresatets
morehighly thant;, andthatwe mustincludeall
four slots. Thenthe systemwould first searchthe
spaceof compositionsof the treesof T, without
t1, andgeneratdemplate6. The secondchoice,
T, without to leadsto the generatiorof the con-
catenatiorof templatest and8, which expresses
the samefields but is lessaggregated. This is as
we would wish.

3.4 Redundanciesin the seaich space

Specific-licalisationis a transformatiorwhich
operateon a completeTAG T andits resultis
anotherTAG T, whosestring setis the sameas
Ty's. Also, the featurestructureson the nodes
of the elementarytreesof T, containfewer un-
bound variables. Unbound variablesrepresent
bWe are ignoring the tree item.adjectve_adjoin:-

adjectve:itemtitle, which is not usabledueto its features,
which arenotshavn.

dependenciebetweenpartsof the grammar A
searchof the spaceof compositionsof elemen-
tary treesmaymake along chainof compositions
beforediscosering thatthe composedstructureis
forbiddenby sucha dependenc The forbidden
chainof compositiongs redundantandspecific-
lexicalisationremovesit from the searchspace.

Importantly specific-licalisation may also
take asa parametelC, the setof fieldsto be ex-
pressed.lt thenremovesfrom T4 all elementary
treeswhich are anchoredon slots which do not
refer to elementsof C' and operateson this re-
ducedTAG, with resultTy. Andif e(C) € S(T})
thene(C) € S(Tz). Then,in effect, specific-
lexicalisation,aswell asremoving generakedun-
dantdependenciess specificallyremoving some
of thosepartsof the grammarwhich are redun-
dantwith respecto the searcifor e¢(C).

Redundang occursin a grammarfor two rea-
sons. First, it is written, by hand, with linguis-
tic ratherthancomputationakfficiengy concerns
in mind. It is too comple for its writer to be
ableto spotredundanciearisingfrom longchains
of dependenciebetweenits parts. So specific-
lexicalisationmay be regardedas automaticbug
removal. Second,the grammaris written to be
able to model all the templateswhich express
someC C Fy. Sofor ary particularC, thegram-
mar will containinformation abouthow to ex-
presstemsnotin thatset. Specific-lxicalisation
highlightsthis redundang

We have conductedsome preliminary exper
iments using several small TAGs in which, for
eachTAG andfor its specific-licalised equiv-
alent, we measuredhe time our systemtakes
to generatehe modelledsentences.The results



shaved a decreasédn the generationtime after
lexicalisation of ordersof magnitude,with the
bestobsered reductionbeing a factor of about
3000.

The specific-lxicalisation of a TAG hasthe
propertyof having the samestring set(andpossi-
bly thesamereeset)astheoriginal,but asmaller
spaceof possiblecompositions. We have not
proved eitherclauseof this statementput on the
basisof experimentakvidencewe believe bothto
be true. Also, the following agumentsupports
the casefor thesecond.

Recallthatafeaturestructureattachedo anon-
terminalsymbolin somerule (treein the caseof
TAG) of agrammaiis anabbreiation for several
similar rules. For example,if a node hasasso-
ciatedwith it a featurestructurecontainingthree
featureseachof whichmaybein oneof two states
andnoneof which arecurrentlyinstantiatedthen
it abbreiates2?® = 8 nodes. So eachtreein a
TAG with featurestructuress anabbreiation for
n trees,wheren is the numberof possiblecon-
figurationsof the featurestructureson its nodes.
Hence, when we searchthe spaceof possible
compositionof somenumberz of trees,we are
in factsearchinghe spaceof composition®of ax
treeswherea is somefactorrelatedto thenumber
of possibleconfiguration®f thefeaturestructures
on thetrees. Specific-licalisationidentifiesex-
actly which of the (non-featuredjreesfor which
a tree with featurestructuresis an abbreviation
areirrelevantto asearchby instantiatingunbound
variablesdn its features.

4 Further work and discussion

The precisecircumstancesinderwhich the tech-
niquesdescribedareeffective arestill to beestab-
lished. In particular it is our intentionto repeat
our experimentswith a standard.TAG; andwith
TAGsinducedautomaticallyfrom our corpus.

To summarisewe claim thatthe generatiorof
an optimally aggr@gatedsummaryparagrapire-
quiresthe ability to move factsacrosssentence
boundaries.A difficulty to achieving this is the
exponentialrelationshipbetweenthe numberof
possibleparaphrasesf a summaryof a set of
factsandthe numberof factsin thatset. Our al-
gorithmaddressethis by transforminga TAG to
bettermodelthesearctspace.
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