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Abstract

This paper presents an algorithm
for extracting proba-
bilistic translation grammars from
bilingual aligned and linguistically
bracketed text. The invertibility
condition requires all translation
ambiguities to be resolved in the fi-
nal translation grammar. The pa-
per examines the complexity of in-
ducing translation grammars and
proposes a number of heuristics to
reduce the the theoretically expo-
nential computation time.

invertible

1 Introduction

In the framework of corpus-based machine
translation, a number of methods have been
proposed for automatically inducing trans-
lation correspondences from aligned texts.
Some researcher parse alignments with the
aim of linking word translations and inter-
nal nodes of derivation trees in both lan-
guage sides of the alignment. (Wu, 1995),
for instance, proposes a bilingual stochas-
tic parser. This parser analyses both lan-
guage sides of an alignment in parallel where
the leaves of the binary derivation trees are
terminal symbols and all internal nodes are
non-terminals. (Watanabe et al., 2000) and
(Meyers et al., 1996; Meyers et al., 1998)
parse each language side independently and

try to find most likely node correspondences
in the derivation trees. Other approaches, in-
cluding this present one, try to induce a set
of context-free transfer rules from the align-
ments.

This paper proposes an algorithm which gen-
erates and filters a translation grammar (i.e.
a set of context-free transfer rules) from
aligned and bracketed pieces of text. The
transfer rules in this grammar are similar
to Takeda’s “Translation Pattern” (Takeda,
1996; Watanabe and Takeda, 1998) with the
difference that an accepted input is necessar-
ily also translatable. Translation grammars
are made up of lexical transfer rules which
contain only terminal symbols and transla-
tion templates - i.e. generalized transfer rules
- which also contain variables.

In the framework of Example-Based Machine
Translation (EBMT), a number of methods
have been proposed for inducing translation
grammars from aligned texts. In so-called
“pure” EBMT systems, the only available
knowledge resource is the aligned text itself
(cf. (Block, 2000; Brown, 1997)), while in
richer systems additional, linguistic knowl-
edge resources are used to a varying degree;
cf. (Somers, 1999) for a review of EBMT-
systems and resources used by these systems.
According to (Somers, 1999), EBMT sys-
tems differ in the number and the quality
of resources used, the way this knowledge
is represented, stored and used for trans-



(de) — (6//) 613.(Cd6) — (6:)
(de) — (a/)l‘ 614Z(Cd6) — (a,)r
(de) — (a/b/),‘ 615Z(Cd6) — (a,b, /
(de) < (a'd'c) cie:(cde)  — (a'b’c)

Figure 1: Set of lexical transfer rules C extracted from a4

ci:(a) < (€' cs:(e) = (€' Co:
exi(a) < (a') ce:(e) = (a) c10:
czi(a) =  (a'b’) cri(e) = (a'b) c11:
car(a) = (a'b'c") cs:(e) = (a'b'c) C12:
lation. EBMT systems differ also in the

way generalizations are computed. In al-
most all cases where generalizations are in-
duced from aligned texts, a set of two or more
alignments are compared and suitable sub-
sequences are replaced by variables. With re-
spect to this substitution one can distinguish
between methods which generalize similari-
ties (e.g. (Block, 2000; Bostrém, 1999) and
this present approach), methods which gen-
eralize differences (e.g. (Giivenir and Cicekli,
1998)) and methods which generalize both,
similarities and - as their complement - dif-
ferences (McTait and Trujillo, 1999). While
there is increasing research that aims at in-
ducing translation grammars from aligned
texts, a detailed analysis of the potentials
and implications of the different methods re-
mains to be undertaken in future.

The algorithm I shall present in this paper
expects as its input both language sides of
the alignments to be bracketed. We cur-
rently use the shallow parser KURD (Carl
and Schmidt-Wigger, 1998) for this bracket-
ing, although knowledge-poor methods could
similarly be used as, for instance, described
in (Zaanen, 2000). The algorithm generates
lexical transfer rules and generalizations from
the bracketed alignments and assigns prob-
abilities and weights to each of these rules.
From these rules, a translation grammar is
filtered. This grammar does not contain
translation ambiguities. Instead, each trans-
fer rule encodes a minimal context which
makes it unique in the translation grammar.
The algorithm does not require a bilingual
lexicon, but a lexicon can be provided to
bootstrap the system and enhance the out-
come. The translation grammar is expected
to re-generate the aligned text in a most com-
positional and complete manner. First, I de-

scribe how transfer rules are generated from
the bracketed alignments. Then I describe
how a set of invertible transfer rules is fil-
tered. Last I give an example of an induced
grammar.

2 Complexity of Inducing
Translation Templates

The program assumes a bilingual text P
which consists of n aligned pieces of text
a1 ...a,. Each alignment a; consists of a left-
hand side (lhs) e and a right-hand side (rhs)
f. By means of a (shallow) parser, both lan-
guage sides e and f are independently brack-
eted (parsed) which results in a representa-
tion similar to the following!:

a1 : () b (e(d(e))) < (((a)B')c) d’ ()

Without no further knowledge, one cannot
know which of the lhs-brackets translates
into which bracket in the rhs or whether a
lhs-bracket has a rhs-translation at all. We
therefore assume that each lhs-bracket trans-
lates with the same probability into any rhs-
bracket. For an alignment a; we can there-
fore extract p x ¢ lexical transfer rules C; :
{c1...¢pxq}, where p is the number of lhs-
brackets and ¢ is the number of rhs-brackets.
The set C7 extracted from a; is shown in fig-
ure 1.
In a second step, translation templates (or
generalizations) are induced from a; and
the extracted lexical transfer rules ¢; ... cp.
While a lexical transfer rule consists only of
!The letters “abede” on the left-hand side repre-
sent lemmas of e; the letters “a’b’c’d’e’” those of f in
the right-hand side. The brackets are also annotated
with a phrasal tag and morpho-syntactic information.

For the sake of simplicity, I will not consider this in-
formation here.



terminal symbols, a generalization contains
variables (so-called reductions) in places
where a shorter transfer rule matches a sub-
sequence in the lhs and in the rhs. A gen-
eralization has thus at least one reduction in
each language side and it has an equal num-
ber of reductions in the lhs and the rhs. Each
reduction in lhs is linked exactly to one re-
duction in rhs.

From the transfer rule ¢4, for instance, can
be generated 4 different generalizations while
from transfer rule ¢1; only one generalization
can be generated. These are shown in fig-
ure 2. From the alignment «; can be gen-
erated 25 generalizations by substituting one
or more transfer rules ¢;...cy6.

More generally, from a transfer rule ¢; which
has p bracketed sequences in its lhs and ¢
bracketed sequences in its rhs, an exponen-
tial number of generalizations #G; can be
generated:

#Gj:g(]i)) ' (q) B (p;q)

For instance, if we assume both, p and ¢ to
be 10 and none of the 10 brackets in either
language side are included in another bracket
(i.e. all brackets are top-level brackets), more
than 180.000 different generalizations can be
generated. This is a number far too big to be
computed, as 10 brackets (i.e. constituents
in the parsed sentence) is not many. In fact,
50 or more brackets do appear frequently in
parsed sentences, although in the experiment
reported below, not all brackets are top-level.
Therefore, a number of heuristics is proposed
for generating from the set of possible gen-
eralizations only those achieving the highest
weight.

3 Probabilistic Translation
Grammars

Before introducing heuristics, I first describe
how probabilities and weights are assigned
to the lexical transfer rules and generaliza-
tions. While inducing the translation gram-

mar, each possible item in the translation
grammar, alignments a;, lexical transfer rules
c; and generalizations gj, is linked to two
sets.

a; = {Gi,Ci}
g = {Rk,Ci}
¢j = {Gj, A}

Fach a; is associated with a set of lexical
transfer rules C; and a set of generalizations
G; which have been generated from a;. Each
lexical transfer rule ¢; is associated with a set
A; of alignments from which ¢; has been ex-
tracted and a set of generalizations ; which
have been generated from c¢;. Finally, each
generalization g is associated with a set of
lexical transfer rules C'; which have been re-
placed in the generalization (i.e. the daugh-
ters of the generalization g;) and a set of ref-
erences Rj. Since generalizations are gener-
ated from alignments and from the extracted
lexical transfer rules, the set of references Ry
may consist of alignments a; and/or transfer
rules ¢;.

The probability of an alignment a; is its fre-
quency in the aligned text P divided by the
number n of alignments in P.

pa) = 12 1)

n

The probability of a lexical transfer rule ¢; is
a function of the number of times ¢; has been
extracted from alignments a;, : = 1...n and
the cardinality #C; of the set C;, normalized
by the size of P:

e)=2 Y 2)

c;€C;

The probability of a generalization g is the
sum of the probabilities of the reference(s)
r € Ry from which g; has been generated.



G; Induced Generalization p(gr) w(gr)
Gi: {1 (dx) = (b)) 1/4 2/4
g2 (cdx) — (xb'c") 1/4 2/4
a g3 (cdx) < (xc) 1/4 2/4
16 ga:  (ex) = (xb'c) 1/4 2/4
g5:  (ex) < (%) 1/4 3/4

Figure 2: Set of generalizations (G1; and G146 induced from transfer rules ¢11 and ¢q6

plgr) = Y p(r) (3)

r€Ry

Based on these probabilities, a weight is com-
puted for each a;, ¢;, gi.

The weight w(¢;) of a lexical transfer rule
c¢; equals the maximum weight of the gen-
eralization that has been generated from it.
In case no generalization can be generated

w(cj) = p(ej).

w(ej) = maz{w(g € G;)} (4)
The weight of a generalization equals the sum
of the probabilities of the references r € Ry,
from which it has been generated plus the
sum of the weights of the lexical transfer rules
(i.e. the daughters of g;) which have been
replaced in the generalization.

w(gr) = Z p(ri) + Z w(c)

TERk CEOk

(5)

The following properties of weights in trans-
fer rules and generalizations hold: a general-
ization has at least as high a weight as the
transfer rule from which it was generated. A
generalization has a higher weight than the
daughters which have been substituted in the
generalization.

w(r € Rk) < w(gk) > w(c € Ck)

(6)

Moreover, generalizations have higher
weights if they contain i) more reductions or
ii) if the reductions are to the highest extend
compositional. We believe that these prop-
erties are suitable when using the induced
probabilistic grammar for translation. As
an example for achieving higher weights for
more compositional generalizations, consider
the following example.

As there are 16 lexical transfer rules ex-
tracted from alignment @y and assuming that
n = 1, each of the rules has probability 1/4.
A sub-sequence in ¢11 : (de) < (a’b’) can be
substituted by rule ¢g : (€) < (a@'). This sub-
stitution yields generalization ¢, as shown
in figure 2. It is assigned the weight 2/4 (cf.
equation 5). This weight is also assigned to
the transfer rule ¢17 (cf. equation 4). Sub-
sequently, when generalizing the longer rule
c16 ¢ (cde) < (d'b'c’), a set of four gener-
alizations G is generated from which g5 is
assigned the highest weight due to the com-
positional nature of the replaced daughter

(de) = (a't').

C11 ¢
4 Generating Transfer Rules

Even the quadratic effort for generating the
sets C; for all alignments a; is too expensive
in a large aligned text. Therefore, alignments
a;, © = 1...n are generalized in a sequential
manner. For each «;, first the p X ¢ lexical
transfer rules are extracted and sorted by the
length of the shorter string e or f. Transfer
rules ¢; € C; are then generalized starting
with the shortest rule. The crucial points



in the procedure GenerateGrammar() are
lines 4 and 9. As was shown above, ex-
tracting the set of lexical transfer requires a
quadratic effort in the number of brackets,
while generating G; from c¢; is exponential.
To tackle this latter complexity, a version
of the A* algorithm considers only a limited
number of the highest weighted generaliza-
tionZ.

1 GenerateGrammar(P)

2 begin

3 for all a; € P:

4 extract lexical transfer rules C; from a;;
5 for all ¢; € Ci: p(cj) + = 1/(V#Ci * n);
6 add a; as ¢o to Cj;

7 sort C; by length of shorter e or f;

8 for each ¢; € C; starting with shortest ¢
9 generate G; from c¢;

10 w(c;) + = maz{w(g € G;)}

11 end

12 end

13 end;

In this way generalization of lexical transfer
rules is reduced to O(k * d) where d is the
number of lexical transfer rules matching a
subsequence in ¢; and % is the number of gen-
eralizations to be generated. In addition to
this, a couple of parameters can be set to re-
duce the number of extracted transfer rules
and generalizations:

e Only transfer rules are extracted where
the difference in the number of words in
e and f does not exceed a pre-defined
limit. This constraint reflects that gen-
erally more or less the same number of
(content) words appear in both sides of
a translation.

e By the same token, transfer rules and
generalizations are weighted by the dif-
ference of number of words in e and f.
This reflects the experience that transla-
tions are likely to contain approximately
the same number of words in their source
and target sides.

®In (Meyers et al., 1996) a similar mechanism is
called “greedy heuristic”.

¢ By means of a bilingual lexicon, trans-
fer rules and generalizations are assigned
(high) a-priori weights.

e Only a limited number of highest
weighted translation rules and general-

izations is generated.

e Fach generalization can have up to
a fixed maximum number of reduc-
tions. As reductions in generalizations
are most reasonable explained to repre-
sent the arguments of the remaining un-
reduced token(s), a maximum of reduc-
tion might be set to four.

e A generalization can have maximum
number of tokens. With increasing num-
ber of tokens, the chance to match a
new sentence decreases exponentially.
Note that this constraint does not apply
to translation rules and generalizations
from a bilingual lexicon.

e Transfer rules are only asserted if their
weights are above a threshold of an al-
ready existing, ambiguous transfer rule
in the database.

5 Filtering Invertible Translation
Grammars

From the set P of alignments and their as-
sociated sets of generalizations P : {ay =
Gi,...,a3 = G,} an invertible translation
grammar is filtered in a top down fashion.
The aim here is to find a most compositional
set of transfer rules capable to reproduce the
aligned text P in a most complete manner.
To achieve this goal, translation ambiguities
in the resulting grammar are avoided by in-
cluding the smallest possible context which
disambiguates each transfer rule.
fer rule e < f5 is ambiguous iff the trans-
lation grammar contains a different transfer
rule ey < fi where either e; equals ey or
f1 equals fy. A translation grammar is in-
vertible iff it contains no ambiguous trans-
fer rules. In an invertible translation gram-

A trans-



Induced Transfer Rules
a; @ (dz) < (m/n') 1/4 2/4
g1 ¢ (dx) <= (m'x) 1/4 2/4
g (2) = (n) 1/4 1/4 g1
az @ (de) (a'b') 1/8 1/4 as
g2 ¢ ( (x0") 1/8 1/4

e (e) < (d) 1/8 1/8

p(-) w()

1

S

*
~—

1

Filtered Invertible Grammar p(-)

D(dx) = (m'x) 1/4 2/4
(z) = (n) 1/4 1/4
((de) < (a'd) 1/8 1/4

Figure 3: Induced and Filtered Invertible Grammar

mar, therefore, each lhs-string e and each rhs-
string f occurs exactly once.

The procedure to filter this grammar,
FilterGrammar(), starts with the most
frequent top-most generalizations - i.e. those
generalizations of a; with the highest weight
- and recursively prints their daughters. Less
frequent rules, i.e. lower weighted rules, are
likely to to come along with more context.
Only one generalization is filtered for each
alignment. The alignments a; € P are sorted
by their weights and for each alignment
starting with the highest weighted one, the
function FilterGrammar(a;) is called.

FilterGrammar(r;)
begin
if G; not empty
print gx : maz{w(gr € G:)}
delete all generalizations g : e « f \\
where € = lhs(gx) or f =rhs(gx).
for all ¢; € Cy: FilterGrammar(c;)
else
print r;
delete all rules c: e « f\\
where e = lhs(r;) or f = rhs(r;).
10 end
11 end;

TR WO =

© 1>

The procedure is called recursively in line 6
to print the highest weighted daughters ¢; of
generalization gi. To illustrate the resulting
translation grammar, assume the set P con-
tains two alignments, {ay,as} as shown in
figure 3, left. Alignments a; and ag are as-
sociated with G7 and G5 which contain the
generalizations g; and gy respectively. The
daughters of g, and gy are Cy : {¢;} and

Cy : {c3}. Note that the weights of a; and
g1 are 2/4 while the weight of a; and g, are
1/4.

The procedure FilterGrammar() is first
called with @; and then with ag. Accord-
ingly, first generalization ¢, is printed and - in
the recursion - ¢;. Generalizations ¢, and gs
are ambiguous since their lhs is identical but
their rhs are different. Due to the deletion of
g2, the set G5 is, thus, empty when calling
the function with ag. The resulting filtered
invertible translation grammar is shown in
figure 3, right.

6 Preliminary Experiments

The algorithm has been tested on a partially
parsed text with 4997 alignments.
first test both languages were identical, i.e.
the words and the structure of their brack-

In this

etings was identical in the source and target
language. The aim of this experiment was to
see to what extend the algorithm produces
reasonable translation grammars for a pair
of structurally identical languages.
sonable assumption for translating a source
language into an identical target language is
that the induced transfer rules and general-
izations are identical in their lhs and rhs, too.
The quality of the translation grammar can
then easily be measured by counting the rules
which differ in their lhs and rhs.

The 4997 alignments had 45.352 words and
36.687 brackets on each language side. De-
pendent on the parameter setting - i.e. how
many brackets were maximally considered

A rea-



per language side - the program took be-
tween 5 and 10 minutes on a sun work station
to generate and filter the invertible gram-
The filtered invertible grammar con-
tained 814 generalizations and 3692 lexical
translation rules and alignments. 3698 of the
filtered transfer rules had an identical lhs and
rhs while 808 rules (18%) were different in
lhs and rhs. Roughly half of these erroneous
rules were lexical transfer rules and half gen-
eralizations. Simulating a lexicon covering
10% of the aligned text reduced erroneous
transfer rules about 50% to 9,6% of the size
of the translation grammar. Augmenting the
lexicon to 20% reduced errors to 6,5% and
with 50% of the aligned text covered by a
lexicon produced 3.4% wrong output.

mar.

These results show that i) invertible gram-
mars can be induced in reasonable time and
ii) the proposed algorithm is scalable for the
integration of further knowledge resources -
such as a bilingual lexicon - which enhance
the quality of the induced grammar.

In further experiments we will parse a text in
different ways to see how well the algorithm
can tackle different structures in both lan-
guage sides. The goal for the future is to de-
sign (partial) parsers for different languages
which yield similar brackets on both language
sides in order to enable the algorithm to ex-
tract and filter reasonable translation gram-
mars more easily. The induced translation
grammars are supposed to be used in an
EBMT system.

7 Conclusion

This paper presents an algorithm which gen-
erates and filters a translation grammar from
aligned texts. The produced translation
grammar consists of lexical transfer rules
and generalizations. Each rule in the gram-
mar describes an unambiguous 1-to-1 map-
ping from the source language to the target
language. A small experiment is described
to test the grammar induction performance.
The algorithm shows satisfying runtime be-

havior and promising results.
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