On Minimizing Training Corpus for Parser Acquisition

*

Rebecca Hwa
Institute for Advanced Computer Studies,
University of Maryland
College Park, MD 20742 USA

hwa@umiacs.umd.edu

Abstract

Many corpus-based natural lan-
guage processing systems rely on
using large quantities of annotated
text as their training examples.
Building this kind of resource is
an expensive and labor-intensive
project. To minimize effort spent
on annotating examples that are not
helpful the training process, recent
research efforts have begun to ap-
ply active learning techniques to se-
lectively choose data to be anno-
tated. In this work, we consider se-
lecting training examples with the
tree-entropy metric. Qur goal is to
assess how well this selection tech-
nique can be applied for training dif-
ferent types of parsers. We find that
tree-entropy can significantly reduce
the amount of training annotation
for both a history-based parser and
an EM-based parser. Moreover, the
examples selected for the history-
based parser are also good for train-
ing the EM-based parser, suggesting
that the technique is parser indepen-
dent.

1 Introduction

In recent years, large collections of text in
machine readable format have become readily

This material is based upon work supported by
the National Science Foundation under Grant No. IRI
9712068 and DARPA contract N6600197C8540. We
thank Michael Collins for the use of his parser; and Ric
Crabbe and the anonymous reviewers for their com-
ments on the paper.

available. These ought be valuable resources
for training natural language processing sys-
tem. Unfortunately, most systems cannot
take advantage of the data in their raw text
form; typically, the data must be annotated
by a human to become effective training ex-
amples. For instance, consider the task of in-
ducing a grammar to parse English sentences.
Studies have shown that a grammar trained
on sentences annotated with their constituent
trees produces much better parses than one
trained on just the sentences alone (Pereira
and Schabes, 1992). Recent state-of-the-
art parsers developed by Collins (1997) and
Charniak (1999) are all trained from hand-
annotated corpora such as those from the
Penn Treebank Project (Marcus et al., 1993).
However, building an annotated corpus is a
human labor-intensive project; therefore, it is
important to find ways to minimize the size
of the corpus.

Out of a large pool of raw text, what sub-
set should be annotated and added to the
training set? Recent studies have begun to
address this question using sample selection,
in which training process is seen as interac-
tive session between the learning system and
the human annotator (Lewis and Gale, 1994),
(Engelson and Dagan, 1996), (Fujii et al.,
1998), (Thompson et al., 1999), and (Ngai
and Yarowsky, 2000). The system actively
influences its learning progress by evaluating
potential candidates from the pool of raw text
and selecting those with high Training Utility
Values (TUV) for humans to annotate. As the
learning process continues, the system should
become better at identifying good training
candidates so that the annotators would not

need to waste time on processing uninforma-
tive examples.

This work considers the problem of apply-
ing sample selection techniques to the task of
training statistical parsers. Our primary chal-
lenge is in designing a function that can accu-
rately estimate an unlabeled candidate’s po-
tential utility for training a parser. In a previ-
ous study (Hwa, 2000b), we have applied sam-
ple selection to an induction algorithm based
on the expectation-maximization (EM) prin-
ciple that induces Probabilistic Lexicalized
Tree Insertion Grammars (PLTIGs). In that
work, we proposed an uncertainty-based eval-
uation function to estimate the TUV of unla-
beled candidates called tree entropy. We have
empirically shown that sample selection with
tree entropy can reduce the size of the training
corpus significantly. However, because only
an EM-based learner was used, it is unknown
whether the evaluation function would be gen-
eral enough to be applicable to other types of
learners. The goal of this work is to assess
the robustness of the tree-entropy evaluation
function. We have performed experiments to
evaluate how well the metric selects training
examples for different types of parsers and
to determine whether examples selected for
one type of parser might be good for training
a different type of parser. QOur experimen-
tal results show that the tree-entropy metric
can reduce the amount of training annotation
by 23% for a history-based lexical statisti-
cal parser, the Model 2 parser described by
Collins (1997). Moreover, we found that the
data selected for training the Collins Parser
also make good training examples for induc-
ing the EM-based PLTIG parser, suggesting
that the tree-entropy evaluation function is
parser independent.

2 The Learning Framework

There are two types of sample selection al-
gorithms: committee based or single learner.
A committee-based selection algorithm works
with multiple learners, each maintaining a dif-
ferent hypothesis (perhaps pertaining to dif-
ferent aspects of the problem). The candidate
examples that lead to the most disagreements

U is a set of unlabeled candidates.
L is a set of labeled training examples.
M is the current model.
Initialize:

M — Train(L).
Repeat

N — Select(n,U, M, f).

U«—U-N.

L — LU Label(N).

M — Train(L).
Until (M ~ My,,.) or

(U = 0) or (human stops).

Figure 1: The pseudo-code for the sample se-
lection learning algorithm

among the different learners are considered to
have the highest TUV. (Cohn et al., 1994; Fre-
und et al., 1997). For computationally inten-
sive problems, keeping multiple learners may
be impractical. In this work, we focus on sam-
ple selection algorithms that use only a single
learner that keeps just one working hypoth-
esis. Without access to multiple hypotheses,
the selection algorithm can nonetheless esti-
mate the TUV of an example. We categorize
some possible ranking criteria into the follow-
ing three classes:
Problem-space: Knowledge about the
problem-space may help to
good training canidates. For example,
knowing the distribution of the pool,
we might select the most frequently
occuring instances.

locate

Performance of the hypothesis: Testing
the candidates on the current hypothesis
may show the type of data on which the
hypothesis performs weakly (Lewis and
Catlett, 1994).

Parameters of the hypothesis:
Estimating the potential impact of
the candidates will have on the param-
eters of the current working hypothesis
locates those examples that will change
the current hypothesis the most.

Figure 1 outlines the single-learner sample
selection training loop in pseudo-code.
tially, the training set, L, consists of a small
number of labeled examples. The learner uses
L to train an initial model M. Also avail-

Ini-

able to the learner is a large pool of unlabeled
training candidates, U. In each iteration, the
selection algorithm, Select(n,U, M, f), uses
an evaluation function f to compute the ex-
pected TUV of each candidate in U and re-
turns the n candidates with the highest val-
ues. The set of the n chosen candidates are
then labeled by human experts and added to
the existing training set. Training on the up-
dated set L, the system modifies the model
so that it is consistent with all the examples
seen thus far. The loop continues until one of
the stopping conditions is met: the model is
considered to be good enough, all candidates
are labeled, or all human resources are used

up.

2.1 The Evaluation Function

At the heart of the sample selection algorithm
is the evaluation function that predicts each
unlabeled candidate’s training utility. Our
proposed function ranks candidates based on
the “performance of hypothesis.”
words, we wish to find the set of sentences
that the current parsing model is the most
uncertain about. One way to measure the
parser’s uncertainty is to compute the tree
entropy over the distribution of parsing prob-
abilities of the set of trees produced by the
parser. More specifically, the tree entropy for
a sentence u is:

In other

TE(u,M)= =" Pr(tlu, M)log, Pr(t|u, M),
teT

where 7 is the set of possible trees that M

generated for u. Details of computing tree

entropy have been discussed previously (Hwa,

2000b). Our proposed function evaluates each

candidate by measuring the similarity be-

tween the tree entropy of the candidate and

the uniform distribution for the same number

of trees. That is,

T E(u, M)

et M) = T, 7]

2.2 Parsing Models

To test the robustness of the tree-entropy
evaluation function, we use it to select train-
ing examples for the Collins Parser and the
PLTIG parser. Although both are lexical-
ized and statistical parsers, their learning al-
gorithms are different. The Collins Parser is
a fully-supervised, history-based learner that
models the parameters of the parser by tak-
ing statistics directly from the training data.
In contrast, PLTIG’s EM-based induction al-
gorithm (Hwa, 2000a) is partially-supervised;
the model’s parameters are estimated indi-
rectly from the training data. Our goal for
this study is to determine whether the suc-
cess of the tree-entropy metric is learner de-
pendent.

3 Experimental Setup and Results

Two experiments are performed. The first
experiment assesses whether the tree-entropy
evaluation function can select good examples
for a history-based learner. The second exper-
iment is a preliminary study on whether the
examples selected for a history-based learner
are also good training examples for a EM-
based learner.

3.1 Experiment 1

We use the Collins Parser as the basic learning
model M in the sample selection framework
described in Figure 1. To simulate the in-
teractive process, we create a large unlabeled
candidate pool U by stripping all annotated
information from sections 02 through 21 of the
Wall Street Journal corpus. Initially, L, the
set of labeled training data, consists of 500
parsed sentences. In each iteration, n = 1000
new sentences are picked from U to be added
to L. Then, a new parser is trained from the
updated L and tested on section 00 to chart
the learning progress.

We compare the learning rate of the parser
trained on examples selected by the tree en-
tropy evaluation function, f;. with a baseline
in which the model was trained with exam-

The experimen-
The

ples sequentially selected.
tal results are graphed in Figure 2(a).

@
&

®
kS
T

®
Y]

@
3

baseline ——
tree entropy ~--x---

Parsing performance of the test set

-
&

-
>
T

.
0 100000 200000 300000 400000 500000 600000 700000
Number of constituents in the training set

(a)

700000

baseline
tree entropy ——-—

600000
500000
400000
300000

200000

. P . .
85.5 86 86.5 87 87.5 88 88.5 89
Parsing performance of the test set

(b)

Number of constituents in the training set

Figure 2: (a) A graph comparing the learning rates of the Collins Parser under two training
conditions: “baseline” shows the progress of sequential training and “tree entropy” shows the

progress of sample selection training. (b) A graph showing the relative amounts of annotated

training data used to achieve the same performance level by the two evaluation functions.

parsing performance on the test sentences (us-
ing the combined labeled precision and label
recall score! as the metric (Van Rijsbergen,
1979)) is graphed as a function of the number
of labeled constituents in the training data.
We use the number of constituentsrather than
the number of sentences because it is a bet-
ter indicator of the effort spent by the human
annotator. Longer sentences tend to require
more annotation than short ones, and thus
take more time to analyze.

Our results suggest that the parser learns
faster when trained from examples selected by
fte- The learning rates of the parser under the
two training conditions are plotted in Figure
2(a). The graph shows that, for a compara-
ble amount of annotated constituents in the
training data, the parser trained on examples
selected by f;. typically performs better on
unseen test data than the baseline. Another
way of interpreting the results is to say that
the same parsing performance can be achieved
using fewer annotated training examples. Fig-
ure 2(b) graphs the amount of reduction in
annotated training constituents that f;. offers
from the baseline given comparable parsing
performances. For the final parsing perfor-
mance of 88.7%, the parser requires a base-

YFpon = %, where LR is the labeled recall

score and L P is the labeled precision score.

line training set of 36,500 sentences annotated
with about 675,000 constituents. In contrast,
the same performance can be achieved using
a training set of 520,000 constituents in the
23,500 sentences selected by fe, reducing the
number of annotated constituents by 23%.

3.2 Experiment 2

To determine the suitability of the selected
training examples across different learners,
we now use PLTIG as the basic learning
model and compare the parsing performances
of three PLTIGs induced from different sets
of training sentences: those selected by the
tree-entropy evaluation function for a PLTIG
model, fi.(u, MprT16), those selected for the
Collins Parser in the previous experiment,
fre(u, Mcouins), and the baseline of sequen-
tial selection. Some modifications to the ex-
perimental setup of the previous experiments
are necessary to accommodate the EM-based
induction algorithm for PLTIG. Because EM-
based grammar induction is computationally
expensive, this experiment is limited to us-
ing an unlabeled pool of 3600 sentences, and
the grammars are lexicalized to part-of-speech
tags rather than words. Moreover, because
the algorithm induces grammars that gener-
ate binary branching trees, we evaluate the
parsing accuracy of the test sentences with the

82

81 -

80

79

78 I

77+ e “baseline” —+— R
¢ “Tree entropy (for Model 2)" ---x---
"Tree entropy (for PLTIG)" ---%-

Parsing performance of the test set

76 H 4

74 L L L L L L L L

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Number of constituents in the training set

(a)

30000

“"baseline”
“Tree entropy (for Model 2)" ~—--—
25000 "Tree entropy for PLTIG" ------ |

20000 |- ' R
15000 = b

10000 | 1 o i i i 1

Number of constituents in the training set

s000 [1

o | i M ‘
78 785 79 795 80 80.5 81 815
Parsing performance of the test set

(b)

Figure 3: (a) A graph comparing the learning rates of three PLTIGs induced from different
sets of training examples. (b) A graph showing the relative amounts of annotated training data

used to induce the PLTIGs.

consistent bracketing metric (i.e., the percent-
age of constituents in the proposed parse not
crossing constituents of the true parse) rather
than the average precision and recall metric?.

Currently, one trial of this experiment has
been completed. While a more comprehensive
analysis is required, our initial results sug-
gest that the examples selected by the tree-
entropy metric are informative independent
of the underlying learning model. Compar-
ing the learning rates of the three PLTIGs
graphed in Figure 3(a), we see that although
learning rate of the grammar trained on exam-
ples selected specifically for the PLTIG model
is faster than the one trained on examples se-
lected for the Collins Parser, both are better
than the baseline. The bar graph in Figure
3(b) shows the relative amounts of annota-
tion used to train each grammar. To achieve
a parsing level comparable to the baseline’s
best performance, the grammar trained on ex-
amples selected for the Collins Parser needed
about 15% less annotation than the baseline,
and the grammar trained on examples se-
lected for itself needed about 33%3 less anno-

2The number of proposed constituents in a binary
branching tree is always one fewer than the length of
the sentence. The WSJ corpus, on the other hand, fa-
vors a more flattened tree structure with considerably
fewer brackets per sentence. The consistent bracket-
ing metric does not unfairly penalize a proposed parse
tree for being binary branching.

#The figure reported in our previous study of 36%

tation than the baseline. Both induced gram-
mars achieved slightly higher parsing accu-
racy than the baseline when trained on all
examples.

4 Conclusion and Future Work

In this paper, we have assessed the robustness
of the tree-entropy evaluation function as a
metric of training utility values for different
types of parsers. We have empirically shown
that tree-entropy can select informative train-
ing examples and reduce the amount of
training annotation for both a history-based
learner and an EM-based learner. Moreover,
we have found that the training examples se-
lected for the history-based parser are also in-
formative for training the EM-based parser.

In addition to the tree-entropy evalua-
tion function, which uses the performance of
the hypothesis as the ranking criterion, we
are exploring alternative evaluation functions
that use problem-space based and parameter-
confidence based ranking criteria.

References

Eugene Charniak.
inspired parser.
Brown University.

1999. A maximum-entropy

Technical Report CS-99-12,

was the average of 10 trials.

David Cohn, Les Atlas, and Richard Ladner.
1994. Improving generalization with active
learning. Machine Learning, 15(2):201-221.

Michael Collins. 1997. Three generative, lexi-
calised models for statistical parsing. In Pro-
ceedings of the 35th Annual Meeting of the
ACL, pages 16-23, Madrid, Spain.

Sean P. Engelson and Ido Dagan. 1996. Min-
imizing manual annotation cost in supervised
training from copora. In Proceedings of the 34th
Annual Meeting of the ACL, pages 319-326.

Yoav Freund, H. Sebastian Seung, Eli Shamir, and
Naftali Tishby. 1997. Selective sampling using
the query by committee algorithm. Machine
Learning, 28(2-3):133-168.

Atsushi Fujii, Kentaro Inui, Takenobu Tokunaga,
and Hozumi Tanaka. 1998. Selective sampling
for example-based word sense disambiguation.
Computational Linguistics, 24(4):573-598, De-
cember.

Rebecca Hwa. 2000a. Learning Probabilistic Lez-
tcalized Grammars for Natural Language Pro-
cessing. Ph.D. thesis, Harvard University.

Rebecca Hwa. 2000b. Sample selection for sta-
tistical grammar induction. In Proceedings of
the 2000 Joint SIGDAT Conference on EMNLP
and VLC, pages 45-52, Hong Kong, China, Oc-
tober.

David D. Lewis and Jason Catlett. 1994. Het-
erogeneous uncertainty sampling for supervised
learning. In Proceedings of the FEleventh In-
ternational Conference on Machine Learning,

pages 148-156.
David D. Lewis and William A. Gale. 1994. A se-

quential algorithm for training text classifiers.
In Proceedings of the 17th Annual International
ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, pages 3—
12.

Mitchell Marcus, Beatrice Santorini, and
Mary Ann Marcinkiewicz. 1993. Building
a large annotated corpus of English: the
Penn Treebank. Computational Linguistics,

19(2):313-330.

Grace Ngai and David Yarowsky. 2000. Rule writ-
ing or annotation: Cost-efficient resource usage
for base noun phrase chunking. In Proceedings
of the 38th Annual Meeting of the ACL, pages
117-125, Hong Kong, China, October.

Fernando Pereira and Yves Schabes. 1992. Inside-
Outside reestimation from partially bracketed
corpora. In Proceedings of the 30th Annual

Meeting of the ACL, pages 128-135, Newark,
Delaware.

Cynthia A. Thompson, Mary Elaine Califf, and
Raymond J. Mooney. 1999. Active learning
for natural language parsing and information
extraction. In Proceedings of ICML-99, pages
406—414, Bled, Slovenia.

C. J. Van Rijsbergen. 1979.

trieval. Butterworth.

Information Re-

