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Abstract

Computationalearningof naturallan-
guageis often attemptedvithout using
the knowledgeavailablefrom otherre-
searchareassuch as psychologyand
linguistics. This can leadto systems
that solve problemsthat are neither
theoreticallyor practically useful. In
this paperwe presenta systemCLL
which aims to learn natural language
syntaxin a way that is both compu-
tationally effective andpsychologically
plausible. This theoreticallyplausible
systemcanalsoperformthe practically
usefultaskof unsupervisedearningof
syntax. CLL hasthenbeenappliedto
a corpusof declaratre sentencefrom
thePennTreebanKMarcusetal.,1993;
Marcuset al., 1994) on which it has
beenshavn to perform comparatrely
well with respecto muchlesspsycho-
logically plausiblesystemswhich are
significantly more supervisedand are
appliedto somevhatsimplerproblems.

1 Intr oduction

Computationalearningof naturallanguagecan
be consideredfrom two common perspecties.
Firstly, thereis the psychologicalperspectie,
which leadsto theinvestigationof learningprob-
lems similar to thosefacedby peopleand the
building of systemshatseeko modelhumanan-
guagelearningfaculties. Secondly thereis the
computationalperspectie, which seeksto build
systemsthat effectively solve languagdearning
problemghatareof practicalimportance.

In principle, there is significant overlap be-
tweenthesetwo perspecties. Themostcommon
languagdearningproblemshatwe wish to solve
computationallyarefrequentlythosethathumans
have to solve. For examplewhenhumanslearn
language especiallysyntax, it seemsto bein a
mostly unsupervisedettingi.e. thereis no an-
notationof training examples. From a computa-
tional perspectie, while therearesomeannotated
resourceswvailable,in generalwe have very large
amountf unannotatetext availablefrom which
we desireto be ableto extractgrammarsmean-
ing etc. Giventhis overlap, it seemswise to in-
vestigatewhatwe know of the humanapproach,
ashumansaregoodat solvingtheseproblems.

In this work we presenta systemfor learning
syntax that seeksto maintain both the psycho-
logical and computationaperspecties. We also
shaw thatthis is aneffective way to build natural
languagédearningsystemsWe representhe syn-
tactic knovledge using the Cateyorial Grammar
(CG)formalism,soin Section2 weintroduceCG.
In Section3 we aim to definethe problemthatis
to besolvedin awaythatis psychologicallyplau-
sible. Thisis followedin Sectiord by thedescrip-
tion of CLL a computationagffective solutionto
the problem,which we maintainis alsoreason-
ably psychologicallyplausible. Relatedwork is
discussedh Sectiorb. Theresultsof experiments
usingCLL on examplesfrom the PennTreebank
arepresentedh Sectioné andwe drav somecon-
clusionsfrom thiswork in Section?.

2 Categorial Grammar

Catgyorial Grammar (CG) (Steedman, 1993;
Wood, 1993) provides a functional approachto

lexicalisedgrammayandso,canbethoughtof as
defininga syntacticcalculus Below we describe



thebasic(AB) CG.

Thereis asetof atomiccateyoriesin CG,which
areusuallynouns(n), nounphrasegnp) andsen-
tenceqs). It is thenpossibleto build up comple
catgyoriesusingthe two slashoperators’/” and
“\". If A andB arecatgyoriesthenA/B is acate-
goryandA\B is a catgory. With basicCG there
are just two rulesfor combiningcateyories: the
forward (FA) andbackward (BA) functionalap-
plicationrules.

X/YY = X (FA)

Y X\Y = X (BA)
In Figurel the parsederivationfor “Johnatethe
apple”is presentedwhich shavs examplesof the
typesof cateyoriesthat words cantake andalso
how thosecateoriesare combinedusingthe ap-
plicationrules.

John ate the apple
np (s\np)np np/n n
— FA
np
FA
s\np
BA

S

Figurel: A ExampleParsein PureCG

Catgyorialgrammaidoesnothandlecompound
nounphrasesery well, sowe have addedsome
simplecombinationrulesthatallow the possibil-
ity of joining adjacennhounsandnounphrases.

Perhapsthe main adwantageof using a lexi-
calisedformalismsuchasCG for this taskis that
the learningof the grammarand the learningof
the lexicon is onetask. CG will also easilyal-
low extensionssuchthatnew cateyoriescouldbe
generatedr thatcatgyory schemacouldbe used.

3 A PlausibleProblem

Thedesirein thiswork, is to shav thatacomputa-
tionally effective systemjn thiscaseCLL, canbe
built in suchaway thatboththe problemit solves
andthewayit isimplementedrepsychologically
plausible Wewould alsosuggesthatdefiningthe
problemin this way leadsto a practicallyuseful
problembeingattempted.

Initially we seekto define the problemin a
psychologicallyplausibleway. Theaimis to in-
duceabroadcoveragegrammaifor Englishfrom

a setof appropriateexamples. Beyond this, the

problem can to someextent be definedby the

knowledgethe learneralreadyhas;the informa-

tion thatis availablein the environmentandthe

knowledgewhich is to be learned. Psychology
and psycholinguisticgrovide us with a signifi-

cantamountof datafrom which we may derive

a fairly good picture of how the problemis de-

fined for humans.In particular we will concen-
trateonachild’'s acquisitionof theirfirstlanguage
andhow this relateso a computationamodel,as
this seemsto be the point at which humanlan-

guageacquisitionis atits mostefficient.

3.1 The Environment

With respecto the ernvironmentin which a child
learnswe will concentrat®n two questions.

1. Whatexamplesof languagearechildrenex-
posedo?

2. Whatkind of languagegeachingdo children
experience?

It is clearthatchildrenexperiencepositive ex-
amplesof syntaxi.e. all thelanguageutterances
they hear althoughthesemaybe somevhatnoisy
(peoplemale lots of mistales). Childrendo not,
however, experienceneggative examples,as peo-
ple do not (atleastin ary consistentvay) present
ungrammaticagxamplesandmarkthemasincor
rect.

¢Froma syntactic perspectie, examplesap-
pearto have little discernibleannotation.Pinker
(Pinker, 1990) summarisesvhat seemdo be the
only evidencethat childrenreceve structuralin-
formation.It is suggestedhatstructuralinforma-
tion may be obtainedby the infant from the ex-
aggeratedntonationwhich adultsusewhentalk-
ing to children. While theremaybe a link, it is
not clearwhatit is andit is certainthatcomplete
structuredor sentencesannotbe consideredo
beavailable,asthereis notenoughinformationin
intonationalone.

Hence,we have defineda learningsettingthat
is both positive examplesonly andunsupervised.
However, there has beensome suggestionthat
negative evidencemay be availablein the form
of parentakorrection.Thisleadsto issuesf lan-
guageteaching.



It is suggestedthat the languagepresented
to childrenis in fact very detailed and struc-
tured. Themotheesehypothesi®r child directed
speeh (Harlgy, 1995; Pinker, 1990; Atkinson,
1996), proposeshat, startingwith very simple
languageadultsgraduallyincreasehe comple-
ity of the languagethey usewith children, such
that they actually provide childrenwith a struc-
turedsetof languagdessonsThetheoryis based
uponresearchhatshavs thatadultsusea differ-
ent style of speechwith infantsthanwith other
adults(Snav andFeiguson,1977).

However, Pinker (Pinker, 1990)providesargu-
mentsagainstthe acceptancef the Motherese
hypothesis. Firstly, althoughit may appearthat
the languageis simplified, in fact the language
usedis syntacticallycomplex — for example it
containsa lot of questions.Secondlythereexist
societiesvherechildrenarenot consideredvorth
talking to until they cantalk. Hence,thereis
no mothereseand only adult-to-adultspeechex-
ampleswhich infantshearand from which they
have to acquiretheirlanguage Thesechildrendo
not learnlanguageary slower thanthe children
who areexposedto mothereseAtkinson (Atkin-
son,1996)providesfurtheragumentsagainsthe
motheresdypothesissuggestinghatmakingthe
inputsimplerwould make learningmoredifficult.
For the simplerthe input s, the lessinformation
is containedwithin it andsothereis lessinforma-
tion from whichto learn.

An alternatve suggestionfor the provision
of teachingis that negative evidenceis actually
availableto the child in the form of feedbackor
correctionfrom parents Thismodelwastestedy
Brown andHanlon(Brown andHanlon,1979)by
studyingtranscript®f parent-chilccorversations.
They studiedadultsresponseto childrens’'gram-
matical and ungrammaticakentencesnd could
find no correlationbetweerchildrens grammati-
cal sentenceand parents encouragementThey
even found that parentsdo not understancthil-
drens well-formed questionsmuch better than
their ill-formed questions.Pinker (Pinker, 1990)
reportsthat theseresults have beenreplicated.
This canonly leadto the conclusionthatthereis
no significantnegative evidenceavailableto the
infantattemptingo learnsyntax.

Hence we have alearnerthatis unsupervised,
positive only anddoesnothave ateacherln prac-
tice this meanghatwe build a systemthatlearns
from anunannotatedorpusof examplesof alan-
guage(in this casewe useunannotate@xamples
from the PennTreebankandthereis no oracleor
teacheinvolved.

3.2 The Learner'sKnowledge

A child canbe consideredo have two typesof
knowledgeto bring to the problem. Firstly there
may be someinnateknowledgethatis built into
the humanbrain, which is usedin determining
thelanguagdearningprocess.Secondlythereis
knowledgethatthe child hasalreadyacquired.

The issueof a child’s innate knovledge has
beenthe subjectof a significantdebatewhichwe
donothave thespaceo dojusticeto here.Instead
wewill presentheapproactihatwewill take and
the reasondor following it, while acceptinghat
therewill bethosewhowill disagree.

The poverty of stimulusagument(Chomsly,
1980; Carroll, 1994) suggestghat the erviron-
ment simply doesnot provide enoughinforma-
tion for a learnerto be able to selectbetween
possiblegrammars. Hence, it seemsthat there
needgo be someinternalbias. Furtherevidence
for this is the strong similarity betweennatu-
ral languageswith respectto syntax,which has
led Chomsly to hypothesisdhat all humansare
bornwith aUniversal Grammar(Chomsly, 1965;
Chomsly, 1972; Chomsly, 1986) which deter
minesthe searchspaceof possiblegrammardor
languagesThis is supportedurther by the Lan-
guage Bioprogram HypothesigLBH) of Bicker
ton (Bickerton, 1984),who analysectcreolesthe
languageshatdevelopin communitiesvheredif-
ferentnationalitieswith differentlanguagesvork
alongsidesachother Initially, in suchcontets, a
pigeondevelops whichis averylimited language
that combineselementsof both language$ound
in the community The pigeonhasvery limited
syntacticstructures. The next generationdevel-
opsthe pigeoninto a full language- the creole.
Bickerton (Bickerton, 1984) found that the cre-
oles,developingfrom syntacticallyimpoverished
languageexamplesas they do, actually contain
syntacticstructuresnot available to the learners
from their pigeonernvironment. Thesestructures



shav astrongsimilarity to thesyntacticstructures
of othernaturallanguagesBickerton(Bickerton,
1984)states:

“the most cogent explanation of this
similarity is that it derives from the
structureof a species-specifiprogram
for languagegeneticallycodedandex-
pressedjn ways still largely mysteri-
ous,in the structuresandmodesof op-
erationof the humanbrain”

Practically there are a variety of optionsfor
providing a suitablelevel of innate knovledge.
By choosinga lexicalised grammar (see Sec-
tion 2) we have allowedthe systemto have afew
basicrulesfor word combinatioranda setof pos-
sible catgyoriesfor words. Currently the useof
a completeset of possiblelexical cateyoriesis
perhapstoo stronga biasto be psychologically
plausible.In future we will look at eithergener
ating categories,or usingcateyory schemashoth
of which mightbe moreplausible.

The secondype of knowledgeavailableto the
learnelis thatwhichhasalreadybeenearned We
can,to someextent,determinehis from develop-
mentalpsychology Beforethe stageof learning
syntaxchildrenhave alreadylearneda wide vari-
ety of wordswith somenotion of their meaning
(Carroll, 1994). They thenseemto be beginning
to usesingle words to communicatemore than
justthemeaningof theword (Rodgon1976;Car
roll, 1994)andthenthey begin to acquiresyntax.

In termsof a learningsystemthis would sug-
gestthe availability of someinitial lexical infor-
mation like word groupingsor somebootstrap-
pinglexicon. Herewe presentesultsusinga sys-
tem that hasa small initial lexicon thatit is as-
sumedthatthe child haslearned.We arealsoin-
vestigatingusingword groupinginformation.

3.3 What is to be learned?

Given the knowledge that is available to the
learner and the ervironment from which the
learnerreceves examplesof the language,the
learneris left with thetaskof learninga comple,
i.e. lexicalised lexicon.

Using CG meanghatwe areaimingto build a
lexicon thatcontaingherequiredCG category or

catgyoriesfor eachword, which definesthe syn-
tacticrole or rolesof thatword. In future,we may
look at extendingthe grammarto include more
detail, sothatthe syntacticrolesof wordsarede-
finedmoreaccurately
Interestinglythisleadsusto a practicallyinter
estingproblem.Giventheamountof unannotated
text availablefor a variety of differentlanguages
andfor a variety of differentdomains,it would
bevery usefulto have a systemthatcouldextract
grammargrom selection®f suchtext.

4 A Computationally Effective Solution

Thesystemwe have developedis shavn diagram-
matically in Figure 2. In the following sections
we explain the learningsettingandthe learning
proceduragespectiely.

4.1 The Learning Setting

The input to the learningsetting hasfive parts,
which arediscussedbelow.

The Corpus Thecorpusis a setof positive ex-
amplesrepresenteih Prologasfactscontaining
alist of wordse.g.

ex([mary, loved, a, conputer]).

The Lexicon The lexicon is initially empty

apartfrom a smallsetof closed-classvordsused
to bootstraghe processasthisis whatthelearner
induceslt is storedby thelearnerasa setof Pro-
log factsof theform:

| ex(Wbrd, Category, Frequency).

WhereWbr d is a word, Cat egory is a Prolog
representationf the CG cateyory assignedo that
word and Fr equency is the numberof times
this catgyory hasbeenassignedo thisword up to
thecurrentpointin thelearningprocessor in the
caseof theinitial closed-classiordsaprobability
distribution is predefined..

The Rules The CG functionalapplicationrules
andcompoundnounphraserules(seeSection2)
are suppliedto the learner Extrarules may be
addedn futurefor fuller grammaticatoverage.

The Categories Thelearnerhasa completeset
of thecatgyoriesthatcanbeassignedo awordin
thelexicon.
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Figure2: A Diagramof the Structureof the Learner

The Parser The system emplgys a n-best
probabilistic chart parser developed from a
standardstochasticCKY algorithm taken from
Collins(Collins,1999). Theprobabilityof aword
beingassigned cateyory is basedn therelative
frequeng, which is calculatedfrom the current
lexicon. Simple smoothingis usedto allow for
unseenexical entries. Theprobabilitiesof theen-
triesin theinitial lexicon arepredefined.

Eachnon-lical edgein thecharthasa proba-
bility calculatedby multiplying the probabilities
of the two edgesthat are combinedto form it.
Edgedbetweertwo verticesarenotaddedf there
aren edgedabelledwith the samecateyory and
a higher probability betweenthe sametwo ver
tices(if onehasalower probabilityit is replaced).
Also, for efficiengy, edgesarenotaddedbetween
verticesif thereis an edgealreadyin placewith
amuchhigherprobability The chartin Figure3
shavs examplesf edgeshatwouldnotbeadded.
Thetop half of the chartshavs oneparseandthe
bottom half another If n wassetto 1 thenthe
dashededgespanningall the verticeswould not
be added,asit hasa lower probability than the
others edgecovering the samevertices. Simi-
larly, the dashededgebetweerthe first andthird
verticeswould notbe added asthe probability of
then is somuchlower thanthe probability of the

np.

s-0.512

s - 0.0009

Figure3: Examplechartshaving edgepruning

4.2 The Learning Procedure

Having describedthe various componentswith
which the learneris provided, we now describe
how they areusedin thelearningprocedure.

Parsing the Examples Examples are taken
from the corpusoneat a time and parsed.Each
exampleis storedwith thegroupof parseggener
atedfor it, sothey canbe efficiently accesseth
future. The parsethatis selectedseebelow) as
thecurrentbestparses maintainechtthe headof
this group. The headparsecontritutesinforma-
tion to thelexicon andannotateshe corpus.The
parsesarealsousedextensvely for theefficiengy
of theparseselectiormodule aswill bedescribed
belav. Whenthe parseffailsto find ananalysisof
anexample eitherbecausé is ungrammaticalor
becausef theincompletenesef the coverageof



the grammay the systemskipsto the next exam-
ple.

The ParseSelector Eachof then-bestparsess
consideredn turnto determinewvhich canbeused
to make themostcompressie lexicon (by agiven
measure)following the compressioraslearning
approactof, for example,Li andVitaryi (Li and
Vitaryi, 1993)andWolff (Wolff, 1987),whoused
it with respecto languagdearning. The current
sizemeasurdor thelexiconis thesumof thesizes
of the categyoriesfor eachlexical entry The size
of a cateyory is the numberof atomiccateyories
within it. It is notenoughto look at whata parse
would addto the lexicon. The effect on previ-
ousparseof the changesn lexicon frequencies
must also be propagatedy reparsingexamples
thatmaybeaffected.

This may appearan expensie way of deter
mining which parseto select,but it enablesthe
systento calculatethe mostcompressie lexicon
andup-to-dateannotatiorfor the corpus.We can
also use previous parsesto reducesomeof the
parsingworkload.

Lexicon Modification Thefinal stagetakesthe
currentlexicon andreplacesit with the lexicon
built with the selectecparse.

The whole processs repeatedintil all the ex-
ampleshave beenparsed.Thefinal lexiconis left
afterthe final examplehasbeenprocessed.The
mostprobableannotationof the corpusis the set
of top-mostparsesfterthefinal parseselection.

5 RelatedWork

Wolff (Wolff, 1987)usingasimilar (if rathermore
empiricist)settingalsousessyntacticanalysisand
compressiorto build grammars. However, this
syntacticanalysiswould appeato bevery expen-
sive andthe systemhasnot beenappliedto large
scaleproblems. The compressiommetric is ap-
plied with respecto the compressiorof the cor
pus, ratherthanthe compressiorof syntacticin-
formation extractedfrom the corpus,asin CLL.
It seemsunlikely that this simple induction al-
gorithm would generatelinguistically plausible
grammarsvhenpresentedvith complex naturally
occurringdata.

Joshiand Srinivas (Joshiand Srinivas, 1994)
have developedamethodcalledsupertagginghat

similarly attachescomple syntactic tags (su-
pertags)to words. The most effective learning
model appearsto have beena combinationof
symbolic and stochastidechniqueslike the ap-
proachpresentedhere.However, afull lexiconis
suppliedto the learner sothatthe problemis re-
ducedto oneof disambiguatindgetweerthe pos-
siblesupertagsThelearningappearso besuper
visedandoccursover parts-of-speechatherthan
over the actualwords. However, somenotion of
label accurag is suppliedand this canbe com-
paredwith theaccurag of our system.

Osborneand Briscoe (Osborneand Briscoe,
1997)presenafairly superviseadystenfor learn-
ing unusuaktochasti€CGs(theatomiccateyories
afar morevariedthanstandardCG) againusing
part-of-speecltstringsratherthan words. While
the problemsolved is muchsimpler this system
provides a suitablecomparisonfor learningap-
propriatelexiconsfor parsing.

Neither Joshi and Srinivas (Joshi and Srini-
vas,1994)nor OsborneandBriscoe(Osborneand
Briscoe,1997)canbeconsidereghsychologically
plausible,but they are computationallyeffective
andthey do provide resultsfor comparison.

Two other approachedo learning CGs are
presentedby Adriaans (Adriaans, 1992) and
Solomon(Solomon,1991). Adriaans,describes
apurelysymbolicmethodthatuseghe context of
wordsto definetheir category. An oracleis re-
quiredfor the learnerto testits hypothesesthus
providing negative evidence.This would seemto
be awkward from a engineeringview point i.e.
how onecould provide an oracleto achieve this,
and implausiblefrom a psychologicalpoint of
view, ashumansdo not seemto receve suchev-
idence(Pinker, 1990). Unfortunately no results
on naturallanguagecorporaseemo beavailable.

Solomons$ approach(Solomon, 1991) uses
unannotatedorpora,to build lexiconsfor simple
CG. He usesa simplecorporaof sentencefrom
childrens books,with a slightly ad hocandnon-
incrementalheuristicapproacho developingcat-
egoriesfor words. The resultsshav thata wide
rangeof cateyoriescan be learned,but the cur
rentalgorithm,asthe authoradmits,is probably
too naive to scaleup to working on full corpora.
No resultsonthe coverageof the CGslearnedare
provided.



6 Results

Early results on small simple corporawith a
simpler version of the learner were presented
in (Watkinsonand Manandhar1999; Watkinson
andManandhar2000). Here,we presengexperi-
mentsperformedusingtwo comple corpora,C1
andC2, extractedfrom the PennTreebankMar-
cusetal., 1993;Marcuset al., 1994). Thesecor
poradid not containsentencewith null elements
(i.e. movement).C1 contains5000sentencesf
15 wordsor less. C2 contains1000sentencesf
15 wordsor less. Lexiconswere inducedfrom
C1 and then usedwith the parserto parseC2.
Experimentsvere performedwith a closed-class
word initial lexicon of 348 entries(LIL) and a
smallerclosed-classordinitial lexiconof 31en-
tries (SIL) to determinethe bootstrappingeffect
of thisinitial lexicon.

Theresultinglexiconsaredescribedn Tablel.
Thesecanbe comparedvith a gold standardCG
annotateccorpuswhich hasbeenbuilt (Watkin-
sonand Manandhar2001), which hasa size of
15,136lexical entriesand an averageambiguity
of 1.25cateyoriesperword. This corpusis only
looselya gold standardasit hasbeenautomat-
ically constructed.However, it gives an indica-
tion of the effectivenessof the lexical labelling
andis currentlythebestCGtaggedesourcevail-
ableto us. Theaccurag of the parsedexamples
both from the training and test corporaare also
describedn Tablel. Two measuresire usedto
evaluatethe parsesiexical accurayg, whichis the
percentageof correctly taggedwords compared
to the extractedgold standardcorpus (Watkin-
sonandManandhar2001)and averagecrossing
bracletrate(CBR) (Goodman1996).

In generalhe systemperformsbetterwith the
larger initial lexicon to bootstrapit. The size
andambiguity of the lexicon are closeto that of
the gold standardjndicating that the right level
of compressiorhasoccurred. The bestcrossing
bracletrateof 4.70compares$avourablywith Os-
borneand Briscoe (Osborneand Briscoe,1997)
who give crossingbraclet ratesof around3 for
a variety of systems. Consideringthat they are
solving a much simpler problem, our average
crossingbraclet ratesseenreasonable.

Thelexical accurag valueis fairly low. Joshi

and Srinivas (Joshiand Srinivas, 1994) achiere
a bestof 77.26%accurayg. Two factorsexplain
this. Firstly their systemis simply disambiguat-
ing which tag to usein a contet againusing a
corpusof tag sequences a muchsimplerprob-
lem. Secondlyit would appeathatthe gold stan-
dardcorpusthey useis muchmoreaccuratghan
ours.Despitethis, asystenthatassignedhetags
randomlyfor our problem,would achieze an ac-
curagy of 3.33%, so over 50% is a reasonable
achiezement.

7 Conclusions

Thereis furtherwork to be completedn extend-
ing the systemto allow it to dealwith movement
andthusthewholeof thePennTreebankFurther
investigationof parameterof CLL shouldalso
be completed.Furtherwork needsto be donein
building anaccurategold standarccorpus.There
is alsoa possibilityof performingexperimenton
sequencesf parts-of-speechas Joshiand Srini-
vas (Joshiand Srinivas, 1994) and Osborneand
Briscoe (Osborneand Briscoe,1997) did. This
would reducethe effectsof the sparsedataprob-
lem.

However, we have presentedh systemthat is
psychologicallyplausibleandwhoseresultsshav
that, given the compl«ity of the problem at-
tempted,it is computationallyeffective. There-
sults comparereasonablywith systemsattempt-
ing muchsimplerandpsychologicallylessplau-
sibleproblems.
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