Using ALLIS for Clausing

Hervé Déjean
Seminar fiir Sprachwissenschaft
Universitat Tiibingen
dejean@sfs.nphil.uni-tuebingen.de

Abstract

We present the result of a symbolic machine
learning system, ALLiS 2.0 for the CoNLL-2001
shared task. ALLiS 2.0 is a theory refinement
system using hierarchical data. Results are
F=89.04 for subtask 1, F=68.02 for subtask 2
and F=67.70 for subtask 3 (development test).
Adding manual rules improves considerably re-
sults specially for task 2 (F=79.44). For the
test data, results are slightly worst (F=62.27
for subtask 3).

1 Introduction

ALLiS (Architecture for Learning Linguistic
Structure) (Déjean, 2000a), (Déjean, 2000b) is a
symbolic machine learning system. The learn-
ing system is based on theory refinement. It
tries to refine (to improve) an existing imper-
fect grammar using operators such as contex-
tualization and lexicalization. ALLiS separates
the task of the generation of rules and the task
of the use of these rules (task of parsing). First
symbolic rules are learned and saved using an
own formalism, and in a second time, these rules
are converted into a proper formalism used by a
specific rule-based parser. ALLiS uses XML for-
malism for learning as well as for parsing. The
following XML Components are:

e LT TTT, a text tokenization system and
toolset which enables users to produce a
swift and individually-tailored tokenization
of text.

e LT XML , an integrated set of XML tools
and a developers tool-kit, including a C-
based API.

e XMLQUERY, (Mckelvie, 2000), an exten-
sion of the LTXML query language to allow

more complex queries including operators
for finding sequences of XML elements.

2 Theory Refinement

We present here a brief introduction to the-
ory refinement. For a more detailed presen-
tation, we refer the reader to (Abecker and
Schmid, 1996), (Brunk, 1996) or (Mooney,
1993). (Mooney, 1993) defines it as:

Theory refinement systems developed
in Machine Learning automatically
modify a Knowledge Base to render it
consistent with a set of classified train-
ing examples.

This technique thus consists of improving a
given Knowledge Base (here a grammar) on the
basis of examples (here a treebank). Some im-
pose to modify the initial knowledge base as lit-
tle as possible. Applied in conjunction with ex-
isting learning techniques (Explanation-Based
Learning, Inductive Logic Programming), TR
seems to achieve better results than these tech-
niques used alone (Mooney, 1997). It consists
of two main steps:

1. Build a more or less correct grammar on
the basis of background knowledge.

2. Refine this grammar using training exam-
ples:

(a) Identify the revision points
(b) Correct them

The first step consists in acquiring an initial
grammar (or more generally a knowledge base).
In this work, the initial grammar is automati-
cally induced from a tagged and bracketed cor-
pus. The second step (the refinement) compares
the prediction of the initial grammar with the
training corpus in order to firstly identify the re-
vision points, i.e. points that are not correctly
described by the grammar, and secondly, to cor-
rect these revision points.



3 Hierarchical Data

The difference between ALLiS 1.0 and ALLiS
2.0 relies on the use of hierarchical structure.
The alternate usual solution is to replace a seg-
ment (chunk for example) by a unique element
(a word, namely the head of the structure). The
advantage of this solution is to reduce the search
space, the drawback to delete some potential
useful information.

3.1 Data representation

Data provided by (Tjong Kim Sang and Déjean,
2001) are first converted into ALLiS’ input for-
malism. The three hierarchical levels are S (sen-
tence), PHR (phrase), and W (word). Here is
the DTD used for training data:

<!ELEMENT WSJ (S)x*>

<!ATTLIST

<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ATTLIST

WSJ S CDATA "0">

S (S|PHR|W)*>
S C CDATA "
NUM CDATA "">
PHR (W)* >
PHR CAT CDATA "O"

B CDATA "">

<!ELEMENT W EMPTY>

<!ATTLIST W W CDATA ""
BP CDATA ""
B CDATA ""
C CDATA "">

An example of data:

<S NUM=’38’>
<PHR CAT=’A’><W CAT=’A’/></PHR>
<PHR CAT=’NP’ B=’Y’>
<W BP=’B’ C=’VBN’ W=’Estimated’/>
<W BP=’I’ C=’NN’ W=’volume’/>
</PHR>
<PHR CAT=’VP’ B=’N’>
<W BP=’B’ C=’VBD’ W=’was’/>
</PHR>
<PHR CAT=’NP’ B=’N’>
<W BP=’B’ C=’DT’ W=’a’/>
<W BP=’1’ C=’NN’ W=’light’/>
<W BP=’I’ C=’CD’ W=’2.4°/>
<W BP=’I’ C=’CD’ W=’million’/>
<W BP=’I’ C=’NNS’ W=’ounces’/>

</PHR>
<PHR CAT=’WORD’ B=’N’>
W C=’.2 W="."/>

</PHR>
<PHR CAT=’E’> <W S=’E’/></PHR>
</S>

Two PHR elements are added, marking up be-
ginning and end of sentence. Information pro-
vided by the original corpus (word, POS-tag,
chunk-tag) are integrated in the XML corpus by
the way of attributes. The attribute B carried
on by PHR element corresponds to the bound-

ary clause we are looking for. Values are Y or
N.

4 Learning

The learning method consists in finding con-
texts in which an element can be associated to
a specific category with a high confidence. The
following query returns the list of the elements
PHR with the category NP which are clause be-
ginning (B="Y").

WSJ/S/PHR[CAT="NP’, B="Y’]

We now try to find negative examples, and eval-
uate the ratio between positive and negative ex-
amples. Extending a query consists in extend-
ing a tree using a breath-first path. First neigh-
bors are added (left and right), and then at-
tributes are added to each new element.

WSJ/S/(PHR[CAT="PP’] ,PHR[CAT="NP’])

The extension lasts until the accuracy of the
rule is high enough or until the frequency of
the sequence is high enough. Here is one of the
possible final rules:

<query FREQ=’11’ ACC=’0.92’>
<save>

<PHR CAT=’PP’>

<W W=’for’ C=’IN’/>
</PHR>

<PHR B=’Y’ CAT=’NP’>

<W C=’NNP’ CUR=’N’/>
</PHR>

<PHR CAT=’VP’>

<W BP=’B’ W=’to’ C=’T0’/>
</PHR>

</save>

</query>

In a more readable formalism:

if left elt = PP/IN/for
right elt = VP/T0/to
[np NNP] -> S



If a NP with an NNP occurs between a PP con-
taining IN/for and a VP containg TO/to, it is
a start of clause.

5 Rules

For data testl, ALLiS has learned 149 rules, the
coverage of the learning test being 82% (82% of
the positive cases are explained). As usually,
few very frequent rules insure the main part of
the coverage.

Concerning the second data, rules are more
difficult to learn. ALLiS only generates 25 rules
and the recall is very low.

5.1 Which precision?

Another important parameter is the threshold
0 which determines when the accuracy of a rule
is high enough. We tried two values: 0.8 and
0.9. For the chunking task (last year shared-
task), the best value was 0.9. In this task, the
best one is 0.8. We think that the explanation
is partially due to a more important quatity of
noise in data. For the chunking task, the noise
was due to POS tagging. In this data, it is due
to errors of tagging and also errors of chunking.
The F-score being around 92% for chunking, it
is obvious that the error rate for some tags is
higher than 10%. We can note that, even if the
threshold is set up at 0.8, the overall precision
stays high enough (94.08% against 95.76% for
0=0.9). Furthermore, setting 0 at 0.8 allows a
better recall (84.59% against 78.58%). It then
seems that 0’s value should be correlated with
the estimation of the noise in data.

6 Result

For CoNLL’01 shared-task 1, ALLiS offers a
good precision but a lower recall. Using a win-
dow of one element before and after seems to
be sufficient. Concerning subtask 2, the result
is unfortunately very close to the baseline. It
is clear that this task does not need local in-
formation, but information about the existence
of opened clauses. In order to validate this af-
firmation, we add a new rule which consists
in adding a tag B='E’ at the last word of the
sentence when two clauses are open. This im-
proves greatly recall (72.76) and precision keeps
high enough (87.48) to improve the overall re-
sult (F=79.44).

Results of the task 3 are provided by combin-
ing taskl and 2 and using a Perl script provided

developement | precision | recall | Fg—{
part 1 94.08% | 84.59% | 89.08
part 2 99.28% | 51.73% | 68.02
part 3 73.93% | 62.44% | 67.70
test precision | recall | Fg—;
part 1 93.76% | 81.90% | 87.43
part 2 99.04% | 48.90% | 65.47
part 3 72.56% | 54.55% | 62.27

Table 1: ALLiS results

by Erik Tjong Kim Sang.

References

Andreas Abecker and Klaus Schmid. 1996. From
theory refinement to kb maintenance: a position
statement. In ECAI’96, Budapest, Hungary.

Clifford Alan Brunk. 1996. An investigation
of Knowledge Intensive Approaches to Concept
Learning and Theory Refinement. Ph.D. thesis,
University of California, Irvine.

Hervé Déjean. 2000a. Theory refinement and
natural language learning. In COLING’2000,
Saarbriicken.

Hervé Déjean. 2000b. A use of xml for ma-
chine learning. In Proceeding of the workshop
on Computational Natural Language Learming,
CONLL’2000.

David Mckelvie, 2000. XML QUERY 2.0. Edin-
burgh. http://www.ltg.ed.ac.uk/software/ttt/.
Raymond J. Mooney. 1993. Induction over the un-
explained: Using overly-general domain theories
to aid concept learning. Machine Learning, 10:79.

Raymond J. Mooney. 1997. Inductive logic pro-
gramming for natural language processing. In
Sixth International Inductive Logic Programming
Workshop, pages 205-224, Stockholm,Sweden.

Erik F. Tjong Kim Sang and Hervé Déjean. 2001.
Introduction to the conll-2001 shared task: Clause
identification. In Proceedings of CoNLL, shared
task.



