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Abstract

In this paper we describe a morphological analy-
sis method based on a maximum entropy model.
This method uses a model that can not only
consult a dictionary with a large amount of lex-
ical information but can also identify unknown
words by learning certain characteristics. The
model has the potential to overcome the un-
known word problem.

1 Introduction

Morphological analysis is one of the basic tech-
niques used in Japanese sentence analysis. A
morpheme is a minimal grammatical unit, such
as a word or a suffix, and morphological analysis
is the process segmenting a given sentence into
a row of morphemes and assigning to each mor-
pheme grammatical attributes such as a part-
of-speech (POS) and an inflection type. One of
the most important problems in morphological
analysis is that posed by unknown words, which
are words found in neither a dictionary nor a
training corpus, and there have been two sta-
tistical approaches to this problem. One is to
acquire unknown words from corpora and put
them into a dictionary (e.g., (Mori and Nagao,
1996)), and the other is to estimate a model
that can identify unknown words correctly (e.g.,
(Kashioka et al., 1997; Nagata, 1999)). We
would like to be able to make good use of both
approaches. If words acquired by the former
method could be added to a dictionary and a
model developed by the latter method could
consult the amended dictionary, then the model
could be the best statistical model which has
the potential to overcome the unknown word
problem. Mori and Nagao proposed a statisti-
cal model that can consult a dictionary (Mori
and Nagao, 1998). In their model the proba-
bility that a string of letters or characters is
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a morpheme is augmented when the string is
found in a dictionary. The improvement of the
accuracy was slight, however, so we think that
it is difficult to efficiently integrate the mecha-
nism for consulting a dictionary into an n-gram
model. In this paper we therefore describe a
morphological analysis method based on a max-
imum entropy (M.E.) model. This method uses
a model that can not only consult a dictionary
but can also identify unknown words by learn-
ing certain characteristics. To learn these char-
acteristics, we focused on such information as
whether or not a string is found in a dictio-
nary and what types of characters are used in a
string. The model estimates how likely a string
is to be a morpheme according to the informa-
tion on hand. When our method was used to
identify morpheme segments in sentences in the
Kyoto University corpus and to identify the ma-
jor parts-of-speech of these morphemes, the re-
call and precision were respectively 95.80% and
95.09%.

2 A Morpheme Model

This section describes a model which estimates
how likely a string is to be a morpheme. We
implemented this model within an M.E. frame-
work.

Given a tokenized test corpus, the problem
of Japanese morphological analysis can be re-
duced to the problem of assigning one of two
tags to each string in a sentence. A string is
tagged with a 1 or a 0 to indicate whether or
not it is a morpheme. When a string is a mor-
pheme, a grammatical attribute is assigned to
it. The 1 tag is thus divided into the num-
ber, n, of grammatical attributes assigned to
morphemes, and the problem is to assign an at-
tribute (from 0 to n) to every string in a given
sentence. The (n+1) tags form the space of “fu-



tures” in the M.E. formulation of our problem
of morphological analysis. The M.E. model, as
well as other similar models, enables the com-
putation of P(f|h) for any future f from the
space of possible futures, F', and for every his-
tory, h, from the space of possible histories, H.
A “history” in M.E. is all of the conditioning
data that enable us to make a decision in the
space of futures. In the problem of morphologi-
cal analysis, we can reformulate this in terms of
finding the probability of f associated with the
relationship at index ¢ in the test corpus:

P(flhy) = P(f|Information derivable

from the test corpus
related to relationship ¢)

The computation of P(f|h) in any M.E. models
is dependent on a set of “features” which would
be helpful in making a prediction about the fu-
ture. Like most current M.E. models in com-
putational linguistics, our model is restricted to
those features which are binary functions of the
history and future. For instance, one of our fea-
tures is

1: if has(h,z) = true,
x = “POS(—1)(Major) : verb,’
& f=1 (1)

0 : otherwise.

gh, f) =

Here “has(h,z)” is a binary function that re-
turns true if the history A has feature z. In our
experiments, we focused on such information as
whether or not a string is found in a dictionary,
the length of the string, what types of characters
are used in the string, and the part-of-speech of
the adjacent morpheme.

Given a set of features and some training
data, the M.E. estimation process produces a
model in which every feature g; has an associ-
ated parameter a;. This enables us to compute
the conditional probability as follows (Berger et
al., 1996):

odithf)
P(fln) = % 2)

Z Halgi(hyf)_ (3)
7o

Zx(h) =

The M.E. estimation process guarantees that for
every feature g;, the expected value of g; accord-
ing to the M.E. model will equal the empirical

expectation of g; in the training corpus. In other
words,

= > P(h)- > Pup(flh) - gi(h, f). (4)
h !

Here P is an empirical probability and Py g. is
the probability assigned by the model.

We define part-of-speech and bunsetsu
boundaries as grammatical attributes. Here a
bunsetsu is a phrasal unit consisting of one or
more morphemes. When there are m types
of parts-of-speech, and the left-hand side of
each morpheme may or may not be a bunsetsu
boundary, the number, n, of grammatical at-
tributes assigned to morphemes is 2 x m. ! We
propose a model which estimates the likelihood
that a given string is a morpheme and has the
grammatical attribute i(1 <4 < n). We call it
a morpheme model. This model is represented
by Eq. (2), in which f can be one of (n + 1)
tags from 0 to n.

A given sentence is divided into morphemes,
and a grammatical attribute is assigned to each
morpheme so as to maximize the sentence prob-
ability estimated by our morpheme model. Sen-
tence probability is defined as the product of the
probabilities estimated for a particular division
of morphemes in a sentence. We use the Viterbi
algorithm to find the optimal set of morphemes
in a sentence and we use the method proposed
by Nagata (Nagata, 1994) to search for the N-
best sets.

3 Experiments and Discussion
3.1 Experimental Conditions

The part-of-speech categories that we used fol-
low those of JUMAN (Kurohashi and Nagao,
1999). There are 53 categories covering all pos-
sible combinations of major and minor cate-
gories as defined in JUMAN. The number of
grammatical attributes is 106 if we include the
detection of whether or not the left side of a
morpheme is a bunsetsu boundary. We do not
identify inflection types probabilistically since

Not only morphemes but also bunsetsus can be iden-
tified by considering the information related to their bun-
setsu boundaries.



they can be almost perfectly identified by check-
ing the spelling of the current morpheme after
a part-of-speech has been assigned to it. There-
fore, f in Eq. (2) can be one of 107 tags from 0
to 106.

We used the Kyoto University text corpus
(Version 2) (Kurohashi and Nagao, 1997), a
tagged corpus of the Mainichi newspaper. For
training, we used 7,958 sentences from newspa-
per articles appearing from January 1 to Jan-
uary 8, 1995, and for testing, we used 1,246
sentences from articles appearing on January 9,
1995.

Given a sentence, for every string consisting
of five or less characters and every string ap-
pearing in the JUMAN dictionary (Kurohashi
and Nagao, 1999), whether or not the string is
a morpheme was determined and then the gram-
matical attribute of each string determined to
be a morpheme was identified and assigned to
that string. The maximum length was set at five
because morphemes consisting of six or more
characters are mostly compound words or words
consisting of katakana characters. The stipula-
tion that strings consisting of six or more char-
acters appear in the JUMAN dictionary was set
because long strings not present in the JUMAN
dictionary were rarely found to be morphemes
in our training corpus. Here we assume that
compound words that do not appear in the JU-
MAN dictionary can be divided into strings con-
sisting of five or less characters because com-
pound words tend not to appear in dictionar-
ies, and in fact, compound words which con-
sist of six or more characters and do not ap-
pear in the dictionary were not found in our
training corpus. Katakana strings that are not
found in the JUMAN dictionary were assumed
to be included in the dictionary as an entry
having the part-of-speech “Unknown(Major),
Katakana(Minor).” An optimal set of mor-
phemes in a sentence is searched for by em-
ploying the Viterbi algorithm under the con-
dition that connectivity rules defined between
parts-of-speech in JUMAN must be met. The
assigned part-of-speech in the optimal set is
not always selected from the parts-of-speech at-
tached to entries in the JUMAN dictionary, but
may also be selected from the 53 categories of
the M.E. model. It is difficult to select an appro-
priate category from the 53 when there is little

training data, so we assume that every entry in
the JUMAN dictionary has all possible parts-of-
speech, and the part-of-speech assigned to each
morpheme is selected from those attached to the
entry corresponding to the morpheme string.

The features used in our experiments are
listed in Table 1. Each row in Table 1 contains a
feature type, feature values, and an experimen-
tal result that will be explained later. Each fea-
ture consists of a type and a value. The features
are basically some attributes of the morpheme
itself or those of the morpheme to the left of
it. We used the 31,717 features that were found
three or more times in the training corpus. The
notations “(0)” and “(-1)” used in the feature
type column in Table 1 respectively indicate a
target string and the morpheme on the left of
it.

The terms used in the table are the following;:

String: Strings which appeared as a morpheme
five or more times in the training corpus

Length: Length of a string

POS: Part-of-speech. “Major” and “Minor”
respectively indicate major and minor part-
of-speech categories as defined in JUMAN.

Inf: Inflection type as defined in JUMAN

Dic: We use the JUMAN dictionary, which has
about 200,000 entries (Kurohashi and Na-
gao, 1999). “Major&Minor” indicates pos-
sible combinations between major and mi-
nor part-of-speech categories. When the
target string is in the dictionary, the part-
of-speech attached to the entry correspond-
ing to the string is used as a feature value.
If an entry has two or more parts-of-speech,
the part-of-speech which leads to the high-
est probability in a sentence estimated from
our model is selected as a feature value.
JUMAN has another type of dictionary,
which is called a phrase dictionary. Each
entry in the phrase dictionary consists of
one or more morphemes such as “0O (to,
case marker), O (wa, topic marker), 0O
(ie, say).” JUMAN uses this dictionary to
detect morphemes which need a longer con-
text to be identified correctly. When the
target string corresponds to the string of
the left most morpheme in the phrase dic-
tionary in JUMAN, the part-of-speech at-



Table 1: Features.

Feature Accuracy without
number Feature type Feature value (Number of value) each feature set
Recall [ Precision | F-measure
1 String(0) (4,331) 93.66% 93.81% 93.73
2 String(-1) (4,331) (=2.14%) | (—1.28%) | (—1.71)
3 Dic(0)(Major) Verb, Verb&Phrase, Adj, Adj&Phrase, 94.64% 92.87% 93.75
... (28)
4 Dic(0)(Minor) Common _noun, Common_noun&Phrase, (-1.16%) | (—2.22%) (—1.69)
Topic_marker, ... (90)
5 Dic(0)(Major&Minor) Noun&Common_noun,
Noun&Common_noun&Phrase, ... (103)
6 Length(0) 1,2, 3,4, 5, 6_or_more (6) 95.52% 94.11% 94.81
7 Length(-1) 1,2,3, 4,5, 6_or_more (6) (—0.28%) | (—0.98%) | (—0.63)
8 TOC(0)(Beginning) Kanji, Hiragana, Symbol, Number, 95.17% 93.89% 94.52
Katakana, Alphabet (6)
9 TOC(0)(End) Kanji, Hiragana, Symbol, Number, (—0.63%) | (—1.20%) (—0.92)
Katakana, Alphabet (6)
10 TOC(0)(Transition) Kanji—Hiragana, Number—Kanji,
Katakana—Kanji, ... (30)
11 TOC(-1)(End) Kanji, Hiragana, Symbol, Number,
Katakana, Alphabet (6)
12 TOC(-1)(Transition) Kanji—Hiragana, Number—Kanji,
Katakana—Kanji, ... (30)
13 POS(-1)(Major) Verb, Adj, Noun, Unknown, ... (15) 95.60% 95.31% 95.45
14 POS(-1)(Minor) Common _noun, Sahen_noun, Numeral, (—0.20%) | (+0.22%) (+0.01)
... (45)
15 POS(-1)(Major&Minor) | [nil], Noun&Common_noun,
Noun&Common _noun&Phrase, ... (54)
16 Tnf(-1)(Major) Vowel verb, ... (33) 95.66% 95.00% 95.33
17 Inf(-1)(Minor) Stem, Basic_form, Imperative_form, ... (60) | (—0.14%) | (—0.09%) (—0.11)
18 BB(-1) [nil], [exist] (2) 95.82% 95.25% 95.53
19 BB(-1) & Noun&Common, noun&Bunsetsu_boundary, | (+0.02%) | (+0.16%) (40.09)
POS(-1)(Major&Minor) | Noun&Common, noun& Within_a_bunsetsu,
... (106)

tached to the entry plus the information
that it is in the phrase dictionary (such as
“Verb&Phrase”) is used as a feature value.

TOC: Types of characters used in a string.
“(Beginning)” and “(End)” respectively
represent the leftmost and rightmost char-
acters of a string. When a string con-
sists of only one character, the “(Begin-
ning)” and “(End)” are the same charac-
ter. “TOC(0)(Transition)” represents the
transition from the leftmost character to
the rightmost one in a string. “TOC(-
1)(Transition)” represents the transition
from the rightmost character in the adja-
cent morpheme on the left to the leftmost
one in the target string. For example, when
the adjacent morpheme on the left is “0O
O (sensei, teacher)” and the target string
is “O (ni, case marker),” the feature value
“Kanji—Hiragana” is selected.

BB: Indicates whether or not the left side of a

morpheme is a bunsetsu boundary.

3.2 Results and Discussion

Some results of the morphological analysis are
listed in Table 2. Recall is the percentage of
morphemes in the test corpus whose segmen-
tation and major POS tag are identified cor-
rectly. Precision is the percentage of all mor-
phemes identified by the system that are iden-
tified correctly. F represents the F-measure and
is defined by the following equation.

2 x Recall x Precision

F —measure = —
Recall + Precision

Table 2 shows results obtained by using our
method, by using JUMAN, and by using JU-
MAN plus KNP (Kurohashi, 1998). We show
the result obtained using JUMAN plus KNP
because JUMAN alone assigns an “Unknown”
tag to katakana strings when they are not in
the dictionary. All katakana strings not found



Table 2: Results of Experiments (Segmentation and major POS tagging).

Recall Precision F-measure
Our method | 95.80% (29,986/31,302) | 95.09% (29,986/31,467) 95.44
JUMAN 95.25% (29,814/31,302) | 94.90% (29,814/31,417) 95.07
JUMAN+KNP | 98.49% (30,830/31,302) | 98.13% (30,830/31,417) 98.31

in the dictionary are therefore evaluated as er-
rors. KNP improves on JUMAN by replacing
the “Unknown” tag with a “Noun” tag and dis-
ambiguating part-of-speech ambiguities which
arise during the process of parsing when there is
more than one JUMAN analysis with the same
score.

The accuracy in segmentation and major
POS tagging obtained with our method and
that obtained with JUMAN were about 3%
worse than that obtained with JUMAN plus
KNP. We think the main reason for this was
an insufficient amount of training data and fea-
ture sets and the inconsistency of the corpus.
The number of sentences in the training cor-
pus was only about 8,000, and we did not use
as many combined features as were proposed in
Ref. (Uchimoto et al., 1999). We were unable to
use more training data or more feature sets be-
cause every string consisting of five or less char-
acters in our training corpus was used to train
our model, so the amount of tokenized train-
ing data would have become too large and the
training would not have been completed on the
available machine if we had used more training
data or more feature sets. The inconsistency
of the corpus was due to the way the corpus
was made. The Kyoto University corpus was
made by manually correcting the output of JU-
MAN plus KNP, and it is difficult to manually
correct all of the inconsistencies in the output.
The use of JUMAN plus KNP thus has an ad-
vantage over the use of our method when we
evaluate a system’s accuracy by using the Ky-
oto University corpus. For example, the num-
ber of morphemes whose rightmost character is
“07” was 153 in the test corpus, and they were
all the same as those in the output of JUMAN
plus KNP. There were three errors (about 2%)
in the output of our system. There were several
inconsistencies in the test corpus such as “0 O
(seisan, Noun), O (sha, Suffix)(producer),” and
“000 (shouhi-sha, Noun)(consumer).” They

should have been corrected in the corpus-
making process to “0 0 (seisan, Noun), O (sha,
Suffix) (producer),” and “00 (shouhi, Noun),
O (sha, Suffix)(consumer).” Tt is difficult for
our model to discriminate among these with-
out over-training when there are such incon-
sistencies in the corpus. Other similar incon-
sistencies were, for example, “0 00 (geijutsu-
ka, Noun)(artist)” and “00 (kougei, Noun),
O (ka, Suffix)(craftsman),” “000 (keishi-cho,
Noun)(the Metropolitan Police Board)” and “0J
O (kensatsu, Noun), O (cho, Noun)(the Pub-
lic Prosecutor’s Office),” and “0 00O (genjitsu-
teki, Adjective)(realistic)” and “0 O (risou,
Noun), O (teki, Suffix)(ideal).”. If these had
been corrected consistently when making the
corpus, the accuracy obtained by our method
could have been better than that shown in Ta-
ble 2. A study on corpus revision should be un-
dertaken to resolve this issue. We believe it can
be resolved by using our trained model. There
is a high possibility that a morpheme lacks con-
sistency in the training corpus when its proba-
bility, re-estimated by our model, is low. Thus
a method which detects morphemes having a
low probability can identify those lacking con-
sistency in the training corpus. We intend to
try this in the future.

3.3 Features and Accuracy

In our model, dictionary information and cer-
tain characteristics of unknown words are re-
flected as features, as shown in Table 1.
“String” and “Dic” reflect the dictionary in-
formation, ? and “Length” and “TOC”(types
of characters) reflect the characteristics of un-
known words. Therefore, our model can not
only consult a dictionary but can also detect un-
known words. Table 1 shows the results of an

2“String” indicates strings that make up a morpheme
and were found five or more times in the training corpus.
Using this information as features in our M.E. model
corresponds to consulting a dictionary constructed from
the training corpus.
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Figure 1: Relation between accuracy and the number of training sentences.

analysis without the complete feature set. Al-
most all of the feature sets improved accuracy.
The contribution of the dictionary information
was especially significant.

There were cases, however, in which the use
of dictionary information led to a decrease in
the accuracy. For example, we found these er-
roneous segmentations:

“00 (umi, sea) O (ni, case marker)d OO
O (kaketa, bet) O 0000 (romanha, the Ro-
mantic school) 0”7 and “0 00 (aranami, rag-
ing waves) 0 O (ni, case marker) 00O (make,
lose) 0 OO0 (naishin, one’s inmost heart)
0O (to, case marker) 0” (Underlined strings
were errors.) when the correct segmentations
were:

“00 (umi, sea)d O (ni, case marker)d 00O
O (kaketa, bet) 00O 0O (roman, romance) O O
(wa, topic marker) 0” and “000 (aranami,
raging waves) 0 O (ni, case marker) 0 00 0O
(makenai, not to lose) O O (kokoro, heart) O O
(to, case marker) 07 (“0” indicates a morpho-
logical boundary.).

These errors were caused by nonstandard en-

tries in the JUMAN dictionary. The dictio-
nary had not only the usual notation using kanji
characters, “00007” and “O00,” but also the
uncommon notation using hiragana strings, “0O
O000” and “O0007. To prevent this type of
error, it is necessary to remove nonstandard en-
tries from the dictionary or to investigate the
frequency of such entries in large corpora and
to use it as a feature.

3.4 Accuracy and the Amount of
Training Data

The accuracies (F-measures) for the training
corpus and the test corpus are shown in Figure 1
plotted against the number of sentences used
for training. The learning curve shows that we
can expect improvement if we use more training
data.

3.5 Unknown Words and Accuracy

The strength of our method is that it can iden-
tify morphemes when they are unknown words
and can assign appropriate parts-of-speech to
them. For example, the nouns “0 0 (Souseki)”
and “00 (Rohan)” are not found in the JU-



Table 3: Accuracy for unknown words (Recall).

Segmentation and Segmentation and
major POS tagging | minor POS tagging
For words not found in the dictionary
nor in our training corpus
Our method 69.90% (432/618) 27.51% (170/618)
JUMAN+KNP |  79.29% (490/618) 20.55% (127/618)
For words not found in the dictionary
nor in our features
Our method 76.17% (719/944) 32.20% (304/944)
JUMAN-+KNP |  85.70% (809/944) 27.22% (257/944)
For words not found in the dictionary
Our method | 82.40% (1,138/1,381) | 49.24% (680/1,381)
JUMAN+KNP | 89.79% (1,240/1,381) | 38.60% (533/1,381)

MAN dictionary. JUMAN plus KNP analyzes
them simply as “0 (Noun) O (Noun)” and “0
(Adverb) O (Noun),” whereas our system ana-
lyzes both of them correctly. Our system cor-
rectly identified them as names of people even
though they were not in the dictionary and did
not appear as features in our M.E. model. Since
these names, or proper nouns, are newly coined
and can be represented by a variety of expres-
sions, no proper nouns can be included in a dic-
tionary, nor can they appear in a training cor-
pus; this means that proper nouns could easily
be unknown words. We investigated the accu-
racy of our method in identifying morphemes
when they are unknown words, and the re-
sults are listed in Table 3. The first row in
each section shows the recall for the morphemes
that were unknown words. The second row in
each section shows the percentage of morphemes
whose segmentation and “minor” POS tag were
identified correctly. The difference between the
first and second lines, the third and fourth lines,
and fifth and sixth lines is the definition of un-
known words. Unknown words were defined re-
spectively as words not found in the dictionary
nor in our training corpus, as words not found
in the dictionary nor in our features, and as
words not found in the dictionary. Our accu-
racy, shown as the second rows in Table 3 was
more than 5% better than that of JUMAN plus
KNP for each definition. These results show
that our model can efficiently learn the char-
acteristics of unknown words, especially those
of proper nouns such as the names of people,

organizations, and locations.

4 Related Work

Several methods based on statistical models
have been proposed for the morphological anal-
ysis of Japanese sentences. An F-measure of
about 96% was achieved by a method based
on a hidden Markov model (HMM) (Takeuchi
and Matsumoto, 1997) and by one based on
a variable-memory Markov model (Haruno and
Matsumoto, 1997; Kitauchi et al., 1999). Al-
though the accuracy obtained with these meth-
ods was better than that obtained with ours,
their accuracy cannot be compared directly
with that of our method because their part-
of-speech categories differ from ours. And an
advantage of our model is that it can handle
unknown words, whereas their models do not
handle unknown words well. In their models,
unknown words are divided into a combination
of a word consisting of one character and known
words. Haruno and Matsumoto (Haruno and
Matsumoto, 1997) achieved a recall of about
96% when using trigram or greater information,
but achieved a recall of only 94% when using bi-
gram information. This leads us to believe that
we could obtain better accuracy if we use tri-
gram or greater information. We plan to do so
in future work.

Two approaches have been used to deal with
unknown words: acquiring unknown words from
corpora and putting them into a dictionary
(e.g., (Mori and Nagao, 1996)) and develop-
ing a model that can identify unknown words



correctly (e.g., (Kashioka et al., 1997; Nagata,
1999)). Nagata reported a recall of about 40%
for unknown words (Nagata, 1999). As shown
in Table 3, our method achieved a recall of
69.90% for unknown words. Our accuracy was
about 30% better than his. Tt is difficult to
compare his method with ours directly because
he used a different corpus (the EDR corpus),
but the part-of-speech categories and the def-
inition of morphemes he used were similar to
ours. Thus, this comparison is helpful in evalu-
ating our method. There are no spaces between
morphemes in Japanese. In general, therefore,
detecting whether a given string is an unknown
word or is not a morpheme is difficult when it
is not found in the dictionary, nor in the train-
ing corpus. However, our model learns whether
or not a given string is a morpheme and has a
huge amount of data for learning what in a cor-
pus is not a morpheme. Therefore, we believe
that the characteristics of our model led to its
good results for identifying unknown words.

Mori and Nagao proposed a model that can
consult a dictionary (Mori and Nagao, 1998);
they reported an F-measure of about 92 when
using the EDR corpus and of about 95 when
using the Kyoto University corpus. Their slight
improvement in accuracy by using dictionary in-
formation resulted in an F-measure of about 0.2,
while our improvement was about 1.7. Their
accuracy of 95% when using the Kyoto Univer-
sity corpus is similar to ours, but they added
to their dictionary all of the words appearing
in the training corpus. Therefore, their exper-
iment had to deal with fewer unknown words
than ours did.

With regard to the morphological analy-
sis of English sentences, methods for part-of-
speech tagging based on an HMM (Cutting et
al., 1992), a variable-memory Markov model
(Schiitze and Singer, 1994), a decision tree
model (Daelemans et al., 1996), an M.E. model
(Ratnaparkhi, 1996), a neural network model
(Schmid, 1994), and a transformation-based
error-driven learning model (Brill, 1995) have
been proposed, as well as a combined method
(Marquez and Padré, 1997; van Halteren et al.,
1998). On available machines, however, these
models cannot handle a large amount of lex-
ical information. We think that our model,
which can not only consult a dictionary with

a large amount of lexical information, but can
also identify unknown words by learning cer-
tain characteristics, has the potential to achieve
good accuracy for part-of-speech tagging in En-
glish. We plan to apply our model to English
sentences.

5 Conclusion

This paper described a method for morpho-
logical analysis based on a maximum entropy
(M.E.) model. This method uses a model
that can not only consult a dictionary but can
also identify unknown words by learning cer-
tain characteristics. To learn these characteris-
tics, we focused on such information as whether
or not a string is found in a dictionary and
what types of characters are used in a string.
The model estimates how likely a string is to
be a morpheme according to the information
on hand. When our method was used to iden-
tify morpheme segments in sentences in the Ky-
oto University corpus and to identify the ma-
jor parts-of-speech of these morphemes, the re-
call and precision were respectively 95.80% and
95.09%. In our experiments without each fea-
ture set shown in Tables 1, we found that dic-
tionary information significantly contributes to
improving accuracy. We also found that our
model can efficiently learn the characteristics of
unknown words, especially proper nouns such
as the names of people, organizations, and lo-
cations.
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