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Abstract

In this paper, we propose a new method of text
categorization based on feature space restruc-
turing for SVMs. In our method, independent
components of document vectors are extracted
using ICA and concatenated with the original
vectors. This restructuring makes it possible
for SVMs to focus on the latent semantic space
without losing information given by the original
feature space. Using this method, we achieved
high performance in text categorization both
with small number and large numbers of labeled
data.

1 Introduction

The task of text categorization has been exten-
sively studied in Natural Language Processing.
Most successful works rely on a large number
of classi�ed data. However, it is hard to collect
classi�ed data, so considering real applications,
text categorization must be realized even with a
small number of labeled data. Several methods
to realize it have been proposed so far (Nigam et
al, 2000), but they need to be further developed.
For that purpose, we have to take advantage of
invaluable information o�ered by the property
of unlabeled data. In this paper, we propose
a new categorization method based on Sup-
port Vector Machines (SVMs) (Vapnik, 1995)
and Independent Component Analysis (ICA)
(Herault and Jutten, 1986; Bell and Sejnowski,
1995). SVM is gaining popularity as a classi-
�er with high performance, and ICA is one of
the most prospective algorithms in the �eld of
signal processing, which extracts independent
components from mixed signals.
SVM has been applied in many applications

such as Image Processing and Natural Language
Processing. The idea to apply SVM for text cat-
egorization was �rst introduced in (Joachims,

1998). However, when the number of labeled
data are small, SVM often fails to produce a
good result, although several e�orts against this
problem have been made. There are two strate-
gies for improving performance in the case of
a limited number of data. One is to modify
the learning algorithm itself (Joachims, 1999a;
Glenn and Mangasarian, 2001), and the other
is to process training data (Weston et al, 2000),
including the selection of features. In this pa-
per, we focus on the latter, especially on fea-
ture space restructuring. For processing train-
ing data, Principal Component Analysis (PCA)
is often adopted in classi�ers such as k-Nearest
Neighbor method (Mitchell, 1997). But the con-
ventional dimension-reduction methods fail for
SVM as shown by experiments in Section 6. Un-
like the conventional ones, our approach uses
the components obtained with ICA to augment
the dimension of the feature space.

ICA is built on the assumptions that the
sources are independent of each other and that
the signals observed at multiple-points are lin-
ear mixtures of the sources. While the theoret-
ical aspects of ICA are being studied, its pos-
sibility to applications is often pointed out as
in (Bell and Sejnowski, 1997). The idea of us-
ing ICA for text clustering is adopted in sev-
eral works such as in (Isbell and Viola, 1998).
In those works, vector representation model is
adopted (i.e. each text is represented as a vector
with the word-frequencies as the elements). It
is reported however that the independent com-
ponents do not always correspond to the desired
classes, but represent some kind of characteris-
tics of texts (Kolenda et al, 2000). In (Kaban
and Girolami, 2000), they showed that the num-
ber of potential components were larger than
that of human-annotated classes. These facts
imply that it is not easy to apply ICA directly



for text classi�cation.
Taking these observations into consideration,

we take the following strategy: �rst we perform
ICA on input document vectors, and second,
create the restructured information by concate-
nating the reduced vectors (i.e. the values of
the independent components) and the original
feature vectors.
PCA is an alternative restructuring method.

So we conducted experiments using SVM with
various input vectors: original feature vectors,
reduced feature vectors and restructured fea-
ture vectors (reduction and restructuring are
performed by PCA and ICA). For comparison,
we conducted experiments using Transductive
SVM (TSVM) (Joachims, 1999a) as well, which
is designed for the case of a small number of
labeled data.
Using the proposed method (SVM with ICA),

we obtain better results than ordinary SVM and
TSVM, with both small and large numbers of
labeled data.

2 Support Vector Machines

2.1 Brief Overview of Support Vector

Machines

Support Vector Machine (SVM) is one of the
large-margin classi�ers (Smola et al, 2000).
Given a set of pairs,

(x1; y1); (x2; y2); � � � ; (xn; yn) (1)
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of a feature vector and a label, SVM constructs
a separating hyperplane with the largest margin
(the distance between the hyperplane and the
vectors, see Figure 1):

f(x) = w � x+ b: (2)

Finding the largest margin is equivalent to min-
imizing the norm kwk, which is expressed as:

min : 1

2
kwk2; (3)

s:t: 8i; yi(xi �w+ b)� 1 � 0:

This is realized by solving the quadratic pro-
gram (dual problem of (3)):
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Figure 1: Support Vector Machine
(the solid line corresponds to the optimal hy-
perplane).

where �i's are Lagrange multipliers. Using the
�i's that maximize (4), w is expressed as

w =
X
i

�iyixi: (5)

Substituting (5) into (2), we obtain

f(x) =
X
i

�iyixi � x+ b: (6)

Unlabeled data are classi�ed according to the
signs of (6).

2.2 Kernel Method

SVM is a linear classi�er and its separating abil-
ity is limited. To compensate this limitation,
Kernel Method is usually combined with SVM
(Vapnik, 1995).

In Kernel Method, the dot-product in (4) and
(6) is replaced by a more general inner-product
K(xi;x), called the kernel function. Polynomial
kernel (xi � xj + 1)d (d 2 N+) and RBF ker-
nel expf�kxi � xjk

2
=2�2g are often used. Us-

ing kernel method means that feature vectors
are mapped into a (higher dimensional) Hilbert
space and linearly separated there. This map-
ping structure makes non-linear separation pos-
sible, although SVM is basically a linear classi-
�er.



Another advantage of kernel method is that
although it deals with a high dimensional (pos-
sibly in�nite) Hilbert space, there is no need
to compute high dimensional vectors explicitly.
Only the general inner-products of two vectors
are needed. This leads to a relatively small com-
putational overhead.

2.3 Transductive SVMs

The Transductive Support Vector Machine
(TSVM) is introduced in (Joachims, 1999a),
which is one realization of transductive learning
in (Vapnik, 1995). It is designed for the classi�-
cation with a small number of labeled data. Its
algorithm is approximately as follows:

1. construct a hyperplane using labeled data
in the same way as the ordinary SVMs.

2. classify the unlabeled (test) data according
to the current hyperplane.

3. select the pair of a positively classi�ed sam-
ple and a negatively classi�ed sample that
are nearest to the hyperplane.

4. exchange the labels of those samples, if the
margin gets larger by exchanging them.

5. terminate if a stopping-criterion is satis�ed.
Otherwise, go back to step 2.

This is one way to search for the largest mar-
gin, permitting the relabeling of test data that
have already been labeled by the classi�er in the
previous iteration.

3 Independent Component Analysis

Independent Component Analysis (ICA) is a
method by which source signals are extracted
from mixed signals. It is based on the assump-
tions that the sources s 2 Rm are statisti-
cally independent of each other and that the
observed signals x 2 Rn are linear mixtures of
the sources:

x = As: (7)

Here the matrix A is called amixing matrix. We
observe x as a time series and estimate both A
and s = (s1; � � � ; sm). So our purpose here is to
�nd a demixing matrix W such that s1; � � � ; sm
are as independent of each other as possible:

s = Wx: (8)

The computation proceeds by way of descent
learning with an objective function indicating
independence. There are several criteria of
independence and their learning rules, among
which we take here Infomax approach (Bell
and Sejnowski, 1995), but with natural gradi-
ent (Amari, 1998). Its learning rule is

ÆW = (I + (I � 2g(Wx))(Wx)t)W; (9)

where; g(u) = 1=(1 + exp(�u)):

4 Text Categorization Enhanced
with Feature Space Restructuring

As in most previous works, we adopt Vector
Space Model (Salton and McGill, 1983) for
representing documents. In this framework,
each document d is represented as a vector
(f1; � � � ; fd) with word-frequencies as its ele-
ments.

4.1 Feature Space Restructuring

First we reduce the dimension of document vec-
tors using PCA or ICA. As for PCA, we fol-
low the previous work described in , e.g., (Deer-
wester et al, 1990). In (Isbell and Viola, 1998),
they use ICA for dimension reduction and ob-
tain a good result in Information Retrieval. At
the �rst step of our method, where the reduced
vectors are obtained, we follow their method.
In this framework, each document d is consid-
ered as a linear mixture of sources s representing
topics. Each word plays a role of "microphone"
and receives a word-frequency in the document
as a mixed signal at each time unit. This for-
mulation is represented by the equation:

d = As; (10)

where A is a mixing matrix. Although both A
and s are unknown, they can be obtained using
the independence assumption. The source sig-
nals s are considered as a reduced expression of
this document. In the case of PCA, the restruc-
turing is processed in the same way. The only
di�erence is that independent components cor-
respond to principal components for the PCA
case.
After computing a reduced vector s with PCA

or ICA, we concatenate the original vector d
and the reduced vector s:

d̂ =

�
d

s

�
: (11)



This transformation means that we do not rely
only on the reduced information, but make use
of both the reduced and the original informa-
tion, that is, the restructured information.

4.2 Text Categorization

Regarding d̂ as the input feature vector of a
document, we use SVM for categorization.
Since SVMs are binary classi�ers themselves,

so we take here the one-versus-rest method to
apply them for multi-class classi�cation tasks.

5 Theoretical Perspective

5.1 Validation as a Kernel Function

The proposed feature restructuring method can
be considered as the use of a certain kernel for
the pre-restructured feature space. We give an
explanation for the linear case. Given two vec-
tors, d1 and d2, the kernel function K in the
restructured space is expressed as,

K(d̂1; d̂2) = d̂
t

1d̂2

= dt

1d2 + st1s2

= dt

1d2 + dt

1A
t
Ad2: (12)

Considering the fact that each of two terms
above is a kernel and that the sum of two kernels
is also a kernel (Vapnik, 1995), the proposed re-
structuring is equivalent to using a certain ker-
nel in the pre-restructured space.

5.2 Interpretation of Feature Space

Restructuring

The expression (12) shows that weights are put
on the latent semantic indices determined by
ICA and PCA respectively. The criterion of
meaningfulness depends on which of ICA and
PCA is used. Note that weighting is di�er-
ent from reducing. In the dimension-reduction
methods, only the latent semantic space is con-
sidered, but in our method, the original feature
space still directly in
uences the classi�cation
result.
This property of our method makes it pos-

sible to focus on the information given by the
latent semantic space, without losing informa-
tion given by the original feature space.
In text categorization, classes to be predicted

are sometimes characterized by local informa-
tion such as the occurrence of a certain word,
but sometimes dominated by global information

such as the total frequency of a certain group of
words. Considering this situation and the above
property of our method, it is not surprising that
out method gives a good result.

6 Experiments

To evaluate the proposed method, we conducted
several experiments.
The data used here is the Reuters-21578

dataset. The most frequent 6 categories are ex-
tracted from the training-set of the corpus. This
leaves 4872 documents (see Table 1). Some part
of them is used as training data and the rest is
used as test data. Only the words occurring
more than twice are used. Both stemming and
stop-word removal are performed. For compu-
tation, we used SVM-light (Joachims, 1999b).
We conducted two kinds of experiments. The

�rst one focuses on evaluating the performance
of the proposed method for each category, with
a �xed number of labeled data (Section 6.1).
The second one is conducted to show that the
proposed method gives a good result also when
the number of labeled data increases (Section
6.2).
The results are evaluated by F-measures.

To evaluate the performance across categories,
we computed Micro-average and Macro-average
(Yang, 1999) of F-measures. Micro-average is
obtained by �rst computing precision and re-
call for all categories and then using them to
compute the F-measure. Macro-average is com-
puted by �rst calculating F-measures for each
category and then averaging them. Micro-
average tends to be dominated by large-sized
categories, and Macro-average by small-sized
ones.
The kernel function used here is a linear ker-

nel. The number of independent or principal
components extracted by ICA or PCA is set to
50.

6.1 Performance with a Fixed Number

of Data

In this experiment, we treated 100, 500, 1000
and 2000 samples as labeled respectively and
kept the other 4772, 4372, 3872 and 2872 sam-
ples unlabeled. The experiment was conducted
10 times for each sample-size repeatedly with
randomly selected labeled samples and their av-
erage values are computed. The result is shown
in Tables 2, 3, 4 and 5. In the row of "Method",



Table 1: Documents used in Experiments
category number of documents

earn 2673
acq 1435
trade 225
crude 223

money-fx 176
interest 140

combinations of restructuring methods are writ-
ten. "Original" means the data of original docu-
ment vectors. "PCA" and "ICA" mean the data
of only reduced vectors, respectively. "Orig-
inal+PCA" and "Original+ICA" are the re-
structured data explained in Section 4.
The proposed method yields a high F-

measure in all the categories for 1000 and 2000
labeled data and in most categories for 100 and
500 labeled data. The last two rows of Tables
2, 3, 4 and 5 show that both Micro-average
and Macro-average are the highest for the pro-
posed method. This means that the proposed
method performs well both for large-sized cat-
egories (e.g., earn) and small-sized categories
(e.g., interest), regardless with the number of
labeled data.

6.2 Performance for the Increase of the

Labeled Data

To investigate how each method behaves when
the number of labeled data increases, we con-
ducted this experiment. The number of labeled
data ranges from 100 to 2000. The results are
shown in Figure 2 and Figure 3. "PCA" gives a
good score only with a small number of data and
"Original" gives a good score only with a large
number of data. In contrast to them, the pro-
posed method produces high performance both
with small and large numbers of data.

7 Conclusions

We proposed a new method of feature space re-
structuring for SVM. In our method, indepen-
dent components are extracted using ICA and
concatenated with the original vectors. Using
this new vectors in the restructured space, we
achieved high performance both with small and
large numbers of labeled data.
The proposed method can be applied also

to other machine learning algorithms provided
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Figure 2: Micro-average
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Figure 3: Macro-average

that they are robust against noise and can han-
dle a high-dimensional feature space. From this
point of view, it is expected that the proposed
method is useful for kernel-based methods, to
which SVM belongs.

As a future work, we need to �nd a way to de-
cide the number of independent components to
be extracted. In this paper, we set the number
to 50 in an ad-hoc way. However, the appropri-
ate number must be predicted based on a theo-



Table 2: F-Measures (100 Labeled Data)

Method Original Original(TSVM) PCA ICA Original+PCA Original+ICA

earn 92.96 84.00 91.13 86.60 92.97 92.88

acq 85.88 81.42 85.67 80.86 85.91 87.48

trade 36.52 65.59 72.41 72.28 36.68 70.73

crude 65.69 70.90 79.75 80.67 65.93 82.87

money-fx 32.46 45.01 52.69 54.37 32.47 48.62

interest 51.30 52.69 64.44 63.48 51.30 64.84

microaverage 83.63 79.48 85.98 82.14 83.66 87.40

macroaverage 60.80 66.60 74.34 73.04 60.87 74.56

Table 3: F-Measures (500 Labeled Data)
Method Original Original(TSVM) PCA ICA Original+PCA Original+ICA

earn 96.49 93.97 94.38 93.45 96.49 96.70

acq 93.23 91.57 89.18 87.45 93.22 93.41

trade 86.31 80.81 87.42 86.58 86.37 91.70

crude 83.33 79.78 81.36 78.28 83.43 87.12

money-fx 62.94 64.88 72.83 73.45 63.17 73.99

interest 59.31 52.02 73.37 72.18 59.31 70.41

microaverage 92.17 89.75 90.54 89.33 92.19 93.48

macroaverage 80.26 77.17 83.09 81.89 80.34 85.55

Table 4: F-Measures (1000 Labeled Data)

Method Original Original(TSVM) PCA ICA Original+PCA Original+ICA

earn 97.15 95.52 96.07 95.53 97.15 97.26

acq 94.60 93.77 92.18 91.44 94.60 94.84

trade 91.19 86.11 87.13 86.87 91.23 93.25

crude 87.99 80.03 80.93 78.75 87.99 89.41

money-fx 73.68 68.85 72.96 72.68 69.96 80.99

interest 75.34 57.26 72.83 68.25 75.34 79.27

microaverage 94.23 91.79 92.31 91.54 94.09 94.90

macroaverage 86.65 80.25 83.68 82.25 86.04 89.17

Table 5: F-Measures (2000 Labeled Data)

Method Original Original(TSVM) PCA ICA Original+PCA Original+ICA

earn 97.48 95.92 97.18 97.12 97.48 97.55

acq 95.39 94.39 94.78 94.80 95.39 95.65

trade 93.81 86.33 88.61 85.28 93.81 95.90

crude 89.88 80.35 82.63 78.56 89.88 90.25

money-fx 77.44 70.60 74.84 70.69 77.49 81.56

interest 82.71 62.15 73.99 68.46 82.76 83.02

microaverage 95.19 92.43 93.93 93.26 95.20 95.58

macroaverage 89.45 81.62 85.33 82.48 89.47 90.65



retical reason. Toward this problem, theories of
model selection such as Minimum Description
Length (Rissanen, 1987) or Akaike Information
Criterion (Akaike, 1974) could be a good theo-
retical basis.
As explained in Section 4, two terms dt

1d2
and dt

1A
t
Ad2 are simply concatenated in our

method. But either of these terms can be mul-
tiplied with a certain constant. This means that
either of the original space and the Latent Se-
mantic Space can be weighted. Searching for
the best weighting scheme is one of the future
works.
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