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Abstract MWU dictionary headwords generally satisfy at
We seek a knowledge-free method for inducindeast one of these constraints. For example, a
multiword units from text corpora for use ascompositional phrase would typically be excluded
machine-readable dictionary headwords. Wdrom a hard-copy dictionary since its constituent
provide two major evaluations of nine existingwords would already be listed. These strategies
collocation-finders and illustrate the continuingallow hard-copy dictionaries to remain compact.
need for improvement. We use Latent Semantic As mentioned, we wish to find MWU headwords
Analysis to make modest gains in performance, buor machine-readable dictionaries  (MRDs).
we show the significant challenges encountered iAlthough space is not an issue in MRDs, we desire

trying this approach. to follow the lexicographic practice of reducing
redundancy. As Sproat indicated, "simply
1 Introduction expanding the dictionary to encompass every word

_ _ _ one is ever likely to encounter is wrong: it fails to

A multiword unit (MWU) is a connected take advantage of regularities” (1992, p. xiii). Our
collocation: a sequence of neighboring wordgyogl is to identify an automatic, knowledge-free
‘whose exact and unambiguous meaning OR|gorithm that finds all and only those collocations
connotation cannot be derived from the meaning ofhere it is necessary to supply a definition.
connotation of its components” (Choueka, 1988). IfKnowledge-free” means that the process should
other words, MWUs are typically non-compositional proceed without human input (other than, perhaps,
at some linguistic level. For exampfghonological indicating whitespace and punctuation).
non-compositionality has been observed (Finke & This seems like a solved problem.  Many
Weibel, 1997; Gregory, et al, 1999) where words;g|iocation-finders exist, so one might suspect that
like “got” [gat] and “to” [tu] change phonetically to most could suffice for finding MWU dictionary
“gotta” [gars] when combined. We have interest inheadwords. To verify this, we evaluate nine
inducing  headwords  for ~ machine-readablegxisting collocation-finders to see which best
dictionaries (MRDs), so our interest issemantic  jgentifies valid headwords. We evaluate using two
rather than phonological non-compositionality. Ascompletely separate gold standards: (1) WordNet
an example of semantic non-compositionality,ang (2) a compendium of Internet dictionaries.
consider “compact disk: one could not deduce thajthough web-based resources are dynamic and
it was a music medium by only considering thenaye better coverage than WordNet (especially for
semantics of “compact” and “disk.” acronyms and names), we show that WordNet-based

MWUs may also be non-substitutable and/ofscores are comparable to those using Internet
non-modifiable (Manning and Schiitze, 1999). Non\iRDs. Yet the evaluations indicate that significant
substitutability implies that substituting a word Ofimprovement is still needed in MWU-induction.
the MWU with its synonym should no longer As an attempt to improve MWU headword
convey the same original content: “compact disK'inguction, we introduce several algorithms using
does not readily imply “densely-packed disk.” Non-| gtent Semantic Analysis (LSA). LSA is a
modifiability, on the other hand, suggests ongechnique which automatically induces semantic
cannot modify the MWU's structure and still convey re|ationships between words. We use LSA to try to
the same content: “compact disk” does not signifiajiminate proposed MWUs which are semantically
“disk that is compact.” compositional. Unfortunately, this does not help.



Yet when we use LSA to identify substitutable delimiters. This suggests that in a language with
MWUs, we do show modest performance gains. whitespace, one might prefer to begin at the word

2 Previous Approaches level and identify appropriate word combinations.

. 2.2 Word-based, knowledge-driven Strategies
For decades, researchers have explored various

techniques for identifying interesting collocations.>°Me researchers start with words and propose
There have essentially been three separate kinds ¥¥VU induction methods that make use of parts of

approaches for accomplishing this task. ThesaPeech, lexicons, syntax or other linguistic structure

approaches could be broadly classified into (1gusteson and Katz, 1995; Jacquemin, et al., 1997;

segmentation-based, (2) word-based and knowledg22ille; 1996). For example, Justeson and Katz
driven, or (3) word-based and probabilistic. We willndicated that the patterféOUN NOUN andADJ
illustrate strategies that have been attempted in eadfPUN are very typical of MWUs. Daille also
of the approaches. Since we assume knowledge 5f'99€sts that in French, technical MWUs follow
whitespace, and since many of the first and all of thBatterns such aNOUN deNOUN" (1996, p. 50).

second categories rely upon human input, we will bd 0 find word combinations that satisfy such patterns
most interested in the third category in both of these situations necessitates the use of a

lexicon equipped with part of speech tags. Since we
2.1 Segmentation-driven Strategies are interested in knowledge-free induction of

Some researchers view MWU-finding as a naturaMWUs, these approaches are less directly related to
by-product of segmentati. One can regard text as OUr work. Furthermore, we are not really interested
a stream of symbols and segmentation as a means!Bf identifying constructs such as general noun
placing delimiters in that stream so as to separafdrases as the above rules might generate, but
logical groupings of symbols from one another. Arather, in finding only those collocations that one
segmentation process may find that a symbol streaMfould typically need to define.

should not be delimited even though subcomponent®.3 Word-based, Probabilistic Approaches

of the stream have bgen seen elsewhere. In suchrpe third category assumes at most whitespace
cases, these larger units may be MWUs. and punctuation knowledge and attempts to infer
The principal work on segmentation has focuseq\wus using word combination probabilities.
either on identifying words in phonetic streamsTaple 1 (see next page) shows nine commonly-used
(Saffran, et. al, 1996; Brent, 1996; de Marckenpropabilistic MWU-induction approaches. In the
1996) or on tokenizing Asian and Indian languageggp|e, fy andPy signify frequency and probability
that do not normally include word delimiters in their of 53 word X. A variable XY indicates a word bigram

orthography (Sproat, et al, 1996; Ponte and Crofynqs . indicates its expected frequency at random.
1996; Shimohatal997; Teahan, et al., 2000; and oy gverbar signifies a variable’s complement. For

many others). Such efforts have employed varioug,ore details, one can consult the original sources as

strategies for segmentation, including the use Ofe|| as Ferreira and Pereira (1999) and Manning
hidden Markov models, minimum description 54 schiitze (1999).

length, dictionary-based approaches, probabilistic _
automata, transformation-based learning, and tex3 Lexical Access

cpm_p_ression.Some of these approaches requirgs o, to applying the algorithms, we lemmatize
significant sources of human knowledge, though,gjng 5 weakly-informed tokenizer that knows only
others, especially those that follow datay,,¢ \yhitespace and punctuation separate words.

compression or HMM schemes, do not Punctuation can either be discarded or treated as

These approaches could be applied to languaggsyqs. since we are equally interested in finding
where word delimiters exist (such as in Europeanits jike “Dr.” and “U. S.” we opt to treat

languages delimited by the space CharaCterEunctuation as words.

However, in such languages, it seems more prudenty o e tokenize, we use Church’s (1995) suffix
to simply take advantage of delimiters rather tha'?;\rray approach to identify wordgrams that occur
introducing potential errors by trying to find word ,; |aasfT times (forT=10). We then rank-order the
boundaries while ignoring knowledge of the



Table 1: Probabilistic Approaches

METHOD

FORMULA

Frequency
(Guiliano, 1964)

fXY

Pointwise Mutual
Information (MI)

(Smadja, 1993;
Fontenelle, et al.
1994)

(Fano, 1961; log, Py / PxR))
Church and Hanks,
1990)
Selectional P. Ml
Association XY XY
(Resnik, 1996) >, PryMi,,
Symmetric
Conditional
Probability Py PR,
(Ferreira and
Pereira, 1999)
Dice Formula
(Dice, 1945) 2fxy [ (fc+ly)
Log-likelihood [P, P, PP
(Dunning, 1993; [ 2109 » =
Daille, 1996) [PxyPssl “[PysPsd
Chi-squared (%) (f. - & )2
(Church and Galg, Zie{x,i} =
1991) B
Z-Score
Fev = Exv

\/EJXY (1 - (EJX\/N))

Student’s t-Score
(Church and
Hanks, 1990)

fXY - §XY

vfxv (1- (fX\/ N))

Wiy Wiip-- W, Wherei is chosen to maximize,P\P .
This has a natural interpretation of being the
expected probability of concatenating the two most
probable substrings in order to form the larger unit.
Since it can be computed rapidly with low memory
costs, we use this approximation.

Two additional issues need addressing before
evaluation. The first regards document sourcing. If
an n-gram appears in multiple sources (eg.,
Congressional Record versus Associatexb#), its
likelihood of accuracy should increase. This is
particularly true if we are looking for MWU
headwords for a general versus specialized
dictionary. Phrases that appear in one source may
in fact be general MWUSs, but frequently, they are
text-specific units. Hence, precision gained by
excluding single-sourc@-grams may be worth
losses in recall. We will measure this trade-off.

Second, evaluating with punctuation as words and
applying no filtering mechanism may unfairly bias
against some algorithms. Pre- or post-processing of
n-grams with a linguistic filter has shown to
improve some induction algorithms’ performance

(Daille, 1996). Since we need knowledge-poor
nduction, we cannot use human-suggesteztihg
rules as in Section 2.2. Yet we can filter by pruning
n-grams whose beginning or ending word is among
the topN most frequent words. This unfortunately
eliminates acronyms like “U. S.” and phrasal verbs
like “throw up.” However, discarding some words
may be worthwhile if the final list oh-grams is
richer in terms of MRD headwords. We therefore
evaluate with such an automatic filter, arbitrarily
(and without optimization) choosinl=75.

4 Evaluating Performance

A natural scoring standard is to select a language

n-gram list in accordance to each probabilistic?"d €valuate against headwords from existing
algorithm.  This task is non-trivial since mostdictionaries in that language. Others have used
algorithms were originally suited for finding two- Similar standards (Daille, 1996), but to our

word collocations. We must therefore decide hoWoWwledge, none to the extent described here. We
to expand the algorithms to identify generarams evaluate thousands of hypothesized units from an
(say, C=w,W,..w,). We can either generalize or unconstrained corpus. Furthermore, we use two
approximate.  Since  generalizing requiresseparate evaluation gold standardg: (1) WordNet
exponential compute time and memory for severgMiller, et al, 1990) and (2) a collection of Internet

of the algorithms, approximation is an attractiveMRDS. Using two gold standards helps valid
alternative. MWUSs. It also provides evaluation using both static

One approximation redefines X and Y to be and dynamic resources. We choose to evaluate in
respectively, the word sequencegw,..w; and ‘English due to the wealth of linguistic resources.
b e I



Table 2 Outputs from each algorithm at different sorted ranks

Ranll ZScore x2 SCP Dice Mutualll - Select I_'og TScore| Freq
Info. || Assoc. Like.
1 Iwo Buenos | Buenos | Buenos Iwo United United United | United
Jima Aires Aires Aires Jima States States States | States
2 House
bona Iwo Iwo Iwo bona of Los Los Los
fide Jima Jima Jima fide Repre- | Angeles | Angeles| Angeles
sentatives
4 Burkina . . . Wounde Los New New New
Faso Suukyl [ Suukyl | Suukyl Knee || Angeles| York York York
8 ; Hubble .
Satanic Sault Ste| Sault Stg  Sault Sje Space K Soylet my my
Verses colleaguep Union [colleaguegolleagugs
Telesco
16 Ku Ku Ku Ku alma H R Social High High
Klux Klux Klux Klux mater ' Security | School | School
32 House of
Pledge of| Pledge of| Pledge of| Pledge of| Coca - War Il Repre- . % % %
Allegiance| Allegiance| Allegiance| Allegiance| Cola sentatives
Wednesday
64 Telephor\e Telephor\e Telepho'ne Internal Planne( Prime L real New
&amp; | &amp; | &amp; Revenue Parent Minister estate | Jerse
Telegraph| Telegraph| Telegraph hood y
128] Prime Prime Prime Salman [Sault St both At the Wall term
Minister | Minister | Minister | Rushdie | . Marie]] sides | same time|l Street care
256 Lehman | Lehman | Lehman tongue - , At the all grand
in - 0’ cloc del Mar g
Hutton Hutton Hutton same over jury
cheek
512 compens- )
La Habra| LaHabrg La Habrpatory and 20th quday days 80 Great
" Centur night later percent [ Northern
punitive
1024 telephone| telephone]| telephone| Food and|Sheriff ' South County | where 300
interview | interview | interview |Agriculturel deputie Dakota Jail you million

The “** and “* * *" are actual units.

In particular, we use a randomly-selected corpus the first five columns as “information-like.”
consisting of a 6.7 million word subset of the TREC  Similarly, since the last four columns share

databases (DARPA, 1993-1997). properties of the frequency approach, we will refer
Table 2 illustrates a sample of rank-ordered output  to them as “frequency-like.”
from each of the different algorithms (following the One’s application may dictate which set of

cross-source, filtered paradigm described in section  algorithms to use. Our gold standard selection
3). Note that algorithms in the first four columns  reflects our interest in general word dictionaries, so
produce results that are similar to each other as do  results we obtain may differ from results we might
those in the last four columns. Although the mutual  have obtained using terminology lexicons.
information results seem to be almost in a class of If our gold standard coktai&/Us with

their own, they actually are similar overall to the  corpus frequencies satisfying thresHti, (our

first four sets of results; therefore, we will refer to  figure of merit (FOM) is given by



1 K little or even negative impact. On the other hand,
K Zi o Py the frequency-like approaches are independent of

whereP, (precision af) equals i, , andH, is the data source. They also improve significantly with

number of hypothesized MWUs required to find thdiltering. Overall, though, after the algorithms are

i'" correct MWU. This FOM corresponds to arealudged, even the best score of 0.265 is far short of
under a precision-recall curve. the maximum possible, namely 1.0.

4.1 WordNet-based Evaluation Table 3 WordNet-based scores

WordNet has d(_efinite advantages as an ev_aluatic naplgootf Wo(r}j)Net Wérz(;Ne WS?}IN " W(o4r)dNat
resource. It ha_s in excess of SQ,OQO MWUs, is freely rithm Cross- +Filterl  cross-
accessible, widely used, and is in electronic form, source source
Yet, it obviously cannot contain every MWU. For +Filter
instance, our corpus contains 177,82drams (for s NI sT NI sT N sT N
2<n<10) satisfying £10, but WordNet contains

only 2610 of these. It is unclear, therefore, iffZscorg 229 .14p .23 .193 .220 .}29 .p65 173
algorithms are wrong when they propose MWU{ SCPI 221 .14p .22 .192 .2p0 .J29 .p65 |173
that are not in WordNet. We will assume they arEChi-SGI 222 14% .2d3 .143 2P0 .129 .265 73
wrong but with a special caveat for proper noung e 549 161 26b .1do 2bo 442 456 172
WordNet includes few proper noun MWUs. Yet M 101 124 246 16b 165 b1 2B3 I51

several algorithms produce large numbers of propge———
nouns. This biases against them. One could contepdSA |.057 .05] .05 .098 .
that all proper nouns MWUs are valid, but welLoglikg.049 .05Q .06B .04 .
disagree. Although such may be MWUSs, they aréT-scorg .050 .05 .030 .0%2
_not necessarily MRD headwqrds; one would no Freq|| .033 .03} .0d4 .037
include every proper noun in a dictionary, bu
rather, those needing definitions. To over(‘fome“th"isdr_2 Web-based Evaluation
we will have two scoring modes. The first, “S
mode (standing fosomé discards any proposed Since WordNet is static and cannot report on all of
capitalizedn-gram whose uncapitalized version is@ COrpus’ n-grams, one may expect different
not in WordNet. The second mode “N” (foong  performance by using a more all-encompassing,
disregards altapitalizech-grams. dynamic resource. The Internet houses dynamic
Table 3 illustrates algorithmic performance ag'€sources whichanjudge practically every induced
compared to the 2610 MWUs from WordNet. Then-gram. With permission and sufficient time, one
first double column illustrates “out-of-the-box” can repeatedly query websites that host large
performance on all 177,331 possiblgrams. The collections of MRDs and evaluate eaegram.
second double column shows cross-sourcing: only Having approval, we queried: (1) onelook.com,
hypothesizing MWUs that appear in at least twd2) acronymfinder.com, and (3) infoplease.com. The
separate datasets (124,952 in all), but beinfjrst website interfaces with over 600 electronic
evaluated against all of the 2610 valid units. Doubldlictionaries. The second is devoted to identifying
columns 3 and 4 show effects from high-frequencyroper acronyms. The third focuses on world facts
filtering then-grams of the first and second columnssuch as historical figures and organization names.
(reporting only 29,716 and 17,72@-grams) To minimize disruption to websites by reducing
respectively. the total number of queries needed for evaluation,
As Table 3 suggests, for every condition, théve use an evaluation approach from the information
information-like algorithms seem to perform best af€trieval community (Sparck-Jones and van
identifying valid, general MWU headwords. Rijsbergen, 1975). Each algorithm reports its top
Moreover, they are enhanced when cross-sourcirP?00 MWU choices and the union oéte choices
is considered; but since much of their strengtf45192 possiblen-grams) is looked up on the

comes from identifying proper nouns, filtering hasInternet. Valid MWUs identified anywebsite are
assumed to be thenly valid units in the data.

182 .25 .402 J43
118 .dos .177 J29
150 .J09 .60 |118
k4 Jos 152 112




Algorithms are then evaluated based on this showed how one could compute latent semantic
collection. Although this strategy for evaluation is  vectors for any word in a corpus (Schone and
not flawless, it is reasonable and makes dynamic  Jurafsky, 2000). Using the same approach, we
evaluation tractable. Table 4 shows the algorithms’  compute semantic vectors for every proposed word
performance (including proper nouns). n-gram C=X;X,..X,, Since LSA involves word

Though Internet dictionaries and WordNet are  counts, we can also compute semantic vectors
completely separate “gold standards,” results arédenoted by2) for C's subcomponents. These can
surprisingly consistent.  One can conclude thagither include {X}" )or excluc[e)({*}.n C3
WordNet may safely be used as a gold standard icounts. We seek to See if induced séntantics can
future MWU headword evaluations. Also, help eliminate incorrectly-chosen MWUs. As will

be shown, the effort using semantics in this nature

Table 4 Performance on Internet data has a very small payoff for the expended cost.
Prob 1) 2 3) 4)
algorithm| Internef] Internet Interngt Internpet 5.1 Non-compositionality
cross- | +Filter]  cross- Non-compositionality is a key component of valid
source sourcel  MWUSs, so we may desire to emphasizgrams that
fhilter }  are semantically non-compositional. Suppose we
Z-Scorel 165 .260 169]  .269  wanted to determine & (defined above) were non-
SCP .166 .259 170 .270  compositional. Then given some meaning function,
Chi-sqr| .166 260 170 270 ¥, C should satisfy an equation like:
Dice .183 .258 .187 267 g( Y(C), h(¥(Xy,...’(Xp ) )=0, 1)
Ml 139 234 140 234 where h combines the semantics ofC's
SA 027 033 107 194 subcomponents andg measures semantic

LogLike] 023 | 043| 087 162 gif][?regctesb IfIC ‘é"ler_f héz b(igf?‘”:h then @(E:;b) isd .
efined to be |a-b), if h(c,d) is the sum of ¢ and d,
T-score} 025 027 110} 142 and if¥(e) is set to -lod?,, then equation (1) would
Freq .016 017 .104 134 pecome the pointwise mutual information of the
one can see that Z-scores,xz, and bigram. If g(a,b) were defined to be (a-b/§/b , and if

SCP have virtually identical results and seem to be&{(@,b)=ab/N and'¥(X)=fy , we essentially get Z-

identify MWU headwords (particularly if proper SCOTeS. Th_gsq formul_ations suggest that S(_averal of
nouns are desired). Yet there is still significanth® probabilistic algorithms we have seen include
room for improvement. non-compositionality measures already. However,

. since the probabilistic algorithms rely only on
S Improvement strategies distributional information obtained by considering

Can performance be improved?  Numerouduxtaposed words, they tend to incorporate a
strategies could be explored. An idea we discus&gnificant amount of non-semantic information
here tries using induced semantics to rescore th/ch as syntax. Can semantic-only rescoring help?
output of the best algorithm (filtered, cross-sourced T0 find out, we must selegt h, and'¥. Since we

Zscore) and eliminate semantically compositional oWvant to eliminate MWUs that are compositional, we
modifiable MWU hypotheses. wanth's output to correlate well wit@ when there

Deerwester, et al (1990) introduced LatentS compositionality and correlate poorly otherwise.
Semantic Analysis LGA as a computational Frequently, LSA vectors are correlated using the
technique for inducing semantic relationshipsCoSine between them:
between words and documents. It forms high- X-Y
dimensional vectors using word counts and uses cos(X,Y) = XV

singular value decomposition to project those o _
vectors into an optimat-dimensional, “semantic’ A large cosine indicates strong correlation, so large

subspace (see Landauer, et al, 1998). values for g&b)=1-|cosg,b)| should signal weak
Following an approach from Schiitze (1993), wecorrelation or  non-compositionalityh could




represent a weighted vector sum of the components’  required for this task. This seems to be a significant

semantic vectors with weights (w) set to either 1.0  component. Yet there is still another: maybe

or the reciprocal of the words’ frequencies. semantic compositionality is not always bad.
Table 5 indicates several results using these Interestingly, this is often the case. Consider

settings. As the first four rows indicate and asvice_president  organized  crime, and

desired, non-compositionality is more apparent foMarine_Corps Although these are MWUs, one

Q. * (i.e., the vectors derived from excluding C’swould still expect that the first is related to

counts) than foQ,. Yet, performance overall is president the second relates twime, and the last

horrible, particularly considering we are rescoringelates toMarine.  Similarly, tokens such as

Z-score output whose score was 0.269. Rescoringphns_Hopkins and Elvis are anaphors for

caused five-fold degradation! Johns_Hopkins_Universitand Elvis_Presley so
_ _ they should have similar meanings.
Table 5 Equation 1 settings This begs the question: can induced semantics
g(ab) h(a) P(X) | w; |[Scoreon helpatall? The answer is “yeShe key is using

Internef  LSA where it does best: finding things that are
imilar — itutable.
Q, 1 00517| Similar—or substitutable

1/fi | 0.0473| 5-2 Non-substitutivity

1-|cos@,b)| o | 1 | 00598 Forevery collocatio=X;Xp XXX, X, we
Sw a —~ attempt to find other similar patterns in the data,
i1 W, Lfir 10.0523 1 x.X,.X,,YXip. X, If X;and Y are semantically

Qy 1 0.174 related, chances are ti@is substitutable.

[cos@,b)| 1/fi 0.169 Since LSA excels at finding semantic correlations,
- . we can compare,, and Q, to see ifC is
Qy 1 0.131 substitutable. We use our earlier approach (Schone

1/fi* | 0.128 and Jurafsky, 2000) for performing the comparison;
namely, for every word W, we compute g(€2)
What happens if we insteademphasize for 200 radomly chosen words, R. This allows for
compositionality? Rows 5-8 illustrate the effect:computation of a correlaton meag,j and standard
there is a significant recovery in performance. Theleviation 6,,) between W and other words. As
most reasonable explanation for this is that ibefore, we then compute a normalized cosine score
MWUs and their components are strongly(cos) between words of interest, defined by
correlated, the components may rarely occur except min  cos,, Q)1
in context with the MWU. It takes about 20 hours cosi;,Y) = ke{X,Y} : .
to compute theQ,* for each possiblen-gram '
combination. Since the probabilistic algorithms With this set-up, we now look for substitutivity.
already identify n-grams that share strong Note that phrases may be substitutable stitlidbe
distributional properties with their components, itheadword if their substitute phrases are themselves
seems imprudent to exhaust resources on this LSAMWUs. For examplejioxidein carbon_dioxidds
based strategy for non-compositionality. semantically  similar  to monoxide in
These findings warrant some discussion. Why di¢arbon_monoxide Moreover, there are other
non-compositionality fail? Certainly there is theimportant instances of valid substitutivity:
possibility that better choices fgrh, and¥ could
yield improvements. We actually spent months
trying to find an optimal combination as well as a
strategy for coupling LSA-based scores with the Z-
scores, but without avail. Another possibility:
although LSA can find semantic relationships, it
may not make semantic decisions at the level

Ok

» Abbreviations
Al=Albert = Al _Gore=Albert_Gore
» Morphological similarities
Rico=Rican= Puerto_RicePuerto_Rican
» Taxonomic relationships
bachelormaster
bachelor_’_s degreemaster_'_s_degree




However, guilty and innocent are semantically Figure 1: Precision-recall curve for rescoring
related, butpleaded_guiltyand pleaded_innocent 1
are not MWUs. We would like to emphasize amly |5
grams whose substitutes amdid MWUSs. 08
To show how we do this using LSA, suppose wg _"_ |
want to rescore a lidt whose entries are potential 0.7 14
MWUs. For every entry X in L, we seek out all 0.6 /
other entries whose sorted order is less than somél.5
maximum value (such as 5000) that have all but ongj 4 /
word in common. For example, suppose X i 03 e,
“bachelor_'_s_degree.” The only other entry that EI.E Before rescorin
matches in all but one word is “master_'_s_degree.| - g “\_\
If the semantic vectors for “bachelor” and “master”| .1
have a normalized cosine score greater than |a (]
threshold of 2.0, we then say that the two MWU 0 01 0203040560607 0609
are in each others substitution set. To rescore, w
assign a new score to each entry in substitution sé%CknOWIGdgments
Each element in the substitution set gets the san¥he authors would like to thank the anonymous
score. The score is derived using a combination akviewers for their comments and insights.
the previous Z-scores for each element in th
substitution set. The combining function may be aj%eferences
averaging, or a computation of the median, thécronymFinder.com(2000-1). http://www.acronymfinder.
maximum, or something else. The maximum com. Searches between March 2000 and April 2001.
outperforms the average and the median on our dafafent, M.R. and Cartwright, T.A. (1996). Distributional
By applying in to our data, we observe a small but regularity and phonotactic constraints are useful for

visible improvement of 1.3% absolute to .282 (see_ Se€gmentationCognition 61, 93-125.
Fig. 1). It is also possible that other improvement$104€ka, Y. (1988). Looking for needies in a haystack
or locating interesting collocation expressions in large

could be gained using other combining strategies. ., | databaseBroceedings of the RIAQp. 38-43.
6 Conclusions Church, K.W.(1995).N-grams Tutorial at ACL, ‘95.
MIT, Cambridge, MA.

This paper identifies several new results in the areghurch, K.W., & Gile, W.A. (1991). Concordances for

of MWU-finding. We saw that MWU headword  parallel text. Proc. of the 7 Annual Conference of the

evaluations using WordNet provide similar results UW Center for ITE New OED & Text Researpp.

to those obtained from far more extensive web- 40-62, Oxford.
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