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Abstract

Unsupervisedrammainductionsystems
commonlyjudgepotentialconstituent®n
the basisof their effectson thelikelihood
of the data. Linguistic justifications of
constitueng, on the otherhand,rely on
notionssuchassubstitutabilityand vary-
ing external contexts. We describetwo
systemgor distributionalgrammainduc-
tion which operateon suchprinciples,us-
ing part-of-speechiagsas the contetual
features. The advantagesand disadwan-
tagesof thesesystemsare examined,in-
cluding precision/recalltrade-ofs, error
analysis andextensibility.

1 Overview

While early work shaved that small, artificial
contet-free grammarscould be inducedwith the
EM algorithm (Lari and Young, 1990) or with
chunk-mege systems(Stolcke and Omohundro,
1994), studieswith large natural languagegram-
marshave shavn thatthesemethodsof completely
unsupervisedcquisitionare generallyineffective.
For instance, Charniak (1993) describesexperi-
mentsrunningthe EM algorithmfrom randomstart-
ing points, which producedwidely varying gram-
marsof extremely poor quality. Becauseof these
kindsof results thevastmajority of statisticalpars-
ing work hasfocusedon parsingas a supervised
learningproblem(Collins, 1997; Charniak,2000).
It remainsanopenproblemwhetheranentirelyun-
supervisednethodcaneitherproducdinguistically
sensiblegrammarsor accuratelyparsefreetext.
However, there are compelling motivations for
unsupervisedyrammarinduction. Building super
visedtraining datarequiresconsiderableesources,
including time and linguistic expertise. Further
more,investigatingunsupervisednethodscanshed

light on linguistic phenomenawhich are implic-

itly capturedwithin a supervisedharsers supervi-
soryinformation,and,therefore pftennotexplicitly

modeledin suchsystemsFor example,our system
and othershave difficulty correctly attachingsub-
jectsto verbsabove objects.For a supervisedCFG
parserthisorderingis implicit in thegivenstructure
of vP and s constituentshowever, it seemdikely

thatto learnattachmenvbrderreliably, an unsuper
visedsystemwill have to modelit explicitly.

Our goalin this work is the induction of high-
quality, linguistically sensiblegrammarsnot pars-
ing accurag. We presenttwo systemsonewhich
doesnot do disambiguationwell and one which
doesnotdoit atall. Both take taggedbut unparsed
Penntreebanksentenceasinput! To whatever de-
greeour systemgarsewell, it canbetaken asevi-
dencehattheirgrammarsaresensibleput no effort
wastakento improve parsingaccurag directly.

Thereis no claim that humanlanguageacquisi-
tionisin ary way modeledoy thesystemalescribed
here.However, ary succes®f thesemethodss evi-
denceof substantiatuespresenin the data,which
could potentially be exploited by humansas well.
Furthermoremistalesmadeby thesesystemsould
indicate points where humanacquisitionis likely
not beingdrivenby thesekinds of statistics.

2 Approach

At theheartof ary iteratve grammaiinductionsys-
tem is a method,implicit or explicit, for deciding
how to updatethe grammar Two linguistic criteria
for constitueng in naturallanguagegrammargorm
the basisof thiswork (Radford,1988):

1. External distribution: A constituentis a se-
quenceof words which appearsin various
structuralpositionswithin largerconstituents.

1The Penntag and catayory setsusedin examplesin this
paperaredocumentedh ManningandSchitze (1999,413).



2. Substitutability:A constituenis asequencef
wordswith (simple)variantswhich canbesub-
stitutedfor thatsequence.

To make useof thesentuitions,we useadistribu-
tional notion of context. Let « be a part-of-speech
tagsequencekEvery occurencef o will bein some
contet z a y, wherez andy aretheadjacentagsor
sentencdoundariesThedistribution over contexts
in which « occursis calledits signature, which we
denoteby o(a).

Criterion 1 regardsconstitueny itself. Consider
thetagsequencesN DT NN andIN DT. Theformer
is a canonicalkexampleof a constituen{of category
PP), while the later, thoughstrictly morecommon,
is, in general,not a constituent. Frequeng alone
doesnotdistinguishthesetwo sequencegyut Crite-
rion 1 pointsto a distributional factwhich does.In
particular IN DT NN occursin mary ervironments.
It canfollow a verb, beggin a sentenceend a sen-
tence,andsoon. Ontheotherhand,IN DT is gener
ally followed by somekind of anounor adjectve.

This example suggeststhat a sequence’ con-
stitueng mightberoughlyindicatedby theentropy
of its signature, H(o(«)). This turns out to be
somavhattrue, givenafew qualifications.Figure 1
shaws the actualmost frequentconstituentsalong
with their rankingsby several othermeasuresTag
entropy by itself givesa list thatis not particularly
impressve. Therearetwo primary causedor this.
Oneis that uncommonbut possiblecontets have
little impacton the tag entropy value. Given the
skewed distribution of shortsentencesn the tree-
bank,this is somavhatof a problem.To correctfor
this, let o, (o) be the uniform distribution over the
obsered contets for a. Using H(o,(a)) would
have the olvious effect of boostingrare contexts,
andthe more subtleeffect of biasingthe rankings
slightly towards more commonsequences.How-
ever, while H(o(«)) presumablyorvergesto some
sensiblelimit given infinite data, H (o, (c)) will
not, as noise eventually makes all or most counts
non-zero.Let u betheuniform distribution over all
contets. Thescaledentropy

Hy(o(a)) = H(o())[H (0u(a))/H (u)]

turnedout to beausefulquantityin practice.Multi-
plying entropieds nottheoreticallymeaningful but
this quantitydoescorvemeto H(o(«)) giveninfi-
nite (noisy) data. The list for scaledentroyy still
hasnotableflaws, mainly relatively low ranksfor
commonNPs, which doesnot hurt systemperfor

Sequence Actual Freq Entropy Scaled Boundary GREEDY-RE
DT NN 2 4 2 1 1
NNP NNP -

CDCD
JINNS
DT JINN
DT NNS
JINN
CDNN
IN NN

IN DT NN - - -
NN NNS - - 5 6 3
NN NN - 8 - 10 7
TOVB - - 1 1

DT JJ - 6 - -

MD VB - - 10

IN DT - 4 - - - -
PRPVBZ - - - - 8 9
PRPVBD - - - - 5 -
NNSVBP - - 2 -
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Figure 1. Top non-trivial sequencedy actual constituent
counts,raw frequeng, raw entroyy, scaledentropy, boundary
scalecentropy, andaccordingo GREEDY-RE (seesectioré.2).

mance andoverly high ranksfor shortsubject-erb
sequencesyhichdoes.

The other fundamental problem with these
entrofy-basedrankingsstemsfrom the context fea-
turesthemseles. The entrogy valueswill change
dramaticallyif, for example,all nountagsare col-
lapsed,or if functionaltagsaresplit. This depen-
denceon the tagsetfor constituentdentificationis
veryundesirableOneappealingvay to remove this
dependences to distinguishonly two tags: onefor
the sentenceboundary(#) and anotherfor words.
Scalingentropiesdy theentropy of thisreducedsig-
natureproduceghe improved list labeled“Bound-
ary” Thisquantitywasnotusedn practicebecause,
althoughit is an excellentindicatorof NP, PP, and
intransitve s constituentsit givestoo stronga bias
againsitherconstituentsHowever, neithersystem
is driven exclusively by the entropy measureused,
andduplicatingthe above rankingsmoreaccurately
did notalwaysleadto betterendresults.

Criterion 2 regardsthe similarity of sequences.
Assumethe datawere truly generatedoy a cate-
gorically unambiguous?CFG(i.e., whene&er a to-
kenof asequencés a constituentjts labelis deter
mined)andthat we weregiven infinite data. If so,
thentwo sequenceggstrictedto thoseoccurrences
wherethey are constituentswould have the same
signaturesin practice thedatais finite, not statisti-
cally contet-free,andeven shortsequencesanbe
catgyorically ambiguous.However, it remainstrue
thatsimilar raw signaturesndicatesimilar syntactic



behaior. For example,DT JJ NN andDT NN have
extremelysimilar signaturesandbotharecommon
NPs. Also, NN IN andNN NN IN have very similar

signaturesandbothareprimarily non-constituents.

For our experimentsthe metric of similarity be-
tween sequencesvas the Jensen-Shannodiver
genceof thesequencessignatures:

Dis(01,0) = 5[ (01]2522) + Dic (02| 2522))

Where Dy, is the Kullback-Leiblerdivergencebe-

tweenprobability distributions. Of course,just as

variousnotionsof contet arepossible so arevari-

ousmetricsbetweersignaturesTheissueof tagset
dependencand dataskew did not seemto matter
for the similarity measure,and unalteredJensen-
Shannortdivergencewasused.

Given theseideas, section4.1 discussesa sys-
tem whosegrammarinduction stepsare guidedby
sequenceentropy and interchangeabilityand sec-
tion 4.2 discussesa maximum likelihood system
wherethe objective beingmaximizedis the quality
of theconstituent/non-anstituent distinction,rather
thanthelikelihoodof the sentences.

2.1 Problemswith ML/MDL

Viewing grammarinduction as a searchproblem,
therearethreeprincipal waysin which onecanin-
ducea“bad” grammar:

¢ Optimizethewrongobjective function.
e Choosébadinitial conditions.
e Betoosensitve to initial conditions.

Our currentsystemgrimarily attemptto address
the first two points. Commonobjective functions
include maximum likelihood (ML) which asserts
that a good grammaris one which bestencodes
or compresseshe given data. This is potentially
undesirablefor two reasons. First, it is strongly
data-dependeniThe grammarG which maximizes
P(D|G) dependn the corpusD, which, in some
sensethe coreof a given languages phrasestruc-
ture shouldnot. Second.andmoreimportantly in
an ML approachthereis pressurdor the symbols
andrulesin a PCFGto align in wayswhich maxi-
mize the truth of the conditionalindependenceas-
sumptionsembodiedby that PCFG. The symbols
and rules of a naturallanguagegrammay on the
otherhand represensyntacticallyandsemantically
coherentunits, for which a host of linguistic ar
gumentshave beenmade(Radford, 1988). None
of theseagumentshave arything to do with con-
ditional independencejraditional linguistic con-

stitueng reflectsonly grammaticapossibiltyof ex-

pansion. Indeed,there are expectedto be strong
connectionsicrosgphrasegsuchasarecapturedy
agumentdependencies)For example,in the tree-
bankdatausedcD cD isacommonobjectof averb,
but a very rare subject. However, a linguist would
take this as a selectionalcharacteristiof the data
set,not anindicationthatcb cD is notan Np. Of

course,t couldbethatthe ML andlinguistic crite-
riaalign, but in practicethey donotalwaysseemnto,

andoneshouldnot expectthat, by maximizingthe
former, onewill alsomaximizethelatter

Anothercommonobjective functionis minimum
descriptioriength(MDL), whichassertshatagood
analysisis a shortone,in thatthejoint encodingof
the grammarandthe datais compact. The “com-
pactgrammar’aspeciof MDL is perhapscloserto
sometraditional linguistic agumentationwhich at
timeshasamguedfor minimal grammarson grounds
of analytical(Harris, 1951)or cognitve (Chomsly
andHalle, 1968) economy However, someCFGs
which mightpossiblybeseerastheacquisitiongoal
are arything but compact;take the Penntreebank
coveringgrammaifor anextremeexample.Another
seriousissuewith MDL is thatthe target grammar
is presumablyboundedin size,while addingmore
andmoredatawill onaveragecauseViDL methods
to chooseever largergrammars.

In additionto optimizing questionableobjective
functions, mary systemsbegin their searchpro-
cedurefrom an extremely unfavorable region of
the grammarspace. For example, the randomly
weightedgrammarsn CarrollandCharniak(1992)
rarelycorvergedto remotelysensibleggrammarsAs
they point out, and quite independenthof whether
ML is agoodobjective function,the EM algorithm
is only locally optimal, andit seemghatthe space
of PCFGsis riddled with numeroudocal maxima.
Of course,the issueof initialization is someavhat
tricky in termsof the biasgiven to the system;for
example Brill (1994)beginswith auniformly right-
branchingstructure. For English, right-branching
structurehappendo be astonishinglygoodboth as
aninitial pointfor grammarearningandevenasa
baselineparsingmodel. However, it would be un-
likely to performnearlyaswell for aVOSlanguage
like Malagasyor VSO languagesike Hebrawv.

3 Search vs. Clustering

Whethergrammarinductionis viewed asa search
problemor a clusteringproblemis a matterof per



spectve, andthe two views arecertainlynot mutu-
ally exclusive. The searchview focuseson there-
cursie relationshipsbetweenthe non-terminalsn
the grammar The clusteringview, which is per
hapsmore applicableto the presentwork, focuses
on membershipof (terminal) sequenceso classes
representethy the non-terminals.For example,the
non-terminaymbolNP canbethoughtof asaclus-
ter of (terminal)sequencewhich canbe generated
startingfrom NP. This clusteringis theninherently
soft clustering,sincesequencesanbe ambiguous.

Unlike standardclusteringtasks,though, a se-
guenceokenin agivensentence&eednotbeacon-
stituentat all. For example,DT NN is anextremely
commonnP, andwhenit occurs,it is a constituent
around82%of thetimein thedata.However, when
it occursasasubsequencef DT NN NN it is usually
notaconstituentln fact,thedifficult decisiondor a
supervisegarsersuchasattachmentevel or coor
dinationscope aredecisionsasto which sequences
areconstituentsnotwhattheirtagswould beif they
were.For example,DT NN IN DT NN is virtually al-
waysan NP whenit is a constituentput it is only a
constituen66% of thetime, mostlybecausehe pp,
IN DT NN, is attachecelsavhere.

Oneway to dealwith this issueis to have anex-
plicit classfor “not a constituent’(seesection4.2).
There are difficulties in modeling such a class,
mainly stemmingfrom the differencesetweerthis
classandthe constituentclasses.In particular this
classwill notbedistributionally cohesve. Also, for
example,DT NN andDT JJ NN being generallyof
catgyory NP seemgo beahighly distributionalfact,
while DT NN not beinga constituentin the context
DT NN NN seemsmore properly modeledby the
competingproductionsof thegrammar

Another approach is to model the non-
constituents either implicitly or independently
of the clusteringmodel(seesectiord.1). Thedraw-
backto insuficiently modelingnon-constituencis
thatfor acquisitionsystemswvhich essentiallywork
bottom-up,non-constituenthunkssuchas NN IN
or IN DT arehardto rule outlocally.

4 Systems

We presenttwo systems. The first, GREEDY-
MERGE, learnssymbolic CFGsfor partial parsing.
The rulesit learnsare of high quality (seefigures
3 and4), but parsingcoverageis relatively shallaw.
The second,CONSTITUENCY-PARSER, learnsdis-
tributionsover sequencegepresentinghe probabil-

TOP

# 21 VBZ RB—#
/\
DT NN

Figure2: Thepossiblecontets of asequence.

ity thataconstituents realizedasthatsequencésee
figurel). It producedull binaryparses.

4.1 GREEDY-MERGE

GREEDY-MERGE is a precision-orientedsystem
which, to a first approximation,canbe seenasan
agglomeratie clustering processover sequences.
For eachpairof sequencegnormalizeddivergence
is calculatedasfollows:

_ D (U(Q)’U(ﬂ))
de, B) = T ot T Hs o (B))

The pair with the least divergence is meiged?
Merging two sequencefvolves the creationof a
singlenewn non-terminakateyory which rewritesas
eithersequenceOncethereare non-terminalcate-
gories,thedefinitionsof sequenceandcontexts be-
comeslightly morecompl. The input sentences
are parsedwith the previous grammarstate,using
a shallav parserwhich tiesall parentlessiodesto-
getherundera TOP root node. Sequencearethen
the orderedsetsof adjacensistersn this parseand
the contet of a sequencecan either be the pre-
cedingand following tagsor a highernodein the
tree. To illustrate,in figure 2, the sequence’ Bz RB
couldeitherbeconsideredo bein contet [z1. . . #]
or [NN...#]. Takingthe highestpotentialcontext
([z1. .. #] in this case)performedslightly better?
Merging asequencandasinglenon-terminare-
sultsin arulewhich rewritesthenon-terminaksthe
sequencdi.e., that sequences addedto that non-
terminals class) andmemgingtwo non-terminalsn-
volves collapsingthe two symbolsin the grammar
(i.e., thoseclassesare memged). After the mege,
re-analysi®f thegrammarule RHSsis necessary
An important point about GREEDY-MERGE is
that stoppingthe systemat the correctpointis crit-
ical. Sinceour greedycriterion is not a measure
over entiregrammarstateswe have no way to de-
tect the optimal point beyond heuristics(the same

2\We requiredthat the candidatesbe amongthe 250 most
frequentsequences.The exact thresholdwas not important,
but withoutsomethreshold)ong singletonsequencewith zero
divergenceare always chosen. This suggestghat we needa
greatemiastowardsquantityof evidencein our basicmethod.

3An optionwhich wasnottried would beto considernon-
terminalasa distribution over the tagsof the right or left cor
nersof the sequencebelongingto thatnon-terminal.



cateyory appearsn severalmemgesin arow, for ex-
ample)or by usinga small supervisiorsetto detect
a parseperformancedrop. The figuresshovn are
from stoppingthe systemmanuallyjust beforethe
first significantdropin parsingaccurag.

Thegrammarulesproducedoy the systemarea
strict subsetof generalCFG rulesin several ways.
First,nounaryrewriting is learned.Secondnonon-
terminalswhich have only a singlerewrite areever
proposedthoughthis situationcanoccurasaresult
of later meges. The effect of theserestrictionsis
discussedbelow.

4.2 CONSTITUENCY-PARSER

The secondsystem, CONSTITUENCY-PARSER, is
recall-oriented.Unlike GREEDY-M ERGE, this sys-
temalwaysproducesa full, binaryparseof eachin-
put sentence However, its parsingbehaior is sec-
ondary It is primarily a clusteringsystemwhich
views the dataasthe entire setof (sequencegon-

text) pairs (o, z) that occurredin the sentences.

Eachpair tokencomesirom somespecificsentence
andis classifiedwvith abinaryjudgement of thatto-
ken’s constitueng in thatsentenceWe assumehat
thesepairsaregeneratedy thefollowing model:

Pla,x) = Yeeqr,ry Plale) P(z|c) P(c)

We use EM to maximize the likelihood of these
pairsgiventhe hiddenjudgements:, subjectto the
constraintghatthe judgementgor the pairsfrom a
givensentencenustform avalid binaryparse.

Initialization was either done by giving initial
seeddor theprobabilitiesabove or by forcingacer
tain setof parseson the first round. To do the re-
estimationwe musthave somemethodof deciding
which binary bracleting to prefer The chanceof a
pair (o, ) beinga constituenis

P(c|a, ) = P(c|a)P(clz)/P(c)

andwe scoreatreeT by thelikelihood productof
its judgements:(a, T'). Thebesttreeis then

arg maXT(H(a,z)Es P(c(a, T) |aa ‘77)

As we areconsideringeachpairindependentlyrom
therestof the parsethis modeldoesnotcorrespond
to a generatre modelof the kind standardlyassoci-
atedwith PCFGs but canbe seenasarandomfield
overthepossibleparseswith thefeatureseingthe
sequenceandcontets (see(Abney, 1997)). How-
ever, notethatwe were primarily interestedn the
clusteringbehaior, not the parsingbehaior, and

that the randomfield parameterdiave not beenfit
to ary distribution over trees.The parsingmodelis
very crude,primarily servingto eliminatesystemat-
ically mutuallyincompatibleanalyses.

421 Sparsity

Since this system does not postulateary non-

terminalsymbols,but works directly with terminal
sequencesparsitywill beextremelysererefor ary

reasonablyjong sequencesSubstantiakmoothing
wasdoneto all terms;for the P(c|«) estimatesve

interpolatedhe previous countsequallywith a uni-

form P(c), otherwisemostsequencewould remain
lockedin theirinitial behaiors. Thisheary smooth-
ing maderare sequencebehae primarily accord-
ing to their contets, removed theinitial invariance
problem,and, after a few roundsof re-estimation,
hadlittle effect on parsemperformance.

4.2.2 Parameters

CONSTITUENCY-PARSER’s behaior is determined
by theinitialization it is given, eitherby initial pa-
rameterestimatesor fixed first-round parses. We
usedfour methods:RANDOM, ENTROPY, RIGHT-
BRANCH, andGREEDY.

For RANDOM, we initially parsedandomly For
ENTROPY, we weighted P(c|a) proportionallyto
H(o(a)). For RIGHTBRANCH, we forced right-
branchingstructureqtherebyintroducinga biasto-
wardsEnglishstructure) Finally, GREEDY usedthe
outputfrom GREEDY-MERGE (usingthe grammar
statein figure 3) to parseinitially.

5 Results

Two kinds of results are presented. First,
we discussthe grammarslearned by GREEDY-
MERGE andtheconstituendistributionslearnedby
CONSTITUENCY-PARSER. Thenweapplybothsys-
temsto parsingfreetext from theWSJsectionof the
Penntreebank.

5.1 Grammarslearned by GREEDY-MERGE

Figure 3 shavs a grammarlearnedat one stageof
a run of GREEDY-MERGE on the sentencen the
WSJsectionof up to 10 wordsafterthe removal of
punctuation(~ 7500sentences)The non-terminal
catgyories proposedby the systemsare internally
given arbitrarydesignationsbut we have relabeled
themto indicatethe bestrecallmatchfor each.
Categyoriescorrespondingo NP, VP, PP, ands are
learned althoughsomearesplit into sub-catgories
(transitive andintransitive vPs, propernps andtwo



N-baror zerodetermineNP
ZNN — NN | NNS

ZNN — JJzNN

zNN — zNN zNN

NP with determiner
zZNP — DT zNN
ZNP — PRP$zNN

ProperNP
zNNP— NNP | NNPS
zZNNP — zZNNPzNNP

PP

zPP— zIN zNN
zPP— zIN zNP
zPP— zIN ZNNP

verbgroups/ intransitve VPs

zV — VBZ | VBD | VBP

Transitve VPs
(complementation)
zVP—2zV J1J

zVP — zV zNP
zVP — zV zNN
zVP — zV zPP

Transitve VPs
(adjunction)
zVP — zZRBzVP
ZVP — zVP zPP

Intransitve S
zS— PRPzV
zS— zNPzV
zS— zNNPzV

Transitve S
zSt— zZNNPzVP

N-baror zero-determineNP
zNN — NN | NNS

ZNN — zNN zNN

ZNN — JJzNN

CommonNP with determiner
zZNP— DT zNN
ZNP — PRP$zNN

PropeNP
ZNNP — zNNPzNNP
ZNNP — NNP

PP

zPP— zIN zNN
zPP— zIN zNP
zPP— zIN zZNNP

Transitve Verb Group

zVt — VBZt | VBDt | VBPt
zVt —+ MD zVBt

zVt — zVt RB

VP adjunction
zVP — RBzVP
zVP— zVPRB
zVP — zVP zPP
zVP — zVPzJJ

VP complementation
zVP — zVt zNP
zVP — zVt ZNN

S

zS— zNNPzVP
zS— zNN zVP
zS— zNPzVP
zS— DT zVP

zS— CCzS
zS— RBzS

S-bar
zZVP — IN zS?

zV — MD VB

S
zV — zV zRB

zV — zV zVBG

Figure3: A learnedgrammar

kinds of commonnps, andsoon)? Provided oneis
willing to accepta verb-groupanalysis this gram-
mar seemssensible,thoughquite a few construc-
tions,suchasrelative clausesaremissingentirely

Figure4 shovs a grammarlearnedat one stage
of arun whenverbsweresplit by transitvity. This
grammaris similar, but includesanalysesof sen-
tencialcoordinatiorandadwerbials,andsubordinate
clausesTheonly rulein thisgrammamhich seems
overly suspects zvP — IN zs which analyzesom-
plementizedsubordinatelausesasvps.

In general, the major mistales the GREEDY-
MERGE systemmalesareof threesorts:

e Mistakesof omission. Eventhoughthe gram-
mar shavn hascorrect, recursve analysesof
mary cateories,no rule cannon-trivially in-
corporatea number(cD). Thereis also no
analysisfor mary commonconstructions.

¢ Alternateanalyses.The systemalmostinvari-
ably forms verb groups,meging MD VB se-
guenceswith single main verbsto form verb
group constituents(amgued for at times by
somelinguists(Halliday, 1994)).Also, pps are
sometimesattachedo Nps belonv determiners
(whichis in facta standardinguistic analysis
(Abney, 1987)). It is not alwaysclearwhether
theseanalyseshouldbe considerednistales.

e Overmemging. Theseerrorsare the mostse-
rious. Sinceat every steptwo sequencesre
merged, the processwill eventually learn the

4Splits often occur becausainary rewrites are not learned
in thecurrentsystem.

Intransitve VerbGroup
zVP— VBZ | VBD | VBP
zVP— MD VB

zVP— zVPzVBN !

1 - wrongattachmentevel
2 - wrongresultcateyory

Figure4: A learnedgrammarn(with verbssplit).

grammarwherex — X X andx — (ary ter
minal). However, very incorrectmeiges are
sometimesmnaderelatively early on (suchas
memging vPs with Pps, or memging the se-
guencesN NNP IN andiN.

5.2 CONSTITUENCY-PARSER's Distributions

The CONSTITUENCY-PARSER'S stateis nota sym-
bolic grammaybut estimate®f constitueng for ter
minal sequences. Thesedistributions, while less
compelling a representatiorfor syntactic knowl-
edgethanCFGs clearlyhave significantfactsabout
languageembeddedn them, and accuratelylearn-
ing themcanbe seenasakind of acquisiton.

Figure5 shavsthesequencewhoseconstitueng
countsaremostincorrectfor the GREEDY-RE set-
ting. An interestinganalysisgiven by the systemis
the constitueng of NNP POS NN sequenceasNNP
(POS NN) which is standardin linguistic analyses
(Radford,1988),as opposedo the treebanlks sys-
tematic(NNP POS) NN. Othercommonerrors,like
the overcountof JJ NN or JJ NNS are partially due
to parsinginside NPs which areflat in the treebank
(seesection5.3).

It is informative to seehow re-estimationwith
CONSTITUENCY-PARSER improves and worsens
the GREEDY-MERGE initial parses. Coverageis
improved; for example NPs and Pps involving the
CD tagareconsistentlyparsedasconstituentsvhile
GREEDY-MERGE did notincludethemin parsesat
all. On the otherhand,the GREEDY-MERGE SYySs-
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OUL Recall
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Figure6: Unlabeledprecision(left) andrecall (right) valuesfor varioussettings.

Sequence
JINN
NN NN
NNP NNP
PRPVBZ
PRPVBD
PRPVBP
TOVB
MD VB
NN NNS
JINNS

Sequence
NNP POS
VBD RB VBN
VB DT NN
NNP NNP POS
VB VBN

VB RB

VBD VBN
VBZ RB JJ
RBCD

VB DT JINN

Overcount Estimated True
1099 363

736
504
434
420
392
388
324
318
283
283

663

1419

453
415
405
443
355
579
799

159
985

516

Undercount Estimated True

127

53

33
6
10
8
3
6
17
18
26
3

160
65

Total
1385
805
2261
488
452
440
538
455
618
836

Figure 5: Sequencesnost commonly over- and under
identified as constituentsby CONSTITUENCY-PARSER using
GREEDY-RE (ENTROPY-RE is similar). “Total” is the fre-
gueng of thesequencén theflat data.“True” is thefrequeng
asa constituentin the treebanks parses. “Estimated” is the
frequeng asa constituenin the systems parses.

temhadlearnedhestandardubject-erb-objectat-

tachmenbrder thoughthis hasdisappearedascan
be seenin the undercount®f vP sequencesSince
mary VPs did not fit the conserative vP grammar
in figure 3, subjectsand verbswere often grouped
togetherfrequentlyeven on the initial parses,and
the CONSTITUENCY-PARSER hasa further biasto-

wardsover-identifying frequentconstituents.

5.3 Parsingresults

Someissuesimpactthe way the resultsof parsing
treebanksentenceshouldbeinterpreted Both sys-
tems,but especiallythe CONSTITUENCY-PARSER,

tendto form verb groupsand often attachthe sub-
jectbelow theobjectfor transitve verbs.Becaus®f
this, certainv ps aresystematicallyncorrectandv p
accurag suffers dramatically substantiallypulling

down the overall figures® Secondlythe treebanks
grammaris an imperfectstandardfor an unsuper
vised learner For example, transitve sentences
are bracleted [subject[verb object]] (“The presi-
dent[executedhelaw]”) while nominalizationsare
bracleted [[possessie noun] complement](“[The
presidens execution]of thelaw”), anarbitraryin-
consisteng whichis unlikely to belearnedautomat-
ically. Thetreebanks also,somavhatpurposefully
very flat. For example,thereis no analysisof the
inside of mary shortnounphrases.The GREEDY-
MERGE grammarsabore, however, give a (correct)
analysisof the insidesof Nps like DT JJ NN NN
for whichit will be penalizedn termsof unlabeled
precision(thoughnot crossingoraclets)whencom-
paredto thetreebank.

An issuewith GREEDY-MERGE is thatthegram-
marlearneds symbolic,not probabilistic.Any dis-
ambiguationis done arbitrarily Therefore,even
addinga linguistically valid rule can degrade nu-
merical performance(sometimesdramatically) by
introducingambiguityto agreateidegreethanit im-
provescoverage.

In figure 6, we report summary results for
eachsystemon the < 10-word sentencef the
WSJ section. GREEDY is the above snapshot
of the GREEDY-MERGE system. RANDOM, EN-
TROPY, and RIGHTBRANCH are the behaiors
of the random-parséaseline,the right-branching
baseline,and the entrogy-scoredinitialization for
CONSTITUENCY-PARSER. The -RE settingsare
the result of contt-based re-estimation from
the respectre baselinesusing CONSTITUENCY-
PARSER.® NCB precisionis the percentagef pro-

5The RIGHTBRANCH baselinds in the oppositesituation.
Its high overall figuresarein alarge partdueto extremelyhigh
VP accurag, while NP andpPp accurag (which is moreimpor
tantfor taskssuchasinformationextraction)is very low.

SRIGHTBRANCH was invariant under re-estimation,and
RIGHTBRANCH-RE is thereforeomitted.



posedbracletswhichdonotcrossa correctbraclet.
Recallis alsoshavn separatelyfor vpPs andNPs to
illustratethe v p effect notedabore.

The generalresultsare encouraging. GREEDY
is, asexpected higherprecisionthanthe otherset-
tings. Re-estimatiofirom thatinitial pointimproves
recall at the expenseof precision. In general,re-
estimationimproves parseaccuray, despitethein-
directrelationshipbetweerthe criterionbeingmax-
imized (constitueng clusterfit) andparsequality.

6 Limitationsof thisstudy

This study presentgreliminary investigationsand
hasseveralssignificantlimitations.

6.1 Tagged Data

A possiblecriticism of this work is thatit relieson
part-of-speechaggeddataas input. In particular
while there hasbeenwork on acquiring parts-of-
speecHistributionally (Finchetal., 1995;ScHitze,
1995),it is clearthatmanuallyconstructedag sets
andtaggingsembodylinguistic factswhich arenot
generallydetectedby a distributional learner For
example transitve andintransitve verbsareidenti-
cally taggedyetdistributionally dissimilar

In principle, an acquisitionsystemcould be de-
signedto exploit non-distrilutionality in the tags.
For example, verb subcatgorization or selection
could be inducedfrom the waysin which a given
lexical verb’s distribution differs from the average,
asin (Resnik,1993).However, ratherthanbeingex-
ploited by the systemshere,the distributional non-
unity of thesetagsappeardgo actuallydegradeper
formance. As an example,the systemsmore reli-
ably group verbsandtheir objectstogether(rather
than verbsand their subjects)when transitve and
intransitive verbsaregivenseparateags.

Futureexperimentswill investigatetheimpactof
distributional tagging, but, despitethe degradation
in tagquality thatonewould expect,it is alsopossi-
ble thatsomecurrentmistaleswill becorrected.

6.2 Individual system limitations

For GREEDY-MERGE, the primary limitations are
that there is no clear halting condition, there is
no ability to un-mege or to stop memging existing
classesvhile still increasingcoverage andthe sys-
temis potentially very sensitve to the tagsetused.
For CONSTITUENCY-PARSER, the primary limita-
tions are that no labelsor recursve grammarsare
learned,andthat the behaior is highly dependent
oninitialization.

7 Conclusion

We presenttwo unsupervisedgrammarinduction
systems, one of which is capableof producing
declaratie, linguistically plausiblegrammarsand
anothemhichis capableof reliably identifying fre-

guentconstituents. Both parsefree text with ac-

curay rivaling that of weakly supervisedsystems.
Ongoingwork includeslexicalization, incorporat-
ing unaryrules, enrichingthe modelslearned,and
addressinghelimitations of the systems.
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