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Abstract

We presentan algorithm which im-
provestheefficiency of asearchfor the
optimally aggregatedparagraphwhich
summarisesaflat structuredinputspec-
ification. We modelthespaceof possi-
ble paraphrasesof possibleparagraphs
asthe spaceof sequencesof composi-
tionsof asetof tree-adjoininggrammar
(TAG) elementarytrees.Our algorithm
transformsthis to a setwith equivalent
paraphrasingpower but bettercompu-
tationalproperties.Also, it identifiesan
explicit mappingbetweeninput propo-
sitionsandtheir possiblesurfacereali-
sations.

1 Intr oduction

Summarisationof simply structureddataasshort
natural languageparagraphshas recently been
a focus of interest. Shaw (1998) and Bental
et al. (1999) looked at generatingtext from
databaserecords. Robin and McKeown (1996)
summarisedquantitative data. Shaw’s examples
weredrawn from patientmedicalrecords;Bental
et al’s from online resourcecataloginginforma-
tion. A requirementcommonto all thesestudies
hasbeento produceaggregated(ReapeandMel-
lish, 1999)text.

Also in all thesestudies,the structureof the
input datausedwas fairly flat. In particular, in
(Shaw, 1998)and(Bentaletal.,1999)eachrecord
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is associatedwith aparticularentity(e.g.apatient
or an online resource)andis essentiallya list of
attribute-value pairs. We refer to pairsasfields,
andto attributesasfield names. Therelationship
betweena value and the entity with which it is
associatedis specifiedby the field name. Most
field namesrepresent“is a” or “has a” relation-
shipsandhencemostvaluesrepresentfactsabout
the entity. Slightly morecomplex structuremay
alsobecoercedinto this form, but we will focus
on thissimplecase.

For our application(summarisingdata about
educationalresources),we additionally assume
thatwe arerequiredto beableto summariseany
subsetof fields from a givenrecord,andthatour
summarymustincludeeverymemberof thatsub-
set. The challengefrom this sort of summarisa-
tion is to devisea systemwhich satisfiestwo po-
tentially incompatibleconstraints.First, it must
be flexible enoughto model, for any combina-
tion of fields,theoptimally aggregatedparagraph
which expressesthem. Second,despitethe very
large searchspacethat suchflexibility probably
implies, it mustbe capableof finding that para-
graphin a reasonabletime.

The contribution the presentwork makes is a
setof algorithmswhich prunethis searchspace.
This spaceis specifiedin termsof compositions
of elementarytreesof a tree-adjoininggrammar
(TAG) (Joshi,1986). Thefirst transformsa TAG
into a lexicalisedversionof itself which hasbet-
ter computationalpropertieswith respectto sum-
marising a record. The secondremoves those
partsof a TAG which areredundantwith respect
to summarisinga particular record. The third



identifiesan explicit mappingfrom eachfield to
its possiblesurfacerealisations,andhenceallows
a desirablesurface form to be chosenfor each
field. Our partial implementationof thesealgo-
rithmshasproducedsomepromisingresults.

Therestof thepaperis organisedasfollows. In
section2 we discussthe problem,our approach
to modellingit, andcharacteristicsof the search
spaceimplied by our approach.In section3 we
presentour algorithmsfor searchingthis space.
In section4 we summariseanddiscuss.

2 Searching for concise,coherent
paragraphs

2.1 Aggregationis a global optimisation
problem

Our aim is to generateparagraphswhich arewell
aggregated. This notion should be defined in
termsof concisenessandcoherence,which terms
arenot formally definable. However, somerea-
sonableapproximationto them can be achieved
by specifyingpreferencesfor certaintypesof syn-
tacticconstructionsoverothers(RobinandMcK-
eown, 1996), possibly by giving eachgenerat-
ableconstructiona scorewhich reflectsits rela-
tive preferability. We thendefinethebestaggre-
gatedparagraphto bethatwhichachievesthebest
sum of its constituentconstructions’preference
scores.

Robin and McKeown’s (1996) system,
STREAK, generatesaggregated, fact-rich sen-
tences.It addsfactsin orderof the preferability
of their best possiblerealisation. It revises its
syntactic choices every time an extra fact is
aggregated. This is computationallyexpensive,
andmakesmulti-sentencegenerationby thesame
meansprohibitively slow. They do suggesthow
to deal with this when many of the factsoccur
in fixed positions,but this is not the casein our
corpus.

CASPER (Shaw, 1998) delays syntactic
choicesuntil after it hasdecidedwheresentence
boundariesshouldfall. It therebygainscomputa-
tional efficiency at thecostof its sentencesbeing
lessoptimalaggregations.

Our algorithmsare an attemptto avoid these
problemsandto achievegreaterefficiency by pre-
compilingdetailedsyntacticdecisions,theresults

of which we store in the form of explicit map-
pingsfrom fieldsto surfaceforms. At generation
time,we searchfor theoptimalselectionof reali-
sations.This approachdeviatesfrom thepipeline
architectureof NLG systemswhich, it hasbeen
observed, is not wholly suitedto the generation
of aggregatedtexts.

The first author to discussthis was Meteer
(1992),whoshowedthatthemicroplanningstage
of the pipeline is constrainedby surfacerealisa-
tion in two ways.First,amicroplanmustbereal-
isablein thetarget language;second,a realisable
microplanmust make bestuseof the capacities
thetarget languagefor conciseexpression.

Moregenerally, in orderto generateaggregated
text, constraintsimposedby andopportunitiesaf-
fordedby thesurfaceform maybetaken into ac-
countatany stagein thepipeline.ReapeandMel-
lish (1999) provided examplesof different sys-
temseachof which takes aggregation decisions
at a differentstage. It may not be easyto deter-
minewhateffectadecisiontakenatanearlystage
will haveatthesurface;anddecisionstakenatone
stagemayprecludeata laterstageachoicewhich
resultsin a moreaggregatedsurfaceform. Simi-
larly, it maynot beeasyto make a decisionat an
early stagewhich makes bestuseof the surface
possibilities.

Considertheexamplesof figures1 and2. Both
summarisethe sameset of fields; figure 2 sum-
marisesadditionallythefield “subject= science”.
Both paragraphssummarisetheir fields in the
most conciseand coherentmannerpossible(al-
thoughthis is, of course,asubjective judgement).
Note that they treat the fields they have in com-
mondifferentlywith respectto orderinganddis-
tribution betweenthesentences.

Varioustypesof constraintscausethis. Syn-
tacticconstraintsinclude: “science”maybeused
asan adjective to pre-modify“lessonplan”. Se-
manticconstraintsinclude:“Constellations”lasts
4 hours,but ProLogdoesnot. Stylisticconstraints
include: ‘MaureenRyff wrote...’ is preferableto
‘... waswrittenby MaureenRyff ’. Wesuggest,as
doStoneandDoran(1997),thatintegratingthese
constraintssimultaneouslyis moreefficient then
pipeliningthem.Weadditionallysuggestthatrep-
resentingtheseconstraintsin a unified form can
provide furtherefficiency gains.



“Constellations”is a4-hourlessonplanpub-
lishedby onlineprovider ProLog. Maureen
Ryff wroteit for smallgroupteaching.

Figure1: A paragraphwhich summarisestheset
of fieldsof figure3 in anaggregatedmanner.

“Constellations” is a sciencelesson plan
which lasts4 hours. MaureenRyff wrote
it for small group teachingandProLog,an
onlineprovider, is its publisher.

Figure 2: A well aggregated paragraphwhich
summarisesthe setof fields of figure1, together
with fieldsubject = “science”.Noticethenon-
lineareffect theadditionof a singleextra propo-
sition canhave on thestructureof theparagraph.

2.2 Modeling paragraphswith TAG

Our approachuses,asits primaryrepresentation,
TAG formalism extendedto include unification
basedfeaturestructures(Vijay-ShankerandJoshi,
1991). Joshi (1986) describesthe advantages
TAG possessesasasyntacticformalismfor NLG.
In generation,the TAG model hasusually been
appliedto generatingclausesandsentences.Re-
cently, Webberet al. (1999)outlinedthebenefits
of modelling longer stringsof text by the same
means.

The most importantcharacteristicof TAG for
ourpurposesis thelocaldefinabilityof dependen-
cies: constraintsbetweenthe nodesof elemen-
tary treesare preserved underadjoiningswhich
increasethe distancesbetweenthem. For exam-
ple, in thesentencefragment“Springerpublished
...”, which might be modelledby a single initial
tree, the object is constrainedto be someentity
publishedby Springer. If anadjunctionis madeso
that the fragmentbecomes“Springer, the largest
publishingcompany in Europe,published...”, this
constraintis undisturbed.

Our approachpresupposesthe existenceof a
TAG whosestringsetis exactly thoseparagraphs
which arecomprehensiblesummariesof subsets
of fields. We do not discussthecreationof such
aTAG here.Wehavemadeprogresswith design-

ing one; we believe that it is the flatnessof the
input datawhichmakesit possible.

Let usrestatetheproblemsomewhatmorefor-
mally. Supposethatwe have a set ��� of � fields
whose values we may be required to express.
Supposethatfor every �
	�� � thereis a template
which expresses� . A templateis a paragraphin
which certainwordsarereplacedby slots. A slot
is a referenceto a field-name.A template� ex-
pressesa setof fields � if thenameof every ele-
mentof � is referencedby a slot, andevery slot
refersto anelementof � . Wesaythat � expresses
� andthat the resultingparagraphis theexpres-
sionof � with respectto � . Seefigure3.

Let 
������ denotethetemplatewhich “best” ex-
pressessome � 	���� . Supposealso that we
have a TAG ��� with string set ��������� suchthat� 
�����������	���� �!	"�#������� . Thecreationof ��� is
not discussedhere. Every string in �#������� is the
yield of $ , somederivedtreeof ��� .

Eachof a TAG’s derived treesis represented
by a uniquederivation tree. Typically a deriva-
tion tree representsseveral (differently ordered)
sequencesof compositionsof (the sameset of)
elementarytrees,all of which result in the same
derivedtree.

Hence,a derived tree $ of a TAG � with el-
ementarytrees % is the resultof somesequence
of compositionsof the elementsof % which is
equivalent to somederivation tree & . We write
$(')&*�+%,� or just $-'.&����/� , Hence,ourproblem
is, given ��� andsome�(	0��� , find some& such
that &*�����1�2'.
3����� .

Thereare two partsto the problemof finding

������ . First we must recognise
3����� , which we
may do, asdescribedin section2.1, by defining

������ to betheparagraphwhich achievesthebest
sum of its constituentconstructions’preference
scores.Second,sincethesearchspaceof deriva-
tion treesgrowsexponentiallywith thenumberof
treesin thegrammar, we mustfind its derivation
in a reasonableamountof time.

For eachfield to be expressed,the slot which
refersto it maybeexpressedby meansof oneof
severaldifferentsyntacticconstructions.Soeach
slot will contribute oneof several possiblepref-
erencescoresto theparagraphin which it occurs,
dependingon thesyntacticform in which it is re-
alised. However, thesyntacticforms by which a



slot slot slot slotis a published by 

slot slot slot. wrote it for .

Lesson planType
Title "Constellations"

Template Fields

Field name Value

Duration 4 hours
small group teaching
Maureen Ryff
ProLog
online provider

Pedagogy.TeachingMethods
Creator.PersonalName
Publisher.Name
Publisher.Role

Figure3: A templatewhich expressesa setof fields. Thecurvesindicatethefield nameto which each
slot refers.Thefields’ expressionwith respectto thetemplateis theparagraphin figure1.

slot maybeexpressedareanimplicit propertyof
thegrammar:it requiressearchto discover what
they are,andthenfurthersearchto find their op-
timal configuration.

2.3 The search space

We modelpossibleparaphraseswith a TAG, the
paraphrasesbeing the elementsof its string set.
Thenodesin thesearchspaceareTAG derivation
trees,andanarcfrom 4 to 5 representsthecom-
positioninto thepartialderivation corresponding
to 4 , of an elementarytree,with result the par-
tial derivation correspondingto 5 . The size of
the searchspacemay be reducedby collapsing
certainpathsin it, and by pruning certainarcs.
Theseoperationscorrespondto specificlexicali-
sation and the removal of redundanttreesfrom
thegrammarrespectively.

A treein thegrammaris redundantif it cannot
contribute to a paragraphwhich expressesthere-
quiredfields;or if it cannotcontribute to a ‘best’
paragraphwhich expressesthosefields. We will
expandon redundancy removal after describing
the specific lexicalisation algorithm. The spe-
cific lexicalisationalgorithmconvertsa TAG into
a specific-lexicalised versionof itself, in which
certain pathsin the searchspace,which it can
beknown will beusedin any derivation,arecol-
lapsed.

3 The algorithms

3.1 Specificlexicalisation: creating a clausal
lexicon

We begin by introducing some notation, and
definingsomepropertiesof TAGs andtheir ele-

mentarytrees.Let 6+�87:9<; denote� , a TAG, and
9 , somesetof elementarytrees,not necessarily
in � . A leaf nodeof an elementarytreemay be
labelledasa slot, which is a specialcaseof the
lexical anchor.

An elementarytree is specific-lexicalised if at
leastone1 of its leaf nodesis a slot. An elemen-
tarytreeis = -lexicalisedif it is specific-lexicalised
or if it hasno substitutionnodesor foot nodes.
A TAG is specific-lexicalisedif all its elementary
treesare = -lexicalised.2

Given some 6>�87:9?; , let @ be an elementof
�
AB9 which is not specific-lexicalised. Let C
beanelementarytreeof � . Supposethat thereis
somecompositionof C into @ andthattheresulting
treeis specific-lexicalised. Thenwe saythat @ is
single-step-lexicalisable in 6��87:9<; . We call any
suchresultingtreea single-step-lexicalisation at
� of @ in 6��87:9<; , where� is thenodeatwhich the
compositionoccurred.

We now present the algorithm for
our transformation Specific Lexicalisa-
tion.

1: �D'E��� is someTAG, 9F'DGF')H .
2: repeat
3: Add 6��87:9?; to G .
4: for all @JIK�BAL9 do
5: if @ is sinlge-steplexicalisablein 6>�M7:9<;

1This is an importantparameter. It specifieshow many
slotseachelementarytreein thetransformedTAG mayhave
(andconsequentlyhow many timesthe “derivation tree” of
eachof thesetreesbranches).

2This definitionis compatiblewith thatusedin theliter-
ature.A TAG is lexicalised(JoshiandSchabes,1991)if it is
specific-lexicalisedaccordingto this definition. The impli-
cationdoesnotnecessarilyhold in reverse.



then
6: if @NIO� then
7: Remove @ from � .
8: Add @ to 9 .
9: end if

10: For somenode of @ , � , add all the
single-step-lexicalisations at � of @ in
6>�M7:9<; , to � .3

11: end if
12: end for
13: until 6��87:9<;NIPG
14: � is aspecific-lexicalisation4 of ��� .

To illustratethis procedure,we have provided
somefigures. Considerthe TAG ��Q , whoseel-
ementarytreesare shown in figure 4. We have
chosen,for reasonsof spaceandsimplicity, not to
show thefeaturestructuresattachedto eachnode
of thesetrees. Their approximateform canper-
hapsbededucedby examinationof thetemplates
modelledby ��Q , shown in figure6. A specificlex-
icalisedversionof theTAG, ��R is shown in figure
5. We have namedeachelementarytreein ��R by
concatenatingthe namesof its constituentsfrom
� Q . Thetemplatesgeneratedby � Q (andhence� R )
areshown in figure6.

3.2 Redundancyremoval

We canfurther remove redundancy in a specific-
lexicalisation, � , of someTAG. Let 6��87:9?; be
a pair as in the previous section. The following
threesubsetsof theelementarytreesof � arere-
dundant.First, thosetrees @SID� which arenot
rootedon thedistinguishedsymbolandfor which
thereis no CTI)�0A?9 suchthat @ canbe com-
posedinto C . Second, those@,IB� which have a
substitutionnodeinto whichno C�IK�KAU9 canbe
substituted.Third, those@#IP� suchthat for each
tree V which is the result of the compositionof
someCUIO�WAX9 into @ , VYIZ�[AX9 . Ourprogram

3Note that thereis a choiceat this step. Our implemen-
tation of this algorithmchooses\ suchthat the numberof
single-step-lexicalisationsat \ is maximised.But different
choicesresultin atransformedgrammarwith differentprop-
erties.

4We claim that a specific-lexicalisationof a TAG is in-
deedspecific-lexicalised. Note that theredoesnot neces-
sarily exist a specific-lexicalisationof a TAG. For certain
pathologicalexamplesof TAGs,thealgorithmdoesnot ter-
minate.Notealsothat if a specific-lexicalisationexists,it is
not necessarilyunique.Furtherwork is requiredto discover
thepropertiesof thevariousspecific-lexicalisationsin these
cases.

which implementsthe algorithmin fact removes
theseredundancies,notonly aftercompletion,but
alsoafterevery iteration.

3.3 Finding the (approximately) global
optimum

Specific-lexicalisationcausesthe(previously im-
plicit) grammaticalconstructionsby which anel-
ementof � maybeexpressedto becomeexplicit
propertiesof the transformedgrammar. Specifi-
cally, eachelementof � occursastheanchorof
eachof anumberof elementarytrees.Let usrefer
to the setof elementarytreesin the transformed
grammaranchoredby ]<I
� as ^��+]_� .5 Eachof
thesetreescorrespondsto a grammaticalform in
which theelementmayberealised.Hence,rather
thanperforminganexhaustivesearchof thespace
of derivation trees `a��� R � , specific-lexicalisation
allows usto insteadperformabestfirst search.

Thatis, we chooseexactlyoneelementof ^ �+]_�
for each]/I<� . Let ]cbedgfh]c
�C*����� denotethesetof
all setswhichcontainexactlyoneelementof ^ �+]_�
for each]/I<� . Recallthatwemayassignto each
syntacticform in which anelementof � maybe
realisedapreferencescore,andthateachelement
of ^��+]c� correspondsto somesyntacticform. So,
for eachelementof ]cbid1fj]k
1C����Y� we maysumthe
preferencescoresof its elements.Hence,wemay
imposean orderon the elementsof ]kbidgfh]c
�C*�����
accordingto their sumof preferencescores.We
maythenrefer to eachelementof ]cbid1fj]k
1C����Y� asl Vm
1n2���o7pfq� , where f is the element’s position in
theorder, with l Vm
�n2���o7_r�� beingfirst.

Wethensearch,in order, thespacesof possible
compositionsof the l Vs
1n2���o7pfq� s combinedwith
somenecessarysupportingtreeswhicharenotan-
choredby an elementof � . Call thesespacesl Vm
1nst_���o7pfq� . In terms of redundancy removal,l Vm
1n t ���o7pfq� is the specific-lexicalisedTAG with
thosetreeswhichmightberedundantwith respect
to the searchfor 
������ removed. We begin the
searchwith l Vm
�nstc���o7_r�� . It is not guaranteedthat

������ is in this space. If it is not, we repeatthe
searchusing l Vm
�nst_���o7vum� , and so on. At worst
(if 
3�����WI l Vs
1nst_���o7p��� where ]cbedgfh]c
1C����Y� has
� elements),thisprocedureexhaustively searches
thespaceof compositionsof theelementsof ��R .

5This is the family (as that term is usedby Yanget al.
(1991)andothers)of treesanchoredon w .
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Figure4: Theelementarytreesof a smallTAG, ��Q . Thetrees’namesarein bold below them. Substi-
tution nodesareindicatedwith a ‘+’; foot nodesareindicatedwith a ‘*’; thedistinguishedsymbolis
‘s’. Slotsareshown as‘@<reference>’, where“reference”is thefield to whichtheslot refers.Notethat
thefeaturestructureswhichareassociatedwith eachnode,whichprohibitcertaincompositions,arenot
shown. Notealsothat this is not a lexicalisedTAG (LTAG). This is somewhatunusual;we intend,as
partof ourongoingwork, to applyour techniquesto anestablishedLTAG, suchasXTAG.
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Figure5: The elementarytreesof the TAG ��R , a specific-lexicalisedversionof TAG ��Q in figure 4.
Eachtree’s nameis below it, in bold. Note that, sincethe featurestructuresarenot shown, it is not
apparentwhy certaintreeswhich thealgorithmseemsto imply do notoccurin thisset.



1: @<title> is a@<type>.
2: @<title> is a@<type> publishedby @<publisher.name>.
3: @<title> is a@<type> publishedby @<publisher.role> @<publisher.name>.
4: @<title> is a@<duration> @<type>.
5: @<title> is a@<duration> @<type> publishedby @<publisher.name>.
6: @<title> is a@<duration> @<type> publishedby @<publisher.role> @<publisher.name>.
7: @<title> is publishedby @<publisher.name>.
8: @<title> is publishedby @<publisher.role> @<publisher.name>.

Figure6: Thetemplatesmodelledby theTAGsof figures4 and5. Notethattheexpressionof thefields
in figure3 with respectto template6 is thefirst sentenceof theparagraphof figure1.

In fact, since the l Vm
�nst����o7p��� s do not partition
`a��� R � , in theworstcasesthisprocedureis slower
thananexhaustive search.However, 
3����� is de-
finedin termsof maximalpreferencescores,soit
is likely to befoundin l Vm
1n2���o7pfq� for “low” f .

For illustration, refer again to the specific-
lexicalisation in figure 5. Notice that @<pub-
lisher.name> occurs as the anchor of more
than one tree.6 Thesetrees, predicationpart:-
participleclause:item name and adj predpartp:-
participleclause:item namewhichwewill referto
as @xQ and @yR respectively, representthe forms in
whichthatslotmaybeexpressed.Hence,@<pub-
lisher.name> may be realisedasa predicationin
its own right using @xQ , as in templates7 and 8
in figure 6, or as an adjunct to anotherpredi-
cation using the second,as in templates2, 3, 5
and6. Supposethatour preferencescoresrate @yR
morehighly than @xQ , andthatwe mustincludeall
four slots.Thenthesystemwould first searchthe
spaceof compositionsof the treesof ��R without
@vQ , andgeneratetemplate6. The secondchoice,
��R without @yR leadsto thegenerationof thecon-
catenationof templates4 and8, which expresses
thesamefields but is lessaggregated. This is as
we wouldwish.

3.4 Redundanciesin the search space

Specific-lexicalisationis a transformationwhich
operateson a completeTAG ��Q andits result is
anotherTAG ��R whosestring set is the sameas
��Q ’s. Also, the featurestructureson the nodes
of the elementarytreesof ��R containfewer un-
bound variables. Unbound variablesrepresent

6We are ignoring the tree item adjective adjoin:-
adjective:item title, which is not usabledueto its features,
whicharenotshown.

dependenciesbetweenpartsof the grammar. A
searchof the spaceof compositionsof elemen-
tary treesmaymakealongchainof compositions
beforediscoveringthat thecomposedstructureis
forbiddenby sucha dependency. The forbidden
chainof compositionsis redundant,andspecific-
lexicalisationremovesit from thesearchspace.

Importantly, specific-lexicalisation may also
take asa parameter� , the setof fields to be ex-
pressed.It thenremovesfrom ��Q all elementary
treeswhich are anchoredon slots which do not
refer to elementsof � and operateson this re-
ducedTAG, with result ��R . And if 
3���Y�JI<������Qz�
then 
3���Y�BI{�#��� R � . Then, in effect, specific-
lexicalisation,aswell asremoving generalredun-
dantdependencies,is specificallyremoving some
of thosepartsof the grammarwhich are redun-
dantwith respectto thesearchfor 
������ .

Redundancy occursin a grammarfor two rea-
sons. First, it is written, by hand,with linguis-
tic ratherthancomputationalefficiency concerns
in mind. It is too complex for its writer to be
abletospotredundanciesarisingfrom longchains
of dependenciesbetweenits parts. So specific-
lexicalisationmay be regardedasautomaticbug
removal. Second,the grammaris written to be
able to model all the templateswhich express
some�
	E� � . Sofor any particular � , thegram-
mar will contain information about how to ex-
pressitemsnot in thatset.Specific-lexicalisation
highlightsthis redundancy.

We have conductedsomepreliminary exper-
iments using several small TAGs in which, for
eachTAG and for its specific-lexicalisedequiv-
alent, we measuredthe time our systemtakes
to generatethe modelledsentences.The results



showed a decreasein the generationtime after
lexicalisation of ordersof magnitude,with the
bestobserved reductionbeing a factor of about
3000.

The specific-lexicalisation of a TAG has the
propertyof having thesamestringset(andpossi-
bly thesametreeset)astheoriginal,but asmaller
spaceof possiblecompositions. We have not
proved eitherclauseof this statement,but on the
basisof experimentalevidencewebelievebothto
be true. Also, the following argumentsupports
thecasefor thesecond.

Recallthatafeaturestructureattachedto anon-
terminalsymbolin somerule (treein thecaseof
TAG) of agrammaris anabbreviation for several
similar rules. For example, if a nodehasasso-
ciatedwith it a featurestructurecontainingthree
featureseachof whichmaybein oneof two states
andnoneof whicharecurrentlyinstantiated,then
it abbreviates u}|W'�~ nodes. So eachtree in a
TAG with featurestructuresis anabbreviation for
� trees,where � is the numberof possiblecon-
figurationsof the featurestructureson its nodes.
Hence, when we searchthe spaceof possible
compositionsof somenumber� of trees,we are
in factsearchingthespaceof compositionsof ^3�
trees,wherê is somefactorrelatedto thenumber
of possibleconfigurationsof thefeaturestructures
on the trees.Specific-lexicalisationidentifiesex-
actly which of the(non-featured)treesfor which
a tree with featurestructuresis an abbreviation
areirrelevantto asearchby instantiatingunbound
variablesin its features.

4 Further work and discussion

Theprecisecircumstancesunderwhich thetech-
niquesdescribedareeffectivearestill to beestab-
lished. In particular, it is our intentionto repeat
our experimentswith a standardLTAG; andwith
TAGsinducedautomaticallyfrom ourcorpus.

To summarise,we claim that thegenerationof
an optimally aggregatedsummaryparagraphre-
quires the ability to move factsacrosssentence
boundaries.A difficulty to achieving this is the
exponentialrelationshipbetweenthe numberof
possibleparaphrasesof a summaryof a set of
factsandthenumberof factsin that set. Our al-
gorithmaddressesthis by transforminga TAG to
bettermodelthesearchspace.
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