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Abstract

An algorithmis presentedor learninga
phrase-structurgrammarfrom tagged
text. It clusterssequence®f tagsto-
getherbasedon local distributional in-
formation,andselectsclustersthat sat-
isfy a novel mutual information crite-
rion. This criterionis shavn to bere-
lated to the entropy of a randomvari-
ableassociatedvith thetreestructures,
andit is demonstratethatit selectdin-
guistically plausibleconstituents.This
is incorporatedn a Minimum Descrip-
tion Lengthalgorithm. The evaluation
of unsupervisednodelsis discussed,
andresultsare presentedvhenthe al-
gorithmhasbeentrainedon 12 million
wordsof the British NationalCorpus.

1 Intr oduction

In this paperl presentan algorithm using con-
text distribution clustering (CDC) for the un-
supervisedinduction of stochasticcontet-free
grammars(SCFGs) from taggedtext. Previ-

ous researchon completelyunsupervisedearn-
ing hasproducedpoorresults,andasa resultre-
searcherdave resortedto mild forms of super
vision. Magermanand Marcus(1990usea dis-
tituent grammarto eliminate undesirablerules.
PereiraandSchabes(1992)sepatrtially bracleted
corporaand Carroll and Charniak(1992)estrict
the setof non-terminalsthat may appearon the
right hand side of rules with a given left hand
side. The work of van Zaanen(2000) doesnot
have this problem,andappearso performwell on
small datasets,but it is not clearwhetherit will

scaleupto large datasets.Adriaansetal. (2000)
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presentanotheralgorithmbut its performancen
authenticmaturallanguagelataappearso bevery
limited.

The work presentechere can be seenas one
moreattemptto implementZellig Harris's distri-
butionalanalysis(Harris, 1954),thefirst suchat-
temptbeing(Lamb,1961).

The rest of the paperis arrangedas follows:
Section 2 introducesthe techniqueof distribu-
tional clusteringandpresentghe resultsof a pre-
liminary experiment. Section 3 discusseshe
useof a novel mutualinformation(Ml) criterion
for filtering out spuriouscandidatenon-terminals.
Section4 shaws how this criterion is relatedto
theentroyy of acertainrandomvariable andSec-
tion 5 establisheshatit doesin facthave the de-
siredeffect. This is thenincorporatedn a Min-
imum DescriptionLength(MDL) algorithmout-
linedin Section6. | discusghedifficulty of eval-
uatingthis sortof unsupervise@lgorithmin Sec-
tion 7, and presentthe resultsof the algorithm
on the British National Corpus(BNC). The pa-
perthenconcludesafter a discussiorof avenues
for futureresearchn Section8.

2 Distrib utional clustering

Distributional clusteringhasbeenusedin mary
applicationsat the word level, but as hasbeen
noticed before (Finch et al., 1995), it can also
be appliedto the induction of grammars. Sets
of tag sequencesanbe clusterediogetherbased
on the contets they appeaiin. In thework here
| considerthe contet to consistof the part of
speechtag immediatelyprecedingthe sequence
andthetagimmediatelyfollowing it. Thedepen-
deny betweertheses critical, aswe shallsee so
the context distribution thereforehask? parame-
ters, wherek is the numberof tags, ratherthan



ATO AJO NNO AJO AJO
ATO AJO NN1 AJO CJC AJO
ATO AJO NN2 AVO AJO
ATO AVO AJO NN1 AVO AVO AJO
ATO NNO ORD

ATO NN1 PRP ATO NN1

ATO NN1

Tablel: Someof the morefrequentsequencem
two goodclusters

the 2k parameterst would have underan inde-
pendenceassumption. The context distribution
can be thoughtof as a distribution over a two-
dimensionamatrix.

Thedatasetfor all theresultsin this papercon-
sistedof 12 million wordsof the British National
Corpus,taggedaccordingto the CLAWS-5 tag
set,with punctuatioremoved.

Thereare 76 tags; | introducedan additional
tag to mark sentenceboundaries. | operateex-
clusively with tags, ignoring the actual words.
My initial experimentclusteredall of the tag se-
quencesin the corpusthat occurredmore than
5000times,of whichtherewere753,usingthe k-
meansalgorithmwith the L;-norm or city-block
metric appliedto the context distributions. Thus
sequencesf tagswill endup in the samecluster
if their contet distributionsaresimilar; thatis to
sayif they appeampredominantlyin similar con-
texts. | chosethe cutoff of 5000 countsto be of
thesameorderasthenumberof parametersf the
distribution, and chosethe numberof clustersto
be100.

To identify the frequentsequencesndto cal-
culatetheir distributions| usedthe standardech-
niqueof sufiix arrays(Gusfield,1997),which al-
lowsrapidlocationof all occurrencesf adesired
substring.

As expected, the results of the clustering
shawved clear clusterscorrespondingo syntac-
tic constituentstwo of which are shavn in Ta-
ble 1. Of course,since we are clustering all
of the frequentsequenced the corpuswe will
alsohave clusterscorrespondingo partsof con-
stituents,as can be seenin Table 2. We obvi-
ouslywould notwantto hypothesis¢heseascon-
stituents:we thereforeneedsomecriterionfor fil-
teringoutthesespuriouscandidates.

AJO NN1 ATO CJC ATO AJO
AJO NN1 PRF ATO | CJC ATO
AJO NN1 PRP ATO | CJC CRD
NN1 ATO AJO CQJC DPS
NN1 ATO CGJC PRP ATO
NN1 CIC AJO PRF AJO

Table2: Someof thesequencess two badclus-
ters

3 Mutual Information

The criterion | proposeis that with real con-
stituents, there is high mutual information be-
tweenthe symbol occurring befoe the putatve
constituenandthesymbolafter—i.e. they arenot
independentNotethatthisis unrelatedo Mager
manandMarcuss Ml criterionwhichis the (gen-
eralised)mutual information of the sequencef
symbolsitself. | will justify thisin threeways—
intuitively, mathematicallyandempirically

Intuitively, atrueconstituentike anounphrase
canappeain anumberof differentcontets. This
is oneof thetraditionalconstituentests.A noun
phrasefor example,appeardrequentlyeitheras
the subjector the objectof a sentence.If it ap-
pearsat the beginning of a sentencet is accord-
ingly quitelikely to be followed by a finite verh
If ontheotherhandit appearsfterthefinite verb,
it is morelikely to be followed by the endof the
sentencer a preposition.A spuriousconstituent
like PRP ATO will be followed by an N-barre-
gardlesf whereit occurs.Thereis thereforeno
relationbetweerwhathappensmmediatlybefore
it, andwhat happensmmediatelyafterit. Thus
therewill be a higherdependencer correlation
with the true constituenthanwith the erroneous
one.

4 Mathematical Justification

We cangainsomeinsightinto the significanceof
the MI criterionby analysingt within theframe-
work of SCFGs. We are interestedin looking
atthe propertiesof the two-dimensionatistribu-
tionsof eachnon-terminal. Theterminalsarethe
partof speecttagsof whichthereareT'. For each
terminal or non-terminalsymbol X we define
four distributions, L(X), P(X),S(X), R(X),

over T or equivalently 7-dimensionalvectors.



Two of these,P(X) and S(X) arejust the pre-
fix and sufiix probability distributions for the
symbol(Stolck, 1995): the probabilitiesthat the
stringderivedfrom X begins(or ends)with apar
ticular tag. The othertwo L(X), R(X) for left
distribution andright distribution, are the distri-
butions of the symbolsbeforeandafter the non-
terminal. Clearlyif X is aterminal symbol,the
stringsderivedfrom it areall of length1, andthus
begin andendwith X, giving P(X) andS(X) a
very simpleform.

If we considereachnon-terminalV in aSCFG,
we can associatewith it two randomvariables
which we cancall the internal andexternal vari-
ables. The internalrandomvariableis the more
familiar andrangesover the setof rulesexpand-
ing thatnon-terminal. The externalrandomvari-
able, Zy, is definedasthe context in which the
non-terminalppearsEvery non-rootoccurrence
of a non-terminalin a treewill be generatedy
someruler, thatit appear®n theright handside
of. We canrepresenthis as(r,:) wherer is the
rule, ands is theindex sayingwherein the right
handsideit occurs.Theindex is necessargince
the samenon-terminalsymbolmight occurmore
thanonceon theright handsideof the samerule.
Sofor eachN, Z, cantake only thosevaluesof
(r,i) whereN is theith symbolontheright hand
sideof r.

The independencassumptionf the SCFG
imply thatthe internaland externalvariablesare
independentj.e. have zero mutualinformation.
This enablesus to decomposethe contet dis-
tribution into a linear combinationof the set of
mauginal distributionswe definedearlier

Let us examinethe context distribution of all
occurrencesf anon-terminalV with aparticular
valueof Z . We candistinguishthreesituations:
the non-terminalcould appearat the beginning,
middle or endof theright handside. If it occurs
atthebeginningof arule r with left handside X,
andtheruleis X — NY .... thentheterminal
symbolthatappeardefore N will be distributed
exactly accordingto the symbolthat occursbe-
fore X, i.e. L(N) = L(X). The non-terminal
symbolthatoccursafter N will bedistributedac-
cordingto thesymbolthatoccursatthebeginning
of thesymbolthatoccursafter N in theright hand
sideof therule,soR(N) = P(Y'). By theinde-

pendencassumptionthejoint distribution is just
the productof thetwo maginals.

D(N|Zy = (r,1)) = L(X) x P(Y) (1)

Similarly if it occursattheendof arule X —
...WN we canwrite it as

D(N|Zy = (r,|r])) = S(W) x R(X)  (2)

andif it occursin the middleof arule X —
..WNY ... wecanwrite it as

D(N|Zy = (r,i)) = S(W) x P(Y) (3)

The total distribution of N will be the nor
malised expectationof thesethree with respect
to P(Zy). Eachof thesedistributionswill have
zeromutualinformation,andthemutualinforma-
tion of the linear combinationwill be lessthan
or equalto the entropy of the variablecombining
them,H (Zy).

In particularif we have

P(X=zY =y) = Zaipz-(:v)qi(y) @)

usingJensers inequalitywe canprove that

I(X;Y) <) —ailogay (5)

We will have equalitywhenthe contet distribu-
tionsaresuficiently distinct. Therefore

MI(N) < H(Z) (6)

Thusa non-terminalthatappearsiwaysin the
sameposition on the right hand side of a par
ticular rule, will have zero MI, whereasa non-
terminalthat appearson the right handside of a
variety of differentruleswill, or rathermay, have
highMI.

Thisis of limited directutility, sincewe do not
know which arethe non-terminalsandwhich are
other strings, but this establishesome circum-
stancesunder which the approachwon’t work.
Someof theseare constraintson the form of the
grammay namely that no non-terminalcan ap-
pearin just a single placeon the right handside
of a single rule. Othersare more substantie
constraintson the sort of languageghat canbe
learned.



\ Symbol Description Numberof rules MostFrequent\
NP NounPhrase 107 ATO NN1
AVP AdverbPhrase 6 AVO AVO
PP Prep.Phrase 47 PRP NP
S Clause 19 PNP WD NP
XPCONJ PhraseandConj. 5 PP CIC
N-BAR 121 AJO NN1
S-SUB SubordinateClause? 58 S-SuUB PP
NT-NPOA/O 3 PNP AVO
NT-VHBVBN Finite copulaphrase 12 VM) VBI
NT-AVOAJO Adjective Phrase 11 AVO AJO
NT-AJOCJC 10 AJO CIC
NT-PNPVBBVVN Subject+ copula 21 PNP VBD

Table3: Non-terminalsproducedduringfirst 20 iterationsof the algorithm.

5 Experimental Verification

To implementthis, we needsomeway of decid-
ing athreshholdvhichwill divide thesheedrom

the goats. A simplefixed threshholdis undesir

ablefor a numberof reasons.Oneproblemwith

the currentapproachis that the maximumlik eli-

hood estimatorof the mutual information is bi-

ased,and tendsto over-estimatethe mutual in-

formationwith sparsedata(Li, 1990). A second
problemis thatthereis a“natural” amountof mu-

tual information presentbetweenary two sym-
bolsthatarecloseto eachother thatdecreaseas
the symbolsget further apart. Figure1 shaws a
graphof how the distancebetweentwo symbols
affectsthe Ml betweenthem. Thusif we have a
sequencef length2, thesymbolsbeforeandafter
it will have a distanceof 3, andwe would expect
to have a Ml of 0.05. If it hasmorethanthis, we

mighthypothesisé& asaconstituentif it hasless,
we discardit.

In practicewe wantto measurghe Ml of the
clusters,sincewe will have mary more counts,
and that will make the M| estimatemore accu-
rate. We thereforecomputethe weightedaverage
of thisexpectedMl, accordingo thelengthsof all
the sequence the clusters,andusethatasthe
criterion. Table4 shavs how this criterion sepa-
ratesvalid from invalid clusters.It eliminated55
outof 100clusters

In Table4, we canverify this empirically: this
criteriondoesin factfilter outthe undesirablese-
guencesClearlythis is a powerful techniquefor

0.22 T T
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0.18
0.16
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MI 0.1
0.08
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0

| | |
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distance

[
2 3 4

Figurel: Graphof expectedMI againstistance.

| Cluster ActualMl  Exp.MI Valid |
ATO NN1 0.11 0.04 Yes
ATO NPO NPO 0.13 0.02 Yes
PRP ATO NN1 0.06 0.02 Yes
AVO AJO 0.27 0.1 Yes
NN1 ATO 0.008 0.02 No
ATO AJO 0.02 0.03 No
VBl ATO 0.01 0.02 No
PRP ATO 0.01 0.03 No

Table4: Four valid clusterswherethe actualMI
is greaterthanthe expectedMI, andfour invalid
clusterswhich fail thetest. The four invalid clus-
tersclearly arenot constituentsaccordingto tra-
ditional criteria.



identifying constituents.

6 Minimum Description Length

This techniquecanbe incorporatednto a gram-
mar induction algorithm. We usethe clustering
algorithmto identify setsof sequencethatcanbe
derived from a single non-terminal. The Ml cri-
terionallows usto find theright placesto cut the
sentencesip; we look for sequencewherethere
are interestinglong-rangedependencies.Given
thesepotentialsequencesye canthenhypothe-
sisesetsof ruleswith the sameright handside.
This naturally suggestsa minimum description
length (MDL) or Bayesianapproach(Stolcle,
1994; Chen,1995). Startingwith the maximum
likelihoodgrammay which hasonerule for each
sentenceype in the corpus,and a single non-
terminal,at eachiterationwe clusterall frequent
strings, and filter accordingto the Ml criterion
discussedbove.

We then greedily selectthe cluster that will
give the best immediate reductionin descrip-
tion length, calculatedaccordingto a theoreti-
cally optimal code. We adda new non-terminal
with rules for eachsequencean the cluster If
there is a sequenceof length 1 with a non-
terminalin it, theninsteadof addinga new non-
terminal, we add rules expandingthat old non-
terminal. Thus,if we have a clusterwhich con-
sists of the three sequencesNP, NP PRP NP
andNP PRF NP we would merelyaddthe two
rulesNP—NP PRP NP andNP—NP PRF NP,
ratherthan threerules with a newv non-terminal
ontheleft handside. This allows thealgorithmto
learnrecursve rules,andthuscontet-free gram-
mars.

We thenperforma partial parseof all the sen-
tencedn the corpus,andfor eachsentenceelect
the paththroughthe chartthatprovidesthe short-
est descriptionlength, using standarddynamic
programmingtechniques.This greedyalgorithm
is not ideal, but appeargo be unavoidablegiven
thecomputationatompleity. Following this, we
aggrgateruleswith thesameright handsidesand
repeatheoperation.

Since the algorithm only considers strings
whosefrequeng is above afixedthreshholdthe
applicationof a rule in rewriting the corpuswill
often resultin a large numberof strings being

rewritten so that they are the same,thus bring-

ing a particular sequenceabore the threshhold.
Thenat the next iteration, this sequencevill be
examinedby the algorithm. Thusthe algorithm
progressiely probesdeeperinto the structureof

thecorpusassyntacticvariationis remavedby the
partial parseof low level constituents.

Singleton rules require special treatment; |
have experimentedvith variousdifferentoptions,
withoutfinding anidealsolution. Theresultspre-
sentedhereusesingletonrules,but they areonly
appliedwhentheresultis necessaryor theappli-
cationof a further rule. This is a naturalconse-
guenceof the shortestdescriptionlength choice
for the partial parse: using a singletonrule in-
creaseshedescriptionlength.

The MDL gain is very closely relatedto the
mutual information of the sequencatself under
standarcassumptionaboutoptimalcodeg Cover
andThomas,1991). Supposave have two sym-
bols =z and y that occurn, andn, timesin a
corpusof length N andthatthe sequence:y oc-
cursng, times. We could insteadcreatea new
symbolthatrepresentsy, andrewrite the corpus
using this abbreiation. Sincewe would useit
ngy times,eachsymbolwould requirelog N/ng,
nats. The symbolsz andy have codelengthf
log N/n, andlog N/n,, sofor eachpair zy that
we rewrite, underreasonabl@pproximationsye
have areductionin codelengthof

AL = —log N/ngy + log N/ng + log N/n,

p(zy)

p(z)p(y)
which is the point-wise mutual information be-
tweenz andy.

| ran the algorithmfor 40 iterations. Beyond
this point the algorithmappearedo stopproduc-
ing plausibleconstituents Part of the problemis
to do with sparsenesst requiresa large number
of samplef eachstringto estimatethe distribu-
tionsreliably.

~ log

7 Evaluation

Evaluationof unsupervisedlgorithmss difficult.
One evaluationschemethat hasbeenusedis to
comparethe constituentstructuresproducedby
the grammarinduction algorithm againsta tree-
bank, and use PARSEVAL scoring metrics, as



adwcatedby (van Zaanenand Adriaans,2001);
i.e. useexactly the sameevaluationasis used
for supervisedearningschemes.This proposal
failsto take accounbf thefactthattheannotation
schemausedin ary corpus,doesnot reflectsome
theory-independérreality, but is the productof
variousmoreor lessarbitrarydecisionsdy thean-
notators(Carroll et al., 1998). Givena particular
annotationschemethe structurein the corpusis
notarbitrary but the choiceof annotatiorscheme
inevitably is. Thusexpectinganunsuperviseal-
gorithmto corverge on oneparticularannotation
schemeout of mary possibleonesseemsoverly
onerous.

It is at this point that one must questionwhat
the point of syntacticstructureis: it is notanend
in itself but a precursotto semanticsWe needto
have syntacticstructureso we can abstractover
it when we learn the semanticrelationshipsbe-
tweenwords. Seenin this contet, the suggestion
of evaluationbasedon dependeng relationships
amongstwords(Carrollet al., 1998) seemsemi-
nentlysensible.

With unsupervisedalgorithms, there are two
aspectdo the evaluation; first how goodthe an-
notationschemes, and secondlyhov goodthe
parsingalgorithmis —i.e. how accuratelythe al-
gorithm assignghe structures. Sincewe have a
very basicnon-leicalisedparser| shallfocuson
evaluatingthesortof structureghatareproduced,
ratherthantrying to evaluatehow well the parser
works. To facilitate comparisorwith othertech-
niques,| shall also presentan evaluationon the
ATIS corpus.

Pereira and Schabes(1992) establish that
evaluationaccordingto the bracleting accurag
and evaluationaccordingto perpleity or cross-
entrofy are very different. In fact, the model
trainedon the bracletedcorpus,althoughscoring
muchbetteron bracleting accuray, hada higher
(worse)perpleity thantheonetrainedontheraw
data. This meansthat optimising the likelihood
of themodelmay not leadyou to alinguistically
plausiblegrammar

In Table3 | shav the non-terminalgproduced
during the first 20 iterations of the algorithm.
Note that there are lessthan 20 of them, since
asmentionedabove sometimesve will addmore
rulesto anexisting non-terminal.l have takenthe

| Count  RightHandSide |
255793 ATO NN1
104314 NP PP
103727 ATO AJO NN1
73151 ATO NN2
72686 DPS NN1
52202 AJO NN2
51575 DTO NN1
35473 NP NP

34523 DTO NN2
34140 AVO NP

Table5: Ten mostfrequentrulesexpandingNP.
Notethatthreeof themarerecursve.

liberty of attachinglabelssuchasNP to the non-
terminalswherethis is well justified. Whereit is
not, | leave the symbolproducedby the program
which startswith NT- . Table5 shavs the most
frequentrules expandingthe NP non-terminal.
Note that thereis a good match betweenthese
rulesandthetraditionalphrasestructurerules.

To facilitate comparisonwith other unsuper
vised approaches,| performed an evaluation
againstthe ATIS corpus. | taggedthe ATIS cor
puswith the CLAWS tagsusedhere, using the
CLAWS demotaggeravailable on the web, re-
moved emptyconstituentsandadjustedca few to-
kenisatiordifferenceqat leastis onetokenin the
BNC.) | thencorrecteda few systematidagging
errors. This might be slightly controversial. For
example,"WashingtorD C” whichis threetokens
wastaggedas NP0 ZZ0 ZZ0 whereZZ0 is a
tag for alphabeticsymbols. | changedthe ZZ0
tagsto NPO. In the BNC, that! trainedthe model
on, the DC is a singletoken taggedasNPO, and
in the ATIS corpusit is marked up asa sequence
of threeNNP. | did not alterthe markup of flight
codesandsoon thatoccurfrequentlyin this cor
pusandvery infrequentlyin the BNC.

It is worth pointing out thatthe ATIS corpusis
avery simplecorpus,of radically differentstruc-
tureandmarkupto the BNC. It consistgrimarily
of shortquestionsandimperatves,andmary se-
guence®f lettersandnumberssuchasT W A, A
P57 andsoon.

For instancea simplesentencdike “Show me
themeal” hasthegold standardarse:

(S (VP (VB Show)



(NP (PRP ne))
(NP (DT the)
(NN neal ))))

andis parsedoy this algorithmas

(ROOT (VB Show)
(PNP rme)
(NP (ATO the)
(NN1 neal )))

Accordingto this evaluationschemeits recall
is only 33%, becausf the presencef the non-
branchingules,thoughintuitively it hascorrectly
identified the bracleting. However, the crossing
braclets measuresovervalues thesealgorithms,
sincethey produce®nly partialparses-for some
sentencesny algorithm producesa completely
flat parsetree which of coursehasno crossing
braclets.

| thenperformeda partial parseof this dataus-
ing the SCFGtrainedon the BNC, andevaluated
the resultsagainstthe gold-standardATIS parse
using the PARSEVAL metricscalculatedby the
EVALB program. Table6 presentghe resultsof
theevaluationonthe ATIS corpuswith theresults
on this algorithm (CDC) comparedagainsttwo
otheralgorithms,EMILE (Adriaansetal., 2000)
and ABL (van Zaanen,2000). The comparison
presentedhereallows only tentatve conclusions
for thesereasons:first, there are minor differ-
encedn thetestsetsused;secondlythe CDC al-
gorithmis notcompletelyunsupervisedtthemo-
mentasit runson taggedtext, whereasABL and
EMILE run on raw text, thoughsincethe ATIS
corpushasvery little lexical ambiguitythediffer-
enceis probablyquite minor; thirdly, it is worth
reiteratingthatthe CDC algorithmwastrainedon
aradicallydifferentandmuchmorecomple data
set. However, we canconcludethatthe CDC al-
gorithm comparesfavourably to other unsuper
visedalgorithms.

8 Future Work

Preliminaryexperimentswith tagsderived auto-
matically using distributional clustering (Clark,
2000), have shavn essentiallythe sameresults.
It appearghatfor the simpleconstituentshatare
beingconstructedn thework presentedhere they
are sufficiently accurate. This makes the algo-
rithm completelyunsupervised.

| have sofar usedthe simplestpossiblemetric
andclusteringalgorithm;therearemuchmoreso-
phisticatechierarchicaklusteringalgorithmsthat
might performbetter In addition,| will explore
theuseof alexicalisedformalism.

This algorithmusesexclusively bottom-upin-
formation;thestandardestimatiorandparsingal-
gorithmsusethe interactionbetweenbottom-up
andtop-davn information, or inside and outside
probabilitiesto directthesearchlt shouldbepos-
sible to add this to the algorithm, thougha full
inside-outsidere-estimationis not computation-
ally feasibleatthe moment.

The greedines®f the algorithm causesmary
problems. In particular it makes the algorithm
very sensitve to the orderin which the rulesare
acquired. If a rule that rewrites ATO NNL is
applied before a noun noun compoundingrule
then we will end up with lots of sequence®f
NP NNL1 thatwill inevitably leadto arule of the
formNP -> NP NNL1. Therearepossibilitiesof
modificationsthat would allow the algorithmto
delay committing unambiguouslyto a particular
analysis.

9 Conclusion

In conclusion,distributional clusteringcanform
the basisof a grammarinduction algorithm, by
hypothesisingsetsof rules expandingthe same
non-terminal. The mutual information criterion
proposedherecanfilter out spuriousconstituents.
The particularalgorithmpresentechereis rather
crude,but senesto illustratethe effectivenessof
thegenerakechnique Thealgorithmis computa-
tionally expensve, andrequiresarge amountsof
memoryto run efficiently. Thoughtheresultspre-
sentedherearepreliminary | have shavn how an
unsupervisedgrammarinduction algorithm can
induce at leastpart of a linguistically plausible
grammarfrom a large mixed corpusof natural
language.
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| Algorithm Iterations| UR  UP  F-score][ CB 0CB < 2CB |
EMILE 16.8 51.6 254 0.84 474 934
ABL 35.6 43.6 39.2 2.12 29.1 65.0
CDC 10 23.7 57.2 335 0.82 57.3 90.9
CDC 20 279 542 36.8 1.10 549 85.0
CDC 30 33.3 549 414 1.31 48.3 80.5
CDC 40 34.6 53.4 42.0 1.46 45.3 78.2

Table6: Resultsof evaluationon ATIS corpus.UR is unlabelledrecall,UP is unlabelledprecision,CB
is averagenumberof crossingoraclets,< 2 CB is percentagvith two or fewer crossingoraclets. The
resultsfor EMILE andABL aretakenfrom (vanZaanemandAdriaans,2001)

References

Pieter Adriaans,Marten Trautwein, and Marco Ver
voort. 2000. Towards high speedgrammarin-
duction on large text corpora. In Vaclar Hlavac,
Keith G. Jefery, and Jiri Wiedermann,editors,
SOFSEM2000: Theoryand Practice of Informat-
ics, pagesl73—-186 SpringerVerlag.

Glenn Carroll and EugeneCharniak. 1992. Two
experimentson learning probabilistic dependeng
grammarsrom corpora. TechnicalReportCS-92-
16, Departmenbf ComputerScience Brown Uni-
versity, March.

John Carroll, Ted Briscoe, and Antonio Sanfilippo.
1998. Parserevaluation: a survey anda new pro-
posal.In Proceeding®f the 1stinternationalCon-
ference on Language Resouces and Evaluation
pagesA47-454 GranadaSpain.

Stanle Chen.1995. Bayesiangrammaiinductionfor
languaganodelling. In Proceeding®fthe33rd An-
nual Meetingof the ACL, pages228-235.

AlexanderClark. 2000. Inducingsyntacticcatgyories
by context distribution clustering. In Proceedings
of CoNLL-2000and LLL-200Q, pages91-94,Lis-
bon,Portugal.

ThomasM. Cover and Joy A. Thomas. 1991. El-
ementsof Information Theory Wiley Seriesin
TelecommunicationslohnWiley & Sons.

S. Finch, N. Chater and M. Redington. 1995. Ac-
quiring syntactic information from distributional
statistics.In JosephP. Levy, Dimitrios Bairaktaris,
JohnA. Bullinaria, and Paul Cairns,editors,Con-
nectionistModelsof Memoryand Language. UCL
Press.

DanGusfield.1997. Algorithmson Strings, Treesand
SequencesComputerScienceand Computational
Biology. CambridgeUniversity Press.

Zellig Harris. 1954. Distributional structure.In J. A.
FodorandJ. J. Katz, editors, The Structue of Lan-
guage, pages33—-49.Prentice-Hall.

Sydng M. Lamh 1961. On the mechanisatiorof
syntacticanalysis. In 1961 Confeenceon Ma-
chine Translationof Languagesand Applied Lan-
guage Analysis volume 2 of National Physical
Laboratory SymposiunNo. 13, pages674—685Her
Majesty’s StationeryOffice, London.

W. Li. 1990. Mutual information functions ver
sus correlationfunctions. Journal of Statistical
Physics60:823—-837.

David M. Magermanand Mitchell P. Marcus. 1990.
Parsinga naturallanguageusing mutual informa-
tion statistics. In Proceedingsof the Eighth Na-
tional Confeenceon Artificial Intelligence August.

FernandoPereiraand Yves Schabes.1992. Inside-
outsidereestimationfrom partially bracketed cor-
pora.In Proceeding®f ACL '92, pagesl28-135.

AndreasStolcke. 1994. BayesianLearningof Prob-
abilistic Language Models Ph.D.thesis,Dept. of
ElectricalEngineeringandComputerScienceUni-
versityof Californiaat Berkeley.

Andreas Stolcke. 1995. An efficient probabilis-
tic contet-free parsing algorithm that computes
prefix probabilities. ComputationalLinguistics
21(2):165-202June.

MennovanZaanerandPieterAdriaans.2001. Com-
paring two unsupervisedgrammarinduction sys-
tems: Alignment-basedearning vs. emile. Re-
searchReportSeries2001.05,Schoolof Comput-
ing, University of LeedsMarch.

Mennovan Zaanen. 2000. ABL: Alignment-based
learning. In COLING 2000 - Proceedingsof the
18th International Confeence on Computational
Linguistics



