Impact of Quality and Quantity of Corpora on Stochastic
Generation

Srinivas Bangalore
AT&T Labs — Research
180 Park Ave
Florham Park, NJ 07932
USA

srini@research.att.com
Abstract

Recently, there has been some interest in using
stochastic approaches in generation. However, there
has been little research so far on the question of
how the quality, size, and genre of training corpora
influence the quality of stochastic generation com-
ponents. In this paper, we investigate these issues
using the FERGUS system. FERGUS uses two
distinct stochastic models, a tree model which refers
to a grammar, and a linear language model. We use
automatic grammar extraction techniques to extract
grammars from different-sized tree banks, and then
use these extracted grammars to train the tree mod-
els. We also investigate the impact of the quality of
the annotated corpus, by using a hand-annotated
corpus as well as an automatically annotated cor-
pus. Our results show that automatic grammar ex-
traction is a viable alternative to hand crafted gram-
mars for generation; furthermore, as expected, both
quality and size of the training corpus matter

1 Introduction

Recently, there has been some interest in using
stochastic approaches in generation (Knight and
Hatzivassiloglou, 1995; Langkilde and Knight, 1998;
Langkilde, 2000; Oh and Rudnicky, 2000; Ratna-
parkhi, 2000; Bangalore and Rambow, 2000). For
generation, stochastic methods promise to be supe-
rior to hand-crafted generators in (at least) two dif-
ferent contexts:

e When the range of output to be generated is
wide, for example in general-purpose machine
translation systems.

o When a generation system needs to be created
very quickly.

However, there has been little research so far on
the question of how the quality, size, and genre of
training corpora influence the quality of stochastic
generation components. These questions are crucial:
for both wide-range output and for rapid develop-
ment, we need to know whether the quality of the

* This work was done when the author was at AT&T Labs-
Research, Shannon Laboratories, 180 Park Ave, Florham
Park NJ 07932

John Chen*
Department of Computer
and Information Sciences

University of Delaware
Newark, DE 19716
jchen@cis.udel.edu

Owen Rambow
AT&T Labs — Research
180 Park Ave
Florham Park, NJ 07932

USA
rambow@research.att.com

generator can be brought to an adequate level by
increasing the size of the training corpus.

In this paper, we present answers to these ques-
tions using the framework developed for the FER-
GUS system (Bangalore and Rambow, 2000). In
FERGUS, an input dependency tree representing
lexical predicate-argument structure is first anno-
tated for syntactic information using a stochastic
tree model. This syntactic information is in the form
of supertags, i.e., references to trees from a Tree Ad-
joining Grammar (TAG). The dependency tree an-
notated with supertags allows several linearizations;
FERGUS uses a standard linear language model to
choose the best of these linearizations. Note the
presence of two distinct stochastic models, the tree
model which refers to a grammar, and the linear lan-
guage model. As we have shown in previous work,
the use of both models increases the performance of
the system over a version of the system with only one
of the two models. However, the use of two models
comes at a cost: the tree model requires both the ex-
istence of a hand-crafted grammar, and of a corpus
which has been syntactically annotated with refer-
ence to the hand-crafted grammar. If we wish to
generate in new languages, or if we wish to gener-
ate in new sublanguages of previously covered lan-
guages, such an approach is unappealing because of
the required amount of hand-crafting (of grammars
and annotated corpora).

We address this problem by using automatic
grammar extraction techniques. We use the TAG-
extraction algorithm of Chen and Vijay-Shanker
(2000) to extract grammars from different-sized an-
notated corpora, and then use these extracted gram-
mars to train the tree models. While performance
improvements still require the existence of a syntac-
tically annotated corpus, we no longer need a hand-
crafted grammar. Furthermore, we do not even re-
quire that the annotated corpus be hand-annotated:
we use a corpus which has been syntactically anno-
tated by an automatic parser. To our knowledge,
this is the first time that automatically extracted
grammars are used for generation. Using automatic
extraction of generation grammars, we then inves-
tigate the relation between corpus quality and size
on the one hand and output quality on the other
hand by learning different tree and language mod-

els. As expected, our results show that both quality
and size matter, and that the quality of the syntac-
tically annotated corpus can be traded against its
size.

The paper is structured as follows. In Section 2,
we present the grammar extraction algorithm of
Chen and Vijay-Shanker (2000). We then present
our generation system, FERGUS (Section 3). We
investigate the issue of the quality of the training
corpus in Section 4. The issue of size of corpora is
discussed in Section 5 and in Section 6, concentrat-
ing first on small corpora, and then on very large
corpora. We conclude with a summary and an out-
look.

2 Automated TAG Extraction from
Bracketed Corpora

There are a number of approaches for the extraction
of Tree Adjoining Grammars (TAGs) from corpora
annotated in the style of the Penn Treebank (Mar-
cus et al. (1993)), as work by Neumann (1998),
Xia (1999), and Chiang (2000) show. In fact, in
Chen and Vijay-Shanker (2000) alone, no fewer than
eight different kinds of extracted grammars are com-
pared. For the following experiments, we adopt one
out of the many approaches described in Chen and
Vijay-Shanker (2000) which we describe here. As
background, we review useful TAG terminology and
discuss the linguistic principles that guide the for-
mation of both manually constructed TAG gram-
mars and the automatically extracted variety; for a
more complete introduction, see (Abeillé and Ram-
bow, 2000). Subsequently, We describe the details
of the grammar extraction algorithm and the mod-
ifications that are required in order to make the al-
gorithm work with different kinds of corpora.

2.1 Background

A TAG (G is defined as a set of elementary trees
T which are partitioned into a set I of initial trees
and a set A of auxiliary trees. If GC is lexical-
ized, the frontier of each elementary tree includes a
lexical anchor; the other nodes on the frontier are
substitution nodes, and in the case of an auxiliary
tree, one node on the frontier will be a foot node.
The foot node of a tree § is labeled identically with
the root node of B. The spine of an auxiliary tree
is the path from its root to its foot node. It is to be
distinguished from the trunk of an elementary tree
which is the path from its root node to the lexical
anchor.

Although the formalism of TAG allows wide lat-
itude in how trees in T may be defined, several
linguistic principles generally guide their formation.
First, dependencies including long distance depen-
dencies are typically localized in the same elemen-
tary tree by appropriate grouping of syntactically

or semantically related elements; i.e. positions for
complements of a lexical item are included in the
same tree as the lexical item, as shown in Fig-
ure 1(b). Second, recursion is factored into sepa-
rate auxiliary trees. There are modifier auxiliary
trees which generally represent syntactic adjuncts;
the foot nodes in these trees represent the objects
of modification as shown in Figure 1(c). There are
also predicative auxiliary trees; the foot nodes in
these trees represent sentential complements. They
are used (rather than initial trees) in order to handle
long-distance extraction.

2.2 Extraction from the Penn Treebank

Given a bracketed sentence S in the corpus, an ele-
mentary tree v lexicalized by a word w € S is created
as follows. First, a head percolation table is used
to determine the trunk of . Introduced in Mager-
man (1995), a head percolation table assigns to each
node in S a headword using local structural infor-
mation. The trunk of « is defined to be that path
through the tree for S whose nodes are labeled with
syntactic projections from the headword w. See Fig-
ure 2(a). Each node n' that is immediately domi-
nated by a node 1 on the trunk of v may either be
itself on the trunk, a complement of w, or an adjunct
of w. If ' is a complement of w, then the node is
made into a substitution node of . (The subtree
rooted at 1’ will be associated with a different head-
word, that of the complement.) If 5’ is an adjunct
of w, then it belongs to another (auxiliary) tree 8
which modifies .

Tt is therefore necessary to determine a node’s sta-
tus as either complement or adjunct. The procedure
used by our algorithm is based on a similar one that
is used by Collins (1997). Like Collins (1997), it
bases its decision on the node’s label, its semantic
tags (see Marcus et al. (1993)), and local structural
information. For example, a node that is labeled
NP-DIR would be labeled as an adjunct because of
the semantic tag DIR, signifying an adverbial that
answers the questions “from where?” or “to where?”
The main difference lies in our attempt to use lexical
predicate-argument structure as a basis for deter-
mining the shape of the trees in our grammar. For
instance, wh-moved constituents are treated by our
procedure as complements of their head and there-
fore positions for moved elements may be included in
verbal trees. Our procedure operates in two steps.
In the first step, the label and semantic tags of a
node 7 and the parent node of 7 are used as an index
into a manually constructed complement-adjunct
table which determines complement or adjunct sta-
tus. The table is sparse; should the index not be
found in the table then the second step of the pro-
cedure is invoked. This second step uses only the
semantic tags of node n to determine the comple-
ment or adjunct status. Should 7 lack any semantic

substitution node

S
—
NP VP
| PN
N A VP
I I I
Prices also V
I
soared

(@)

S

\ o~ foot node

NP VP

I
NP VP
A
ITI soared Al\VP
Prices aso

(b) ()

Figure 1: (a) Sentential structure (b) Localizing argument dependencies in the same elementary tree (c)
Each instance of recursion is factored into a separate elementary tree.

ADVP NP-C ADVP

RB NN RB

Yesterday stocks rapidly fell

(@

Yesterday stocks

S VP S

NN

ADVP S NP ADVP VP NP VP

RB NN RB \%

rapidly fell

(b)

Figure 2: (a) Original bracketing with head sibling 7y and its parent 7 both on the trunk (circled) associated

with the headword “fell.” (b) Extracted trees.

tags, it is labeled as an adjunct.

A recursive procedure is used to extract trees
bottom-up given a particular bracketed sentence S.
As shown in Figure 2, among all of the children of
node 172, one child 7, is selected using the head per-
colation table so that the trunk ¢ associated with
71 is extended to 75. 7;’s siblings are subsequently
marked as either complement or adjunct. Comple-
ments are attached to the trunk ¢ as substitution
nodes and the trees that they dominate become ini-
tial trees. Adjuncts are factored into modifier aux-
iliary trees.

Besides modifier auxiliary trees, there are predica-
tive auxiliary trees which are generated as follows.
During the bottom-up extraction of trees, suppose
trunk ¢ has a node 7 that shares the same label as
another node 7' where n' is a complement, not on

¢, but is immediately dominated by a node on ¢.
In this case, a predicative auxiliary tree is extracted
where 7 is its root, i’ is its foot and with ¢ serving as
its trunk. Subsequently, the path ¢’ dominated by
7' becomes a candidate for being extended further.

2.3 Extension to Other Bracketed Corpora

Although we have described extraction of TAG
specifically from the Penn Treebank, it is not diffi-
cult to adapt this procedure to other bracketed cor-
pora. Alterations to this procedure are basically ne-
cessitated by the differences between label sets and
bracketing conventions of various bracketed corpora.
Given a bracketed corpus with a novel label set, con-
figurational relationships between different labels as
they appear in the corpus need to be investigated.
This allows the construction of a new head perco-

lation table in order to specify the trunks of the
extracted elementary trees. This also allows the
formulation of a new complement-adjunct table in
order to specify which nodes are factored into aux-
iliary trees. It is also necessary to specify a new
list of empty elements to be pruned as well as the
mapping to a set of simplified labels, if these are re-
quired. These methods were employed in order to
change the algorithm to extract grammars from the
BLLIP Treebank (Charniak, 2000).

3 The FERGUS Generation System

FERGUS is composed of three modules: the Tree
Chooser, the Unraveler, and the Linear Precedence
(LP) Chooser (Figure 3). The architecture of FER-
GUS is shown in Figure 3. The input to the system
is a dependency tree as shown in Figure 4. Note that
the nodes are unordered and are labeled only with
lexemes, not with any sort of syntactic annotations.!
The Tree Chooser uses a stochastic tree model
to choose syntactic properties for the nodes in the
input structure. These properties are expressed as
supertags, i.e., as names of trees in a Tree Adjoin-
ing Grammar. We will refer to this grammar, which
must be specified in advance, as the generation
grammar. This step can be seen as analogous to
“supertagging” (Bangalore and Joshi, 1999), except
that now supertags (i.e., names of trees which en-
code the syntactic properties of a lexical head) must
be found for words in a tree rather than for words
in a linear sequence. The Tree Chooser makes the
simplifying assumptions that the choice of a tree for
a node depends only on its daughter nodes, thus al-
lowing for a top-down algorithm. The Tree Chooser
draws on a tree model, which is a statistical model
trained from the syntactic dependencies present in
the tree model corpus. In the remainder of this
paper, we will be investigating the effect of using
different tree model corpora.

The supertagged tree which is output from the
Tree Chooser still does not fully determine the sur-
face string, because there typically are different ways
to attach a daughter node to her mother (for exam-
ple, an adverb can be placed in different positions
with respect to its verbal head). The Unraveler
therefore uses the generation grammar to produce
a lattice of all possible linearizations that are com-
patible with the supertagged tree. Specifically, the
daughter nodes are ordered with respect to the head
at each level of the derivation tree. In cases where
the generation grammar allows a daughter node to

In the system that we used in the experiments described
in this paper, all words (including function words) need to be
present in the input representation, fully inflected. Further-
more, there is no indication of syntactic role at all. This may
be unrealistic for some applications — however, it provides a
convenient baseline.

TAG Derivation Tree

without Supertags
Tree Chooser <+ Tree
Model

One single semi-specified
TAG Derivation Trees

v -
Unraveler | <——>
|

Word Lattice
LP Chooser <—* | Language
| Model
String

Figure 3: Architecture of FERGUS

estimate

cost for

phase

/N

the second

there was no

Figure 4: Input to FERGUS

be attached at more than one place in the mother
supertag (as is the case in our example for was and
for; generally, such underspecification occurs with
adjuncts and with arguments if their syntactic role
is not specified), a disjunction of all these positions
is assigned to the daughter node. A bottom-up al-
gorithm then constructs a lattice that encodes the

Grammar Size of Grammar | StringAccuracy
Penn Treebank 444 0.742
(XTAG)
Penn Treebank 3063 0.749
(Extracted)
BLLIP Treebank 3763 0.727
(Extracted)

Table 1: Results from FERGUS on training on 1 million words of annotated corpus with different qualities

of annotation

strings represented by each level of the derivation
tree. The lattice at the root of the derivation tree is
the result of the Unraveler.

Finally, the LP Chooser chooses the most likely
traversal of this lattice, given a linear language
model (n-gram). The lattice output from the Un-
raveler encodes all possible word sequences permit-
ted by the supertagged dependency structure. We
rank these word sequences in the order of their likeli-
hood by composing the lattice with a finite-state ma-
chine representing a trigram language model which
has been trained on an unannotated corpus, the
language model corpus. We pick the best path
through the lattice resulting from the composition
using the Viterbi algorithm, and this top ranking
word sequence is the output of the LP Chooser and
the generator. We evaluate the results of our gen-
erator by using the string-edit distance from a ref-
erence string. For a detailed discussion on evalua-
tion for FERGUS, including the limitations of the
string-edit distance and proposals for other evalua-
tion metrics, see (Bangalore et al., 2000).

4 Quality of Annotated Corpora

The tree model in FERGUS is a stochastic model
that assigns supertags to the nodes of the input
derivation tree. The parameters of this model are es-
timated from a training corpus of annotated deriva-
tion trees, where each node is annotated with a su-
pertag from the grammar. The performance of the
tree model depends on two aspects: the grammar
which they refer to and the quality of annotation of
the corpus. In this section, we discuss the impact of
these aspects on the performance of FERGUS.

In order to investigate the impact of the qual-
ity of the grammar on the tree model, we used the
supertags of the XTAG grammar (XTAG-Group,
1999) and the supertags of a grammar extracted au-
tomatically from the Penn Treebank as described
above in Section 2. The grammar from XTAG con-
tains 444 supertags while the extracted grammar
contains 3063 supertags. Two tree models were
trained on the two versions of the same one million
word corpus annotated with the two supertag sets.
The performance of FERGUS using these two tree
models but with the same language model is shown

in rows one and two of Table 1. It is interesting to
note that the performance of FERGUS using the
extracted grammar is as good as? the performance
using the XTAG grammar. The supertag-annotated
corpus based on the extracted grammar is more con-
sistent than the supertag annotated corpus based
on the XTAG grammar. This is because the Penn
Treebank and the XTAG grammar were developed
independently of each other, and as a result the an-
notations in the PTB and the structures in XTAG
are not congruent. As a result, assigning supertags
to the items in the PTB is based on heuristics, which
are often but not always correct. This suggests that
in future, grammars and treebanks should be devel-
oped so as to maintain this congruence.

In order to investigate the impact of the qual-
ity of the annotated corpus, we compared the tree
model trained on the Penn Treebank with the gram-
mar extracted from the PTB against a tree model
trained on the BLLIP Treebank (BTB) (Charniak,
2000), with the grammar extracted from the BTB.
The BLLIP Treebank has been automatically an-
notated with a statistical parser (Charniak, 2000).
We automatically extracted grammars from one mil-
lion words of each corpus. As mentioned earlier, the
grammar from the PTB has 3063 supertags, while
the BTB-extracted grammar has 3763 supertags.
The performance of FERGUS using these two tree
models but with the same language model is shown
in rows two and three of Table 1. As expected,
the performance of the tree model trained on the
BTB is worse than that of the model trained on the
PTB. However, the attraction of this model is that it
was trained on automatically annotated corpus and
hence it is straightforward to increase the quantity
of the corpus. The impact of the increase in quantity
of the corpus is illustrated in Section 6.

Our test suite is annotated for predicate-argument
structure independently of the grammar being used
for generation (we use the same test suite in all ex-
periments reported in this paper). As the figures
in Table 1 show, the performance of the automati-
cally extracted grammars is comparable to that of
the hand-crafted TAG. This means that the gram-
mars automatically extracted from the PTB and

2Even slightly better, but that may not be significant.

| [5K LM | 10K LM [50K LM | 100K LM | 500K LM | IM LM |

0K TM 0.434 0.480 0.561 0.599 0.661 0.701
5K TM 0.497 0.530 0.540 0.595 0.626 0.642
10K TM 0.507 0.574 0.542 0.651 0.672 0.690
50K TM 0.561 0.596 0.603 0.623 0.707 0.738
100K T™M 0.563 0.595 0.610 0.644 0.697 0.729
500K TM 0.587 0.649 0.667 0.671 0.730 0.751
1M T™ 0.600 0.627 0.645 0.658 0.738 0.750

Table 2: Results from FERGUS on training on Penn Tree Bank tree models (y axis) and linear language

models (x axis) of different sizes

from the BTB not only account for the phrase struc-
tures found in these corpora, but also derive these
phrase structures in a linguistically plausible man-
ner (as we would expect from a hand-crafted TAG),
so that the input derivation structures in the test
suite can be used as derivation structures in those ex-
tracted grammars. This should be contrasted with,
for instance, the approach chosen in Data-Oriented
Parsing (Bod, 1998), where phrase structure is cut
up into pieces which are not motivated by linguistic
considerations. As a consequence, it is not clear how
a grammar of the type extracted in DOP could be
used for generation.

A point worth noting is that a TAG grammar
such as XTAG contains not only information that
maps predicate-argument to syntax, as do the auto-
matically extracted grammars, but also information
about grammatical roles (deep subject, deep object,
modifier, and so on).> The impact of this informa-
tion on the performance is not tested in the exper-
iments presented here since the input is always as-
sumed to be an unannotated dependency tree with-
out role information.

5 Small Corpora

In this section, we investigate the effect of resource
size when relatively small amounts of data (one mil-
lion words or fewer) are available. This is a typical
situation when a new generator is needed, either for
a new domain or for a new language. Unfortunately,
for the purpose of our investigation we need to resort
to the English Penn Treebank (PTB), since we did
not have access to any other tree bank of sufficiently
large size (neither for a new domain in English, nor
for a new language).

We assume that no hand-crafted grammar is avail-
able and that we will work with extracted grammars.
We vary both the size of the syntactically annotated
corpus from which the grammar is extracted and on
which the tree model is trained (the “TM corpus”),
and the size of the unannotated corpus on which the
linear language model is trained (the “LM corpus”).

3This information might be extractable from annotated
treebank as well.

The results are shown in Table 2 and garphically in
Figure 5. In this graph, each plot represents an LM
corpus of a fixed size; the x-axis shows the natural
logarithm of the size of the TM corpus, and the y-
axis shows the string accuracy. Needless to say, the
corpora for training the language model are easier
to come by, and in practical terms it is inconceiv-
able that the LM corpus would be smaller than the
TM corpus, but we give all figures for the sake of
completeness.

There are several conclusions to be drawn from
these results.

e By and large, more is better: with the size of
one model fixed, increasing the size of the other
model also increases the quality of the output.
There seems to be, however, a leveling-off ef-
fect at a TM corpus size of 500K, with little
improvement when the TM corpus is doubled
to 1M. Presumably, this is because of the in-
crease in grammar size from the larger TM, the
stochastic tree model becomes less precise.

o We see that the tree model contributes to the
quality of the output starting with tree models
of size 10K words; the 5K TM does not have a
great impact on quality, except for the smaller
language models. In fact, it appears that the
tree model must be at least a tenth the size of
the language model in order to have a positive
impact.

e On the face of it, the impact of increasing the
size of the LM is greater than the impact of
increased TM: for example, if we have a 5K TM
corpus and a 5K LM corpus with a performance
of 0.497, we are better off increasing the LM
corpus to 1M (0.642) than the TM corpus to 1M
(0.600). Of course, this is an unrealistic trade-
off, as the LM corpus will in practice always be
at least as large as the TM corpus.

e More practically, if we have a LM corpus, it is
worthwhile to increase the TM corpus to the
size of the LM corpus, i.e., to annotate the en-
tire LM corpus syntactically.

String Accuracy x 10°3

5K LM
750.00 TR TH
50K LM
700.00 EOQK_LEA
500K LM
IMLM
650.00
600.00
550.00
500.00
450.00
log of TM size

0.00 2.00

4.00

6.00

Figure 5: Results from FERGUS on training on Penn Tree Bank tree models (x-axis is log scale of size of
TM corpus) and linear language models (plots) of different sizes

6 Large Corpora

In this section, we investigate the effect of resource
size when a very large amount of data (more than
one million words) is available. Specifically, we in-
vestigate whether we can overcome the disadvantage
of using an automatically annotated TM corpus by
annotating a large amount of data. To do so, we use
larger and larger portions of the BLLIP Treebank
(BTB). The results are shown in Table 3.

There are several conclusions to be drawn from
these results.

e Increasing the size of the TM corpus increases
the quality of the output, even if the TM corpus
is low-quality, i.e., automatically annotated. In
fact, our best results are achieved with gram-
mars extracted from very large automatically
annotated corpora. This result is significant,
since if a very large unannotated corpus and
a parser are available, there is no additional
human work needed to syntactically annotate

| [IM LM [2M LM |

0K TM 0.685 0.703
1M T™M 0.71 0.727
10M TM 0.764 0.786
20M T™M 0.775 0.787
30M TM 0.767 0.784
40M TM 0.774 0.791

Table 3: Results from FERGUS on training on BTB
tree models (y axis) and BTB linear language models
(x axis) of different sizes

more data.

e We observe a leveling-off after 10M. Presum-
ably, the additional data provided is rare and
does not help the test suite.

e Clearly, increasing the size of the LM corpus
also contributes to output quality. We intend
to investigate larger LM corpora in future work;

the emphasis of the work reported in this sec-
tion has been the use of TM corpora of different
sizes.

7 Conclusion

We have shown that automatically extracted gram-
mars can be used in syntactic generation. We have
found:

e An automatically extracted grammar can per-
form as well as a hand-crafted grammar, pre-
sumably because the corpus annotation is not
perfect in case the hand-crafted grammar does
not match the hand-crafted corpus. (This prob-
lem can be overcome by developing grammars
and corpora in parallel.)

e Even a small amount of syntactically annotated
data for grammar extraction improves perfor-
mance over a system based solely on a linear
language model, though the tree model corpus
should be at least a tenth the size of the lan-
guage model corpus.

e If no syntactically annotated corpus is available,
but a high-performance parser is, a much larger
corpus can compensate for the lower quality of
the automatically annotated corpus.

This paper is about the relation between available
corpora and generation quality when automatically
extracting grammars. We observe, however, that
generation may provide a general test-bed for evalu-
ating the quality of grammars in a more application-
independent manner. Generation is the mapping
of a lexical (or semantic) predicate-argument struc-
ture to a surface string. The grammars that we
use in FERGUS are Tree-Adjoining Grammars, i.e.,
declarative grammars which are independent of any
application such as parsing or generation. We are
thus assessing the ability of our grammars to map
between surface string and some sort of meaning rep-
resentation — which is exactly what grammar is gen-
erally assumed to do.

References

Anne Abeillé and Owen Rambow. 2000. Tree Adjoining
Grammar: An overview. In Anne Abeillé and Owen
Rambow, editors, Tree Adjoining Grammars: For-
malisms, Linguistic Analyses and Processing, pages
1-68. CSLI Publications.

Srinivas Bangalore and Aravind Joshi. 1999. Supertag-
ging: An approach to almost parsing. Computational
Linguistics, 25(2):237-266.

Srinivas Bangalore and Owen Rambow. 2000. Exploit-
ing a probabilistic hierarchical model for generation.
In COLING2000, Saarbriicken, Germany.

Srinivas Bangalore, Owen Rambow, and Steve Whit-
taker. 2000. Evaluation Metrics for Generation. In
Proceedings of International Conference on Natural
Language Generation, Mitzpe Ramon, Isreal.

Rens Bod. 1998. Beyond Grammar: An ezperience-
based theory of language. CSLI Publications, Cam-
bridge University Press.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. In Proceedings of the ANL/NAACL 2000
Workshop on Conversational Systems, Seattle. ACL.

John Chen and K. Vijay-Shanker. 2000. Automated ex-
traction of tags from the penn treebank. In Proceed-
ings of the Sizth International Workshop on Parsing
Technologies, pages 65-76.

David Chiang. 2000. Statistical parsing with an
automatically-extracted tree adjoining grammar. In
Proceedings of the the 38th Annual Meeting of the As-
soctation for Computational Linguistics, pages 456—
463, Hong Kong.

Michael Collins. 1997. Three generative lexicalized mod-
els for statistical parsing. In Proceedings of the 35th
Annual Meeting of the Association for Computational
Linguistics.

Kevin Knight and V. Hatzivassiloglou. 1995. Two-
level many paths generation. In Proceedings of ACL,
Boston. ACL.

Irene Langkilde and Kevin Knight. 1998. Generation
that exploits corpus-based statistical knowledge. In
acl98, pages 704-710, Montréal, Canada.

Irene Langkilde. 2000. Forest-based statistical sentence
generation. In ANLP00, pages 170-177, Seattle, WA.

David M. Magerman. 1995. Statistical decision-tree
models for parsing. In Proceedings of the 33th Annual
Meeting of the Association for Computational Linguis-
tics.

Mitchell Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of english: the penn treebank. Computational
Linguistics, 19(2):313-330.

Giinter Neumann. 1998. Automatic extraction of
stochastic lexicalized tree grammars from treebanks.
In Proceedings of the Fourth International Workshop
on Tree Adjoining Grammars and Related Frame-
works, pages 120-123.

Alice H. Oh and Alexander I. Rudnicky. 2000. Stochas-
tic language generation for spoken dialog systems. In
Proceedings of the ANL/NAACL 2000 Workshop on
Conversational Systems, pages 27-32, Seattle. ACL.

Adwait Ratnaparkhi. 2000. Trainable methods for sur-
face natural language generation. In Proceedings of
First North American ACL, Seattle, USA, May.

Fei Xia. 1999. Extracting tree adjoining grammars from
bracketed corpora. In Fifth Natural Language Pro-
cessing Pacific Rim Symposium (NLPRS-99), Beijing,
China.

The XTAG-Group. 1999. A lexicalized Tree Ad-
joining Grammar for English. Technical Report
http://www.cis.upenn.edu/ xtag/tech-report/
tech-report.html, The Institute for Research in
Cognitive Science, University of Pennsylvania.

