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Abstract

In this paper, we present a machine learning ap-
proach to question answering. The task is answering
factual questions, where the answers are to be found
in documents in a large text database. We trained
our system on 398 questions from the Remedia cor-
pus, as well as 38 TREC-8 development questions.
We then evaluated our system on 198 questions of
the TREC-8 question answering task. Although our
learning approach only uses 4 features, we are able
to achieve quite competitive accuracy. The results
indicate that such a machine learning approach is
a promising way to build a state-of-the-art question
answering system.

1 Introduction

Finding information in a large text database is the
traditional subject of study in information retrieval.
When given some keywords, current search engines
retrieve numerous web pages that contain the key-
words, and leave it to a user to sieve through the
large set of returned web pages to find the informa-
tion that he needs. That is, search engines deal more
with whole document retrieval.

However, what a user often wants is really a pre-
cise answer to a question. For instance, given the
question “When was the last US presidential elec-
tion held?”, what he wants is the answer “Nov 7,
20007, rather than to read through lots of web pages
that contain the words “US”, “presidential”, “elec-
tion”, etc to find the date of election. That is, what
a user needs is information retrieval, rather than the
current document retrieval.

Question answering (QA) has recently attracted
a lot of research activities. This is in part fueled
by the question answering track of TREC. TREC
is an annual exercise to evaluate the performance of
text retrieval systems on common, large real-world
text collections, using a uniform scoring procedure.
The question answering track started in TREC-8
in 1999 (Voorhees, 2000; Voorhees and Tice, 2000,
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TREC). In the question answering track, for each
factual question, the task is to extract the top five
50-byte or 250-byte answers to the question from a
large text database consisting of hundreds of thou-
sands of documents (gigabytes of text).

Another strand of work that deals with question
answering surfaces in the context of reading com-
prehension. The group at MITRE (Hirschman et
al., 1999) initiated work on reading comprehension
of children stories. In particular, the task involves
choosing a sentence from a story that best answers
a question posed to the story. For this task, there
is no need to deal with retrieval from a large text
database, since a question is directed at a particular
story.

In this paper, we address the task of answering
factual questions, where the answers are to be found
in documents in a large text database. We adopt
a machine learning approach to question answering.
In particular, answer candidates are classified and
ranked by a classifier trained on a set of question-
answer pairs.

2 A Machine Learning Approach
2.1 Natural Language Processing Modules

Our question answering system utilizes a number of
natural language processing (NLP) modules. They
include sentence segmentation, tokenization, mor-
phological analysis, part-of-speech tagging, noun
phrase chunking, named entity tagging, and seman-
tic class determination. The main goal of these mod-
ules is to identify the boundary and the semantic
class of the noun phrases, so that the necessary fea-
ture values needed to form the training or test ex-
amples can be computed.

Our part-of-speech tagger is a standard statistical
bigram tagger based on the Hidden Markov Model
(HMM) (Church, 1988). Similarly, we built a sta-
tistical HMM-based noun phrase chunker where the
noun phrase boundaries are determined solely based
on the part-of-speech tags assigned to the words in
a sentence. We also implemented a module that as-
signs named entity tags. In particular, the following
named entity types are recognized: human, orga-



nization, location, date, time, percent, and money.
Our named entity tagger uses the HMM approach
of (Bikel et al., 1999), which learns from a tagged
corpus of named entities. Our part-of-speech tag-
ger, noun phrase chunker, and named entity tagger
achieve state-of-the-art accuracy.

The semantic classes defined for noun phrases in
our QA system are: human, organization, location,
date, time, percent, money, and entity. Each of the
7 semantic classes human, organization, ..., money
is a subclass of the semantic class entity, which is a
catch-all semantic class for all noun phrases that are
not of the other 7 defined semantic classes. Each of
these semantic classes is then mapped to a WORD-
NET synset (Miller, 1990). Our semantic class deter-
mination module assumes that the semantic class for
every noun phrase extracted follows the first sense of
the head noun of the noun phrase. Since WORDNET
orders the senses of a noun by their frequency, this
is equivalent to choosing the most frequent sense,
which then determines the semantic class of the noun
phrase through upward traversal of the ISA hierar-
chy of WORDNET.

2.2 Features

The learning task is defined as identifying the best
noun phrase that is most likely to answer a given
question.

Our feature vector consists of 4 features. Each
feature vector is derived from one triple ¢, n, and s,
where ¢ is the question, n is the noun phrase, and s
is the sentence containing the noun phrase n.

e Question type (QT)
This feature attempts to capture the focus of a
question ¢, i.e., what a question is asking for.
Its possible values are who, when, where, how,
human, organization, location, date, time, per-
cent, money, and entity.

The value for this feature is determined as fol-
lows. Step through each successive word w in ¢
(starting from the first word in ¢), and check if
w is one of the words “who”, “whom”, “whose”,
“when”, “where” and “how” (in that order).
The first match found will determine the ques-
tion type of q. If the first matching word is one
of “who”, “whom”, or “whose”, then the ques-
tion type is who. If the first matching word is
“when”, the question type is when. Similarly
for where and how.

If no match is found, the following heuristic
is used to determine the question type. The
heuristic searches for the first noun phrase in
the question that does not occur after a non-
“be” verb, and whose head word is not the word
“name”. The semantic class of this head word
is then used as the question type. For example,

in the question “What is the name of the man-
aging director of Apricot Computer?”, the first
noun phrase satisfying the conditions is “man-
aging director” and the semantic class of its
head word “director”, which is human, is the
question type.

If no such head word can be found, then the
question is given the type entity.

e Noun phrase semantic class (NPSC)

The possible values of this feature are hu-
man, organization, location, date, time, per-
cent, money, and entity.

If a named entity tag is assigned to the noun
phrase n, then NPSC is assigned the value of the
named entity tag. Otherwise, NPSC is assigned
the value of the semantic class of n.

e Quantitative noun phrase (QNP)
The possible values are true and false.

If the noun phrase n contains a number and
its NPSC is not date or time, then this value is
true. Otherwise, this value is false. This feature
is indicative of answers to “how many”, “how
far”, “how long”, etc type of “how” questions.

e Diff-from-Max-Word-Match between s and g
(DMWM)

The possible values are 0, 1, 2, 3, .... This
feature attempts to capture the word overlap
between a question and a sentence. It is similar
to that used in our previous work (Ng et al.,
2000).

To compute the value of this feature, all words
in the question ¢ and the sentence s (which con-
tains the noun phrase n) are reduced to their
morphological roots. Let m be the number of
morphological root words in ¢ which can be
found in s. Stop words are excluded in the
count. Then for all the possible sentences s; in
the defined search space!, let m; be the num-
ber of morphological root words in ¢ which can
be found in s;. Define M = max;{m;}. The
value of this feature is then computed as M —m.
That is, for a sentence s that has the maximum
number of words that overlap with ¢ (among all
sentences in the defined search space), its value
for this feature will be 0.

2.3 Training

Given a question ¢, a noun phrase n that is marked
as an answer to ¢, as well as the sentence s containing
n, the triple ¢, n, and s are used to generate a pos-
itive training example, as described in Section 2.2.
To compute the value of DMWM, the search space

IThe list of sentences considered in this search space will be
explained in the following subsections on training and testing.



is defined as all the sentences in d, where d is the
document containing s.

Negative training examples are generated by ran-
domly selecting one noun phrase (other than n) each
from sentences s, s_; and s41, where s_1 is the sen-
tence immediately preceding s, and s;1 is the sen-
tence immediately following s.

A classifier is then built based on the feature vec-
tors generated from the training questions and an-
swers. The learning algorithm used is C5 with boost-
ing (Freund and Schapire, 1996). C5 is a more recent
version of C4.5 (Quinlan, 1993). We use the default
values for all C5 learning parameters.

2.4 Testing

Before identifying all possible noun phrases for test-
ing, the search space of all documents in a large text
database will have to be efficiently narrowed down
first.

2.4.1 Passage retrieval

The retrieval system we use is based on that de-
scribed in (Singhal et al., 2000). For a given ques-
tion, query terms (i.e., words in the question) are
first extracted by removing stopwords and punctu-
ation symbols. A term weight is then assigned to
each query term ¢, using the idf factor: log(1 + dﬂt)
where N is the total number of documents in the
text database, and d; is the number of documents in
the database containing term t.

Within a document, a passage is any contiguous
text string which contains up to a maximum of 5 con-
secutive sentences, or at most 500 bytes. Each candi-
date passage in a document is assigned a score, based
on the sum of the weights of all query terms con-
tained in the passage. See (Singhal et al., 2000) for
more details of how passage is selected and scored.

In our experiments with TREC-8 test data, we
used the top 200 documents per question provided
by AT&T’s retrieval engine. This set of documents
is also provided to all TREC-8 participants. The
3 top-scoring passages of each of the top 200 doc-
uments are selected, and these passages are ranked
in descending order of the passage score. The top
200 passages are then passed to the answer ranking
module described in Section 2.4.2.

2.4.2 Answer ranking

Each noun phrase in the retrieved passages con-
tributes a test example. The question ¢, the noun
phrase n, and the sentence s containing n are used to
generate a test example. For a given question g, the
value of M needed in the computation of DMWM
is taken over the search space of all the sentences
in the retrieved passages for q. The classifier as-
signs a positive or negative class together with a
confidence value to each test example. The noun
phrases are then sorted according to their classifi-
cation and confidence values. Noun phrases with

positive class are ranked above noun phrases with
negative class. If 2 noun phrases have the same pos-
itive class, then the one with the higher confidence
score is ranked higher. If 2 noun phrases have the
same negative class, then the one with the lower con-
fidence is ranked higher. In the event where 2 or
more noun phrases have the same classification and
confidence value, ties are broken based on the rank
of the passages from which the noun phrases origi-
nate. Ties are further broken based on the position
of the noun phrase in the passage, i.e., noun phrases
occurring earlier in the passage are ranked higher
than those occurring later.

The top ranked noun phrase is then expanded
with its neighboring words in the passage to make
up a 50-byte (or 250-byte) answer string. The 2nd
ranked noun phrase is then checked to ensure that
it does not occur in the earlier chosen 50-byte (or
250-byte) answer strings. If it does, then the next
ranked noun phrase is considered. If it does not,
then the noun phrase is expanded to 50 bytes (or
250 bytes). This process of selecting and expanding
noun phrases continues until finally 5 answer strings
are chosen.

3 Evaluation

The training data we used to build our classifier
consists of two parts. The first part is the set
of 38 TREC-8 QA track development questions
(Voorhees, 2000). Document collection for this set
of questions is the same as in TREC-8 ad hoc task,
namely the set of documents on TREC disk 4 and
5 minus the Congressional Record documents. In
this development set, we have questions containing
“what”, “who”, “how”, “when”, “where”, and a few
others that do not have any of these words. An-
swers to these questions are also provided by NIST
together with the document id of the documents
where the answers can be found. Answer phrases
were then manual tagged in the specified documents
and training examples were generated according to
the scheme described in Section 2.

The second part of the training data is based on
the questions and stories published by Remedia Pub-
lications (Hirschman et al., 1999). The document
collection for this set consists of stories from grade
2 to 5 with a total of 115 stories. Each of the sto-
ries comes with five questions. However, not all the
questions can be used for training, since some of the
questions cannot be answered by any noun phrase
in the associated story. We also ignore the “Why”
questions, since their answers are typically not noun
phrases. After removing the “Why” questions and
questions without a noun-phrase answer, we have
398 questions left for training.

The collection of stories we used is the copy cre-
ated by the MITRE group with each story manu-



Question || Remedia TREC-8 || TREC-8
type develop. set test set
What 101 18 65
Who 98 7 48
How 0 6 31
When 95 3 18
Where 104 2 21
Others 0 2 15
| Total I 398 | 38 | 198 |

Table 1: Questions in the training and test set

ally annotated to indicate which sentence answers
to each of the questions associated with the story.
However, since in our training, we require the answer
noun phrase instead of answer sentence, each story
was then further hand-tagged to indicate the answer
noun phrase. After this stage, the same scheme de-
scribed in Section 2 was employed to generate train-
ing examples.

The test data we used is the set of questions in
the official test set of TREC-8 QA Track (Voorhees,
2000). This set consists of 198 questions which has
no overlap with the 38 development questions. Doc-
ument collection is the same as TREC-8 ad hoc task.
Table 1 shows the number of questions of each type
in the training and test set.

Our evaluation is based on the official evalua-
tion program and answer patterns released by the
TREC-8 QA track organizer (Voorhees and Tice,
2000, SIGIR). In TREC-8, the official evaluation is
done by human assessors. However, since we did
not participate in the TREC-8 QA track, our runs
have not been evaluated by the human assessors who
judged the other TREC-8 official runs. Fortunately,
as demonstrated in (Voorhees and Tice, 2000, SI-
GIR), evaluation based on the evaluation program
and answer patterns gives comparable outcome as
the evaluation done by human judges.

The evaluation metric we used is mean reciprocal
rank (MRR), the same as that used in TREC-8. For
each question, if the rank at which the first correct
answer appears is k, then the question gets a score
of 1/k, where k = 1, 2, 3, 4, 5. If the correct answer
is not found in the top 5 strings returned, then the
question gets a score of 0. The overall score is the
average MRR of all the 198 test questions.

The MRR score for our 50-byte run is 0.357, and
98 questions do not have any answer within the top
5 strings returned. For the 250-byte run, the MRR
score is 0.525, and 71 questions do not have any
answer within the top 5 strings returned. Table 2
shows the percentage of questions answered correctly
(i.e., the answer appears within the top 5 strings) for
the two runs, broken down according to the question
types.
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Figure 2: Results for 250-byte run

We compared our results with all the official runs
submitted to TREC-8. All evaluation, for ours and
for all other official runs, are made using the officially
released evaluation program and answer patterns.
Figure 1 shows our 50-byte run together with all
TREC-8 50-byte runs. Figure 2 shows our 250-byte
run together with all TREC-8 250-byte runs. In the
2 figures, vertical bars indicate MRR scores, whereas
the dotted lines join the data points indicating the
percentage of questions with no answers found in
the top 5 returned strings. The shaded bars in the
figures indicate the MRR scores of our system.

We have also performed statistical significance
test between our runs and each of the TREC-8 offi-
cial runs. The MRR score of each question is com-
pared between two runs. The significance test results
are summarized in Table 3. At 95% confidence level,
our 50-byte run is significantly worse than 2 TREC-
8 runs, better than 13, and no different from the
rest. Our 250-byte run is significantly worse than



What | Who | How | When | Where | Others
50-byte 38.5 | 62.5 | 484 | 66.7 52.4 46.7
250-byte | 58.5 | 68.8 | 58.1 72.2 66.7 73.3

Table 2: Percentage of questions answered correctly

Runs worse | no diff | better
50-byte 2 5 13
250-byte 1 6 18

Table 3: Significance test at 95% confidence level
between our runs versus TREC-8 official runs

Features MRR
minus QT 0.203
minus NPSC 0.256
minus QNP 0.329
minus DMWM | 0.294
All 0.357

Table 4: Performance of our 50-byte run with one
less feature versus all features

only one run, better than 18, and no different from
the rest. This indicates that our QA system has
achieved quite competitive accuracy.

It is interesting to note that our machine learn-
ing approach, which is based on a set of 4 simple
features, can already give quite competitive perfor-
mance. From Table 2, it can be seen that our system
performs quite poorly on “What” and “How” ques-
tions. For “How” questions, the reason is probably
the lack of sufficient training examples. There are
only 6 “How” questions available for training from
the TREC-8 development set, and none from the
Remedia corpus. For “What” questions, the perfor-
mance is low due to the fact that “What” questions
can agk for just about anything, and our current set
of semantic classes is not broad enough to capture
the rich variety. In our future work, we will investi-
gate improvements to overcome these deficiencies in
our current system.

We also investigated the effect of training data
size on the performance of our system, as well as the
effectiveness of the features used. Figure 3 shows the
learning curve of our 50-byte run when trained on
10%, 20%, ..., 100% of the available training data.
The learning curve is obtained by averaging over 10
random trials. It appears that the performance of
our system can be improved given a larger set of
training data, which is encouraging.

Table 4 shows the performance of our 50-byte run
if we remove one feature at a time. In all four cases,
the performance of our system dropped when us-
ing only three features, as opposed to using all four
features. This indicates that all four features con-
tributed to the performance of our system.
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Figure 3: Learning curve for our 50-byte run

4 Related Work

Among the top performing systems at TREC-8 and
TREC-9 QA track (Abney et al., 2000; Clarke et al.,
2001; Cormack et al., 2000; Harabagiu et al., 2001;
Hull, 2000; Moldovan et al., 2000; Singhal et al.,
2000; Srihari and Li, 2000), most are not based on a
machine learning approach. The exceptions are the
work of (Ittycheriah et al., 2001; Prager et al., 2000;
Prager et al., 2001). In (Ittycheriah et al., 2001),
a maximum entropy approach is used to learn the
type of a question from training questions. In our
work, determining the question type is not based on
learning, so this is something we would like to in-
corporate in the future. In the work of (Prager et
al., 2000; Prager et al., 2001), logistic regression is
used to learn the weights to combine scores for fea-
tures, but their set of features is substantially differ-
ent from ours.

In QA work on reading comprehension tests,
again most are not based on a learning approach
(Hirschman et al., 1999; Charniak et al., 2000; Riloff
and Thelen, 2000). (Wang et al., 2000) attempted
a machine learning approach, but with performance
substantially lower than the other non-learning ap-
proaches.

Compared to our own previous work reported in
(Ng et al., 2000), this paper differs in the following
aspects. First, our previous work is only tested on
reading comprehension of children stories, whereas
the current paper scales up to answering questions
based on real-world newspaper documents in TREC-
8. Also, we now had to deal with question answer-



ing using a large text database, and not just an-
swering questions posed to a single short story. In
addition, the answers returned in our current work
is a 50-byte or 250-byte string, and not a sentence.
As such, the features used in this paper are cen-
tered around noun phrases, and not sentences. In
addition, there is now no restriction on the type of
questions asked. In particular, the current work can
answer quantitative “How” questions not addressed
in (Ng et al., 2000). Our current work also uses a
different (simpler) set of 4 features, and does not rely
on hand-tagged coreference information and named
entity tags unlike (Ng et al., 2000).

5 Conclusion

In this paper, we presented a machine learning ap-
proach to question answering. The results indicate
that such an approach is a promising way to build a
state-of-the-art question answering system.
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