Clause identification with Long Short-Term Memory

James Hammerton
Department of Computer Science
University College Dublin
james.hammertonQucd.ie

1 Introduction

Long Short-Term Memory (LSTM) is a new re-
current neural network architecture and train-
ing algorithm capable of remembering informa-
tion over long time periods, and thus addresses
the problem of recurrent networks forgetting in-
formation as a sequence is processed.

In this exploratory work, LSTM is applied to
the part 3 of the CoNLL 2001 shared task to see
how well it copes with a complex task involving
real-world data.

2 LSTM

LSTM networks consist of 3 layers, an input
layer, a recurrent hidden layer and an output
layer. The main innovation in LSTM is the
recurrent hidden layer. This consists of one
or more memory blocks each containing one or
more memory cells. Typically the inputs are
connected to all of the cells and gates. The cells
are connected to the outputs and the gates are
connected to other cells and gates in the hidden
layer.

Figure 1 depicts a single-cell memory block.
The block consists of an input gate, the memory
cell and an output gate. The memory cell is a
linear unit with self-connection with a weight
of value 1. When not receiving any input, the
cell maintains its current activation over time.
The input to the memory cell is passed through
a squashing function and gated (multiplied) by
the activation of the input gate. The input gate
thus controls the flow of activation into the cell.

The memory cell’s output is also passed
through a squashing function before being gated
by the output gate activation. Thus the output
gate controls the flow of activation from cells
to outputs. During training the input and out-
put gates learn to open and close in order to let
new information into the cells and let the cells

Cell input
multiplied by input
Inputs gate activation Outputs
\ \ Ol.o
/ Cell \\
Cell output
multiplied by output
gate activation
Input gate Output gate

Figure 1: A single-celled memory block

influence the outputs. The cells themselves oth-
erwise hold onto information unless new infor-
mation is accepted by the input gate. Training
of LSTM networks proceeds by a fusion of back-
propagation through time and real-time recur-
rent learning, details of which can be found in
(Hochreiter and Schmidhuber, 1997).

LSTM networks thus learns to remember in-
formation for arbitrary periods of time. In ar-
tificial tasks LSTM has been shown to be capa-
ble of remembering information for up-to 1000
time-steps. It thus tackles one of the most se-
rious problems affect the performance of recur-
rent networks on temporal sequence processing
tasks.

3 Approach

The LSTM network was trained to do the task
as follows:

e The input to the network consists of vec-
tors representing the current word, its as-
sociated part of speech (POS) tag and a
tag representing the base chunk the word
belongs to. The vector representations of

word, the chunk tags and POS tags con-
sisted of 25, 5 and 7 units respectively. The
word representations were derived using
lexical space encodings (Zavrel and Veen-
stra, 1996), the rest by hand!. An input
unit is used to indicate which pass through
the current sentence the network is cur-
rently in (see below). There are thus a total
of 38 input units.

e The outputs were represented by 13 unit
vector representations. These were sup-
posed to indicate the number of clauses
starting or ending on the current word by
having 2 sets of units, N units of which were
set to the value “1” when N clauses started
or ended on the current word. However a
mistake in the encoding was only spotted
when all the training and testing on the de-
velopment data had been done. Note that
when presented as targets to the network,
the zeros are converted 0.1s and the ones
to 0.9s. This helps training, most probably
because it helps prevent the weights taking
on very high values that make the network
resistant to change.

e Each sentence is presented to the network,
one word/POS tag/chunk tag at a time, in
two passes. On the first pass, the network
is not presented with target outputs. On
the second pass the network has to output
the number of clauses starting and ending
on the current word.

e The purpose of the first pass is to enable
the network to collect information to use
in disambiguation during the second pass.

e A network with 12 memory blocks of 8 cells
was used in training.

e The network was trained for 1000 iterations
on the first 1000 sentences from the sen-
tences from sections 15 to 18 of the Wall
Street Journal corpus. The best set of
weights as indicated by the number of er-
roneous patterns was then used in testing.
When deciding if a pattern was erroneous
a tolerance of 0.39 was used. Ie. if all
output activations came within 0.39 of the
target value the pattern was deemed to be

!Contact the author for details of the input/output
representations.

correct. The learning rate was 0.3 and no
momentum was used.

e The network was tested on the develop-
ment and test data for the shared task.
When evaluating the network’s output,
the outputs are converted to brackets.
These are balanced by assuming that every
opening bracket the net outputs is valid,
and discarding any extra closing brackets.
Should closing brackets need to be added,
they are added after the final word in the
sentence (i.e. before the final punctuation).

The network used above was much larger
than anything used in the LSTM literature and
was intensive to train (hence the decision to
train only on the first 1000 sentences). Whilst
this may in part reflect the difficulty of the task,
it may also reflect the possibility that the ap-
proach to training the network for the task is
not optimal. E.g. correcting the mistake in the
encoding of the output tags could improve per-
formance.

During investigation to see whether training
of some LSTM networks could be improved for
another task (noun-phrase bracketing), it was
discovered that outputting all zeroes (as op-
posed to not using targets) during the first pass
improved performance, as did using orthogonal
representations for the POS and chunk tags.
Applying these changes (and correcting the mis-
take in the encoding of the output tags de-
scribed above) enabled a network with only 12
blocks of 4 cells to be trained and to reach a
similar level of performance on the same train-
ing set as the network above. This network had
90 inputs due to the use of orthogonal vectors
for the tags.

Finally, a third network was trained on the
first 2000 sentences of the training set, which
also employed 12 blocks of 4 cells and the same
vector representations of the words, tags and
output as with the second network above.

4 Results

Table 1 gives the results of training the networks
mentioned above and Table 2 gives the results
of testing them. Note that the fscores are below
the baseline value given in the specification for
the shared task in the first 2 cases but the fscore
is just above baseline in the 3rd case. Note also

training | Iters | MSE | Errs | Weights
Net 1 998 | 0.028 | 1047 | 17883
Net 2 997 | 0.014 | 1014 | 13495
Net 3 983 | 0.016 | 2817 | 13495

Table 1: Results of training 2 LSTM networks
on first 1000 sentences of the training set and a
3rd network (Net 3) on the first 2000 sentences.

that the recall is above baseline in all 3 cases.
The column headings are as follows:

e Iters. The number of iterations performed
when the best error was reached.

e MSE. The mean squared error between the
target outputs and the actual outputs.

e Errs. The number of erroneous patterns.

e Weights. The number of weights in the net-
work (the most accurate measure of net-
work size).

e Precision. The percentage of clauses found
that were correct.

e Recall. The percentage of clauses defined
in the corpus that were found.

e Fscore. F = 2PE where P=precision and

P+R
R=recall.

5 Concluding Remarks

As noted earlier this work was exploratory
in nature as part of an investigation into us-
ing LSTM networks for shallow parsing tasks.
Given that these preliminary attempts to do
this task and the networks were trained on only
a small part of the training set, which has a to-
tal of 8936 sentences, and that improved per-
formance compared to the first network was
achieved whilst using a smaller network, these
results are not as disappointing as they might
initially appear. Both the fscore and the recall
are above baseline in the best case, and recall is
above baseline in all cases. There is also scope
for improving on these results.

The differences in performance between Net
1 and Net 2 on the development data may sim-
ply be due to noise from different weight initial-
isations. A more thorough experiment would
employ averages from several training runs to
make allowances for this.

development | Precision | Recall | Fscore
Net 1 55.19% | 46.35% | 50.38
Net 2 54.74% | 45.37% | 49.62
Net 3 59.85% | 55.56% | 57.62
test Precision | Recall | Fscore
Net 1 51.92% | 40.59% | 45.56
Net 2 52.92% | 40.08% | 45.61
Net 3 55.81% | 45.99% | 50.42

Table 2: Results of testing the networks on the
development and testing data for Part 3 of the
shared task ONLY. The best fscores are high-
lighted in bold.

The scope for improving on these results
comes from the possibilities of training with
more data, training for more iterations and pos-
sible further improvements in training times
through different ways of presenting the task to
the networks.

However it is clear there is some way to go be-
fore these networks reach a good level of perfor-
mance. Future work will look at improving the
performance via increasing the amount of train-
ing data, using the difference between the cur-
rent word vector and the previous word vector
as an extra input to the network (which thus ex-
plicitly provides the transitions from one word
to the next) and possibly employing a different
processing strategy to the current 2-pass strat-

egy.

Acknowledgements

The author would like to thank Ronan Reilly
and Fred Cummins for their comments and ad-
vice on this work and for Fred’s LSTM code.
This work was funded by the EU TMR project

“Learning Computational Grammars”.

References
S. Hochreiter and J. Schmidhuber. 1997. Long
Short-Term Memory. Neural Computation,

9:1735-1780.

J. Zavrel and J. Veenstra. 1996. The language envi-
ronment and syntactic word class acquisition. In
Koster C. and Wijnen F., editors, Proceedings of

the Groningen Assembly on Language Acquisition
(GALA °95).

