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Abstract

Many classification problems require decisions
amongalarge numberof competingclassesThese
tasks however, arenothandledwell by generapur
poselearningmethodsandareusuallyaddresseth
an ad-hocfashion. We suggest generalapproach
— a sequentiallearning model that utilizes classi-
fiersto sequentiallyrestrictthe numberof compet-
ing classesvhile maintainingwith high probability,
the presenceof the true outcomein the candidates
set. Sometheoreticaland computationaproperties
of the modelarediscussedndwe arguethatthese
areimportantin NLP-like domains.Theadvantages
of themodelareillustratedin anexperimentin part-
of-speechagging.

1 Intr oduction

A largenumberof importantnaturallanguagenfer-
encesanbeviewedasproblemsof resolvingambi-
guity, eithersemanticr syntactic basecn proper
ties of the surroundingcontext. These,in turn, can
all be viewed as classificationproblemsin which
the goal is to selecta classlabel from amonga
collectionof candidates Examplesinclude part-of
speechagging,word-sensealisambiguationaccent
restorationword choiceselectionn machinetrans-
lation, contet-sensitve spelling correction, word
selectionin speechrecognitionandidentifying dis-
coursemarkers.

Machine learning methods have become the
most popular techniquein a variety of classifi-
cation problems of thesesort, and have shavn
significant success. A partial list consists of
Bayesianclassifiers(Gale et al., 1993), decision
lists (Yaransky, 1994), Bayesianhybrids (Gold-
ing, 1995), HMMs (Charniak, 1993), inductive
logic methodqZelle andMooney, 1996), memory-
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basedmethods(Zavrel et al., 1997), linear classi-
fiers (Roth, 1998; Roth, 1999)andtransformation-
basedearning(Brill, 1995).

In mary of theseclassificatiorproblemsa signif-
icantsourceof difficulty is thefactthatthe number
of candidatess very large— all wordsin wordsse-
lection problems,all possibletagsin taggingprob-
lemsetc. Sincegenerapurposdearningalgorithms
do not handlethesemulti-classclassificationprob-
lemswell (seebelon), mostof the studiesdo not
addresshe whole problem; rather a small set of
candidategtypically two) is first selectedandthe
classifieris trainedto chooseamongthese. While
this approachis importantin thatit allows the re-
searchcommunityto develop betterlearningmeth-
ods and evaluatethem in a rangeof applications,
it is importantto realizethat animportantstageis
missing. This could be significantwhen the clas-
sification methodsare to be embeddedas part of
a higherlevel NLP taskssuchas machinetransla-
tion or information extraction, wherethe small set
of candidateghe classifiercan handlemay not be
fixedandcouldbe hardto determine.

In this work we develop a generalapproachto
the studyof multi-classclassifiersWe suggest se-
guentiallearningmodelthat utilizes (almost)gen-
eral purposeclassifiersto sequentiallyrestrict the
number of competingclasseswhile maintaining,
with high probability, the presencef the true out-
comein the candidateset.

In our paradigmthe soughtafter classifierhasto
choosea single classlabel (or a small set of la-
bels) from amonga large set of labels. It works
by sequentiallyapplying simpler classifiers,each
of which outputsa probability distribution over the
candidatdabels. Thesedistributionsaremultiplied
andthresholdedresultingin that eachclassifierin
the sequenceneedsto deal with a (significantly)
smallernumberof the candidatdabelsthanthepre-
vious classifier The classifiersan the sequenceare



selectedo besimplein thesensehatthey typically
work only on partof thefeaturespacavherethede-
compositiorof featurespacéas donesoasto achieve
statisticalindependenceSimpleclassifierareused
sincethey aremorelikely to be accuratethey are
chosenso that, with high probability (w.h.p.), they
have onesidederror, andthereforethe presencef
thetruelabelin thecandidatesetis maintained.The
orderof the sequencés determinedso asto maxi-
mizetherateof decreasinghesizeof the candidate
labelsset.

Beyondincreasedccurag on multi-classclassi-
fication problems, our schemé@mprovesthe com-
putationtime of theseproblemsseveral ordersof
magnituderelative to otherstandardschemes.

In this work we describethe approach,discuss
anexperimentdonein the context of part-of-speech
(pos)tagging,and provide sometheoreticaljustifi-
cationsto theapproachSec.2 providessomeback-
groundon approacheso multi-classclassification
in machinelearningandin NLP. In Sec.3 we de-
scribe the sequentialmodel proposedhere and in
Sec.4 we describean experimentthe exhibits some
of its advantagesSometheoreticajustificationsare
outlinedin Sec.5.

2 Multi-Class Classification

Severalworkswithin the machindearningcommu-
nity have attemptedo develop generalapproaches
to multi-class classification. One of the most
promisingapproachets thatof errorcorrectingout-
put codes(Dietterich and Bakiri, 1995); however,
this approachhas not beenable to handlewell a
large numberof classegover 10 or 15, say)andits
usefor mostlarge scaleNLP applicationsis there-
fore questionable Statisticianhave studiedseveral
schemesuchaslearningasingleclassifierfor each
of theclasdabels(onevs. all) orlearningadiscrim-
inator for eachpair of classlabels,and discussed
their relatve merits(Hastieand Tibshirani, 1998).
Although it hasbeenarguedthat the latter should
provide betterresultsthan others,experimentalre-
sultshave beenmixed (Allwein etal., 2000)andin
somecasesmoreinvolvedschemese.g.,learninga
classifierfor eachsetof three classlabels(andde-
ciding on the predictionin a tournamentik e fash-
ion) wereshown to performbetter(Teav andLoe,
2000).Moreover, noneof thesemethodsseemo be
computationallyplausiblefor large scaleproblems,
sincethe numberof classifiersoneneeddo trainis,
atleast,quadratidn the numberof classlabels.

Within NLP, severallearningworks have already
addressethe problemof multi-classclassification.
In (Kudoh and Matsumoto,2000) the methodsof
“all pairs” wasusedto learnphraseannotationgor
shallav parsing.More than200 differentclassifiers
whereusedin this task, makingit infeasibleas a
generalsolution. All othercaseswve know of, have
taken into accountsomepropertiesof the domain
and,in fact, several of the works canbe viewed as
instantiationsf the sequentiamodelwe formalize
here,albeitdonein anad-hocfashion.

In speechrecognition,a sequentiamodelis used
to processspeechsignal. Abstractingaway some
details thefirst classifierusedis a speectsignalan-
alyzer;it assignsa positive probabilityonly to some
of the words (using Levenshteindistance(Leven-
shtein,1966)or somavhatmoresophisticatedech-
nigues(Levinson et al., 1990)). Thesewords are
thenassignegrobabilitiesusinga differentconte-
tual classifiere.g.,alanguagemodel,andthen, (as
donein mostcurrentspeechrecognizersin addi-
tional sentencdevel classifierusesthe outcomeof
the word classifiersin a word lattice to choosethe
mostlik ely sentence.

Several word predictiontasksmake decisionsin
a sequentialway aswell. In spell correctioncon-
fusion setsare createdusing a classifierthat takes
asinput the word transcriptionand outputsa posi-
tive probabilityfor potentialwords.In corventional
spellers,the output of this classifieris then given
to the userwho selectsthe intendedword. In con-
text sensitve spellingcorrection(GoldingandRoth,
1999; ManguandBrill, 1997)an additionalclassi-
fier is thenutilized to predictamongwordsthatare
supportedy thefirst classifier usingcontextualand
lexical informationof the surroundingwords. In all
studiesdonesofar, however, thefirst classifiethe
confusionsets— were constructednanuallyby the
researchers.

Other word predictions tasks have also con-
structedmanually the list of confusionsets(Lee
andPereira,1999; Dagan et al., 1999; Lee, 1999)
and justificationswhere given asto why this is a
reasonablevay to constructit. (Even-Zoharand
Roth,2000)present similartaskin which the con-
fusion setsgenerationvasautomated.Their study
alsoquantifiedexperimentallythe advantagein us-
ing early classifiergo restrictthe size of the confu-
sionset.

Many other NLP tasks, such as pos tagging,
nameentity recognitionandshallov parsingrequire



multi-classclassifiers.In several of thesecaseshe
numberof classesouldbeverylarge(e.g.,postag-
ging in somelanguagespostaggingwhena finer
propernountagis used).Thesequentiamodelsug-
gestedhereis a naturalsolution.

3 The SequentialModel

We studythe problemof learninga multi-classclas-
sifier, f : X — C whereX C {0,1}", C =
{e1,...,cm} andm is typically large, on the order
of 102 — 10°. We addresshis problemusingthe
SequentiaModel (SM) in which simplerclassifiers
are sequentiallyusedto filter subsetsof C out of
consideration.

The sequentiamodelis formally definedasa 5-
tuple:

SM = { {Xl}’ C, O, {fl}ﬂ {61} }7
where

e X = UN,X"is a decompositiorof the do-
main (not necessarilydisjoint; it could be that
Vi, X* = X).

e ( isthesetof classlabels.

e O = {01,02,...,on} determineghe orderin
whichtheclassifierarelearnedandevaluated.
For corveniencewe denotef; = f,,,fo =

fogs---

o {fi}V is the set of classifiersused by the
model, f; : (X?,2I€) — [0,1]I¢!.

o {¢;}V is asetof constanthresholds.

Given z € X' anda setC;_; of classlabels,
the ith classifieroutputsa probability distribution*
P, = (pi(alz),...,pi(cm|z)) over labelsin C
(wherep;(c|z) is the probability assignedo class
c by f;), and P; satisfiesthatif ¢ ¢ C;_1 then
pi(c|z) = 0.

Thesetof remainingcandidategftertheith clas-
sificationstageis determinedy P; ande;:

C; = {c € C|pi(c|z) > €}.

The sequentiaprocesscanbe viewed asa mul-
tiplication of distributions. (Hinton, 2000) argues
that a productof distributions (or, “experts”, PoOE)

1The outputof mary classifierscanbeviewed, afterappro-
priatenormalization asa confidenceneasurahatcanbe used
asour P;.

is anefficientway to make decisionsn caseswhere
several different constrainsplay a role, andis ad-
vantageousver additive models.In fact,dueto the
thresholdingstep,our modelcanbeviewedasa se-
lective PoE. The thresholdingensureghat the SM
hasthefollowing monotonicityproperty:

{c € C| pi(c|z) > €} C{c € C|pi—1(c|x) > €i—1}

that is, as we evaluatethe classifierssequentially
smalleror equal (size) confusionsetsare consid-
ered. A desirabledesigngoal for the SM is that,
w.h.p.,the classifiershave onesidederror (even at
the price of rejecting fewer classes). That is, if
¢ is the true targe?, then we would like to have
thatp;(c:|z) > €;. Therestof this paperpresents
a concreteinstantiationof the SM, and then pro-
videsatheoreticabnalysisof someof its properties
(Sec.5). Thiswork doesnotaddresshe questionof
acquiringSMi.e., learning{e; }, O.

4 Example: POSTagging

This sectiondescribes two partexperimentof pos
taggingin which we compareunderidenticalcon-
ditions, two classificatiormodels:A SM anda sin-
gle classifier Bothareprovidedwith thesamenput
featuresandtheonly differencebetweerthemis the
modelstructure.

In the first part, the comparisonis donein the
contet of assigningpostagsto unknovn words—
thosewordswhich werenot presentediuringtrain-
ing andthereforethelearnermasno baselineknowl-
edgeaboutpossiblePOSthey maytake. This ex-
perimentemphasizetheadwantageof usingthe SM
duringevaluationin termsof accurag. The second
partis donein the context of postaggingof known
words. It compareprocessingime aswell asaccu-
ragy of assigningpostagsto known words(thatis,
theclassifierutilizesknowledgeaboutpossiblePOS
tagsthe tamgetword maytake). This partexhibits a
large reductionin training time usingthe SM over
the more commonone-vs-allmethodwhile the ac-
curag of thetwo methodss almostidentical.

Two typesof features— | exi cal featuresand
cont ext ual featuresmaybeusedwhenlearning
how to tagwordsfor pos. Contetual featurescap-
turetheinformationin the surroundingcontect and
the word lemmawhile the lexical featurescapture
the morphologyof the unknavn word3 Severalis-

2\We usethetermsclassandtamgetinterchangeably
3Lexical featuresare used only when tagging unknavn
words.



suesmale the postaggingproblema naturalprob-
lem to study within the SM. (i) A relatively large
numberof classegabout50). (i) A naturaldecom-
positionof the featurespaceo contextual andlexi-
cal features.(iii) Lexical knowledge(for unknavn
words)andtheword lemma(for knovn words)pro-
vide,w.h.p,onesidederror(Mikheev, 1997).

4.1 The TaggerClassifiers

The domainin our experimentis definedusingthe
following setof featuresall of whicharecomputed
relative to thetargetword w;.

Contextual Features(asin (Brill, 1995;Roth
and Zelenko, 1998)):

Let ¢;_1, (ti+1) bethetagsof the word preceding,
(following) thetargetword, respectiely.

. ti—l-

. ti+1.

. ti_2.

tiya.

o1&ty

. ti_Q&ti_l.

i1 &tiga.

8. Baselinetag for word w;. In casew; is an
unknovn word, thebaselinds propersingularnoun
“NNP” for capitalizedwordsandcommorsingular
noun“NN" otherwise. (This featureis introduced
only in someof theexperiments.)

9.Thetargetword w;.

Lexical Features:

Let «, B,~ be ary threecharacterobseredin the
examples.

10. Targetword is capitalized.

11. w; endswith o andlengthgu;) > 3.

12. w; endswith Sa andlengthw;) > 4.

13. w; endswith v8a andlengthgw;) > 5.

In thefollowing experimentthe SM usedfor un-
known wordsmakesuseof threedifferentclassifiers
f1, f2 and fs or f3, definedasfollows:

No o~ wWDNPRE

f1 =: aclassifietbasednthelexical feature#10.
fo =: aclassifiehasednlexical features#11—13
f3 =: aclassifiehasedncontectualfeatures#1—

9.
f3 = aclassifiebasednall thefeatures#1—13.
TheSM is comparedvith asingleclassifier— either

f3 or fi. Noticethat f} is a single classifierthat
useghe sameinformationasusedby the SM. Fig 1

sentence word

H{ Capitalized ‘
5

4.{ Suffix ‘
ﬂ 326+1U+5
4—{ Context ‘
' prediction

Figurel: POS Tagging of Unknown Word using
Contextual and Lexical featuresin a Sequential
Model. The input for capitalized classifierhas 2
valuesand therefore 2 waysto create confusion
sets. There are at most 3(26+10+5) different in-
puts for the suffix classifier (26 character + 10
digits + 5 other symboils), therefore suffix may
emit up to 3(26+10+5) confusionsets.

illustratesthe SM thatwasusedin the experiments.

All the classifiersin the sequentialmodel, as
well asthe single classifier usethe SNoW learn-
ing architecturgRoth, 1998)with the Winnow up-
daterule. SNoW (SparseNetwork of Winnows)
is a multi-class classifier that is specifically tai-
lored for learningin domainsin which the poten-
tial numberof featurestaking partin decisionsis
very large, but in which decisionsactually depend
on a small numberof thosefeatures.SNoW works
by learning a sparsenetwork of linear functions
over a pre-definedor incrementallylearnedfeature
space SNoWhasalreadybeenusedsuccessfullyon
several tasksin naturallanguageprocessingRoth,
1998; RothandZelenlko, 1998; Golding and Roth,
1999;PuryakanokandRoth,2001).

Specifically for eachclasslabel SNoW learnsa
function f. : X — [0, 1] thatmapsa featurebased
representation: of the input instanceto a number
ac(x) € [0, 1] which canbeinterpretedasthe prob-



ability of ¢ beingthe classlabelcorrespondingo x.
At predictiontime, givenz € X, SNoW outputs

1)

All functions— in our case,50 target nodesare
used,onefor eachpostag — resideover the same
featurespaceput canbethoughtof asautonomous
functions(networks). Thatis, a given exampleis
treatecautonomouslypy eachtargetsubnetverk; an
examplelabeledt is consideredsa positive exam-
ple for the function learnedfor ¢ andasa negative
examplefor therestof the functions(targetnodes).
Thenetwork is sparsein thatatargetnodeneednot
beconnectedo all nodesn theinputlayer. For ex-
ample,it is not connectedo input nodes(features)
thatwerenever active with it in the samesentence.

AlthoughSNoWis usedwith 50 differenttargets,
theSM utilizesby determiningheconfusionsetdy-
namically Thatis, in evaluation(prediction),the
maximumin Eqg. 1 is taken only over the currently
applicableconfusionset. Moreover, in training, a
givenexampleis usedto train only targetnetworks
that are in the currently applicableconfusionset.
Thatis, an examplethatis positive for targett, is
viewedaspositive for this target (if it is in the con-
fusion set),and as neggative for the othertametsin
the confusionset. All othertargetsdo not seethis
example.

The caseof POStaggingof known wordsis han-
dledin asimilarway. In this caseall possibletags
areknown. In training,werecord for eachwordw;,
all postagswith which it wastaggedn thetraining
corpus. During evaluation,wheneer word w; OcC-
curs, it is taggedwith one of thesepostags. That
is, in evaluation,the confusionsetconsistsonly of
thosetags obsened with the target word in train-
ing, andthe maximumin Eq. 1 is taken only over
these Thisis alwaysthecasewhenusing f3 (or f3),
bothin the SM andasasingleclassifier In training,
though,for the sale of this experiment,we treat f3
(f3) differently dependingon whetherit is trained
for the SM or asa singleclassifier Whentrainedas
a singleclassifier(e.g.,(RothandZelenlo, 1998)),
f3 useseacht-taggedexampleasa positive exam-
ple for t anda negative examplefor all othertags.
Onthe otherhand,the SM classifieris trainedon a
t-taggedexampleof word w, by usingit asa posi-
tive examplefor ¢ anda negative exampleonly for
the effective confusionset. Thatis, thosepostags
which have beenobsenedastagsof w in thetrain-
ing corpus.

SNoW (z) = maz.{ac(z)}.

4.2 Experimental Results

Thedatafor the experimentsvasextractedfrom the
PennTreebankWSJandBrown corpora.Thetrain-
ing corpusconsistsof 2,400,000 words. The test
corpusconsistsof 280, 000 words of which 5,412
areunknowvn words(thatis, they donotoccurin the
training corpus. (Numbers(the pos“CD”), arenot
includedamongthe unknovn words).

POSTaggingof Unknown Words

baseline
60.8

f3 | fs +baseline
8.6 61.8

Table 1: POS tagging of unknown words using
contextual features (accuracy in percent). f3 is
a classifierthat usesonly contextual features,fs +
baselineis the sameclassifierwith the addition of
thebaselindeature(*NNP” or “NN”).

Tablel summarizesheresultsof theexperiments
with asingleclassifierthatusesonly contextual fea-
tures. Notice that addingthe baselinePOSsignifi-
cantly improvesthe resultsbut not muchis gained
over the baseline. The reasonis that the baseline
featureis almost perfect (94.4%) in the training
data. For thatreason,in the next experimentswe
do not usethe baselineat all, sinceit could hide
the phenomenomddressed(In practice,onemight
want to use a more sophisticatedbaseline,as in
(DermatasandKokkinakis,1995).)

f3 fé SM(flan’f3) SM(flanvfé)
8.6 | 56.1 65.7 73.0

Table 2: POS tagging of unknown words using
contextual and lexical Features(accuracyin per-
cent). f3 is basedonly on contetual features.f; is
basedn contextual andlexical features SM(f;, f;)
denoteghat f; follows f; in thesequentiamodel.

Table2 summarizesheresultsof themainexper
imentin this part. It exhibits theadwantageof using
the SM (columns3,4) over a single classifierthat
makesuseof the samefeaturesset(column?2). In
both casesall featuresareused. In f3, a classifier
is trainedon input thatconsistsof all thesefeatures
andchooses labelfrom amongall classlabels.In
SM(f1, f2, f3) thesamefeaturesareusedasinput,
but differentclassifiersaareusedsequentially- using
only partof the featurespaceandrestrictingthe set
of possibleoutcomesavailableto the next classifier
in thesequence f; choose®nly from amongthose
left ascandidates.



It is interestingto notethat furtherimprovement
canbeachiared,asshavn in theright mostcolumn.
Giventhatthelaststagein SM(f1, f2, f4) is iden-
tical to the singleclassifier f3, this shavs the con-
tribution of thefiltering donein thefirst two stages
using f1 and f,. In addition,this resultshavs that
the input spacesf the classifiersneednot be dis-
joint.

POS Taggingof Known Words
Essentiallyeveryonewho is learninga POStagger
for known wordsmakesuseof a“sequentiaimodel”
assumptionduring evaluation— by restricting the
setof candidatesasdiscussedn Sec4.1). The fo-
cusof this experimentis thusto investicatethe ad-
vantageof the SM during training. In this case,a
single (one-vs-al) classifiertrains eachtag against
all othertags,while a SM classifiertrainsit only
aqainstthe effective confusionset(Sec4.1).

Table3 compareshe performancef the f3 clas-
sifier trained using in a one-vs-allmethodto the
sameclassifiertrainedthe SM way. Theresultsare
only for known wordsandtheresultsof Brill' stag-
ger(Brill, 1995)arepresentedor comparison.

SMtrain
96.86

Brill
96.49

one-vs-all
96.88

Table3: POSTaggingof known words using con-
textual features(accuracyin percent). one-vs-all
denotegrainingwhereexamplex senesaspositive
exampleto the true tag andasnegative exampleto
all the othertags. SMy,..;, denotedraining where
examplez senesaspositive exampleto thetruetag
andasa nggative exampleonly to arestrictedsetof
tagsin basedon a previous classifier— here,a sim-
ple baselingestriction.

While, in principle,(seeSec5) the SM shoulddo
better(anneverworse)thantheone-vs-alklassifier
we believe thatin this caseSM doesnot have ary
performanceadvantagessince the classifierswork
in a very high dimensionafeaturespacewhich al-
lowstheone-vs-allclassifierto find aseparatindny-
perplanghat separatethe positive examplesmary
differentkindsof negative exampleqevenirrelevant
ones).

However, the key adwantageof the SM in this
casds thesignificantdecreasé computatiortime,
bothin training andevaluation. Table 4 shows that
in the postaggingtask, training usingthe SM is 6
timesfasterthanwith a one-vs-allmethodand3000
fasterthanBrill' slearner In addition,theevaluation

time of our taggerwas abouttwice fasterthanthat
of Brill' stagger

one-vs-all| SM¢pain Brill
Train 1877.3 | 3135 > 109
Test 23%10°3 4.3%10°3

Table 4: Processingtime for POS tagging of
known words using contextual features(ln CPU
seconds) Train: training time over 10° sentences.
Brill' slearnemwasinterruptedafter 12 daysof train-
ing (default thresholdwas used). Test: average
numberof secondso evaluateasinglesentenceAll
runsweredoneon the samemachine.

5 The Sequentialmodel: Theoretical
Justification

In this section,we discusssomeof the theoretical
aspectof the SM and explain someof its advan-
tages.In particulay we discusghefollowing issues:

1. DomainDecomposition:Whenthe input fea-
turespacecanbedecomposedye show thatit
is advantageous$o do it andlearnseveralclas-
sifiers,eachon a smallerdomain.

2. Range Decomposition: Reducing confusion
setsize is adwantageousoth in training and
testingthe classifiers.

(a) Test: Smallerconfusionsetis shavn to
yield a smallerexpectederror.

(b) Training: Under the assumptionghat a
small confusionset (determineddynam-
ically by previous classifiersin the se-
guence)is usedwhena classifieris eval-
uated,it is shavn thattraining the classi-
fiersthisway is advantageous.

3. Expressiity: SM canbe viewed asa way to
generatean expressve classifierby building
on a numberof simplerones. We argue that
the SM way of generatingan expressve clas-
sifier hasadwantagesver otherwaysof doing
it, suchasdecisiontree.(Sec5b.3).

In addition,SM hasseveral significantcomputa-
tional advantagesothin trainingandin test,since
it only needgto considera subsebf the setof can-
didateclasslabels.We will notdiscusgheseissues
in detailhere.



5.1 Decomposinghe Domain

Decomposinghe domainis not anessentiapart of
the SM; it is possiblethatall the classifiersusedac-
tually usethe samedomain. As we shovn below,
though,whena decompositioris possiblejt is ad-
vantageouso useit.

It is shavn in Eqg. 2-7 thatwhenit is possibleto
decompos¢hedomainto subsetshatarecondition-
ally independengiventhe classlabel,the SM with
classifierglefinedon thesesubsetss asaccurateas
the optimal single classifier (In fact, this is shovn
for apureproductof simplerclassifierstheSM uses
aselectve product.)

In the following we assumethat X1, ..., X~
provide a decompositiorof the domainX (Sec.3)
andthat(z!,...,z") € (X1,..., X¥). By condi-
tionalindependencere meanthat

. . J
Vi, 7 p(a',...,x%|c) = Hp(wk|c),
k=i

wherez* is theinput for the kth classifier

arg max p(c|z) = argmax p(c|z!, ..., zV) (2)
ceC ceC

B p(zt, ..., zN]|c) - p(c)

= s B ©

= argmax p(z!, ..., zV|c) - p(c) 4)

ceC

= argmax p(z'le) -+ p(zNc) - p(c) (5)

— are ma PZPED  p(elzM)p(a)

T W 7
(6)

= argmax p(c|zt) - - - p(c|z?) - !

= argma p(clz™) - - p(c|z™) o @)

p(zt, ..., zN) in Eq.3isidenticalvc € C andthere-
fore canbetreatedasaconstantEq.5 is derivedby
applyingtheindependencassumptionEg. 6 is de-
rived by usingthe Bayesrule for eachterm p(c|z?)
separately

We note that althoughthe conditionalindepen-
denceassumptioris a strongone, it is areasonable
assumptiorin mary NLP applications;in particu-
lar, when crossmodality informationis used,this
assumptiortypically holds for decompositiorthat
is doneacrosgnodalities.For example,in POStag-
ging, lexical informationis often conditionallyin-
dependenof contextual information,giventhetrue

POS.(E.g.,assumedhatword is a gerund;thenthe
contet is independenof the“ing” word ending.)

In addition,decomposinghe domainhassignif-
icant advantagedrom the learningtheory point of
view (Roth,1999).Learningover domainsof lower
dimensionalityimpliesbettergeneralizatiorbounds
or, equivalently moreaccurateclassifierdor afixed
sizetrainingset.

5.2 Decomposingthe range

TheSM attemptgo reducehesizeof thecandidates
set. We justify this by consideringtwo cases: (i)
Test:we will arguethatpredictionamonga smaller
setof classediasadvantage®ver predictingamong
a large setof classesyii) Training: we will argue
thatit is advantageouto ignoreirrelevantexamples.

5.2.1 Decomposingthe range during Test

The following discussionformalizesthe intuition
that a smallerconfusionsetin preferred. Let f :
X — C bethetruetargetfunctionandp(c;|z) the
probability assignedoy the final classifierto class
c; € C givenexampler € X. Assumingthat
the predictionis done, naturally by choosingthe
mostlikely classlabel, we seethatthe expecteder-
ror whenusinga confusionsetof sizek is:

Errory, = Eg[(argmaz p(cj|z)) # f(z)]
1<j<k

= p((argmaz p(cjlx)) # f(x))

1<j<k

(8)

Now we have:

Claim1 LetK = {61, ...,Ck},KI = {Cl, ---7Ck+r}
be two setsof classlabelsand assumef(z) € K
for examplex. ThenError, < Errory.

Proof. Denote:

pe(a,b, f) = p((azggrgw p(cjle)) # f(x))

Then,

Errorg =

= E”[(?Q%Tf p(cjlz)) # f(z)]

=pe(l,k+r,f)

=pe(L,k, f+ (1— pe(L,k, f))pe(k+ 1,k +r, f)
= Errorg + (1— Errorg)pe(k + 1,k +r, f)

> Errorg



Claim 1 shows thatreducingthe size of the con-
fusion set can only help; this holds underthe as-
sumptionthatthe true classlabelis not eliminated
from consideratiorby down streamclassifiersthat
is, undertheone-sidedrrorassumptionMoreover,
it is easyto seethatthe proof of Claim 1 allows us
to relaxthe onesidederrorassumptiorandassume
insteadthatthe previous classifierserr with a prob-
ability whichis smallerthan:

(1— Errorg) -pe(k+ 1,k +r, f(z)).

5.2.2 Decomposingthe range during training

We will assumenow, assuggestedy the previous
discussion that in the evaluation stagethe small-
estpossiblesetof candidatesvill be consideredy
eachclassifier Basedon this assumptionClaim 2
shows thattraining this way is adwvantageousThat
is, that utilizing the SM in training yields a better
classifier

Let A be a learning algorithm that is trainedto
minimize:

| D+ he)pla)ds,
zeX

wherez is anexample,y € {—1,+1} is the true
class,h is the hypothesis,L is a lossfunction and
p(z) is the probability of seeingexamplez when
x ~ P (see (Allweinetal., 2000)). (Notice thatin
this sectiorwe areusinggeneralossfunctionL; we
could use,in particular binary loss function used
in Secb5.2.) We phraseand prove the next claim,
w.l.o.g,thecaseof 2 vs. 3 classlabels.

Claim 2 LetC = {¢1, c2, c3} bethesetof classla-

bels,let.S; bethesetof exampledor classi. Assume
a sequentiaimodelin which classc; doesnotcom-
petewith classcs. Thatis, wheneerz € S the

SMfilters out cs sud that the final classifier(fx)

consides only ¢; andcs. Then,theerror of the hy-

pothesis producedby algorithm A (for fx) - when
trained on examplesin {S1, S2} is no larger than

the error producedby the hypothesisit produces
whentrainedon examplesn {51, Sa, S3}.

Proof. Assumethat the algorithm A, when
trainedon a sampleS, producesa hypothesisthat
minimizesthe empiricalerrorover S.

Denotex ~ P whenz is sampledaccordingto
adistributionthatsupportonly exampleswith label
in C. Let S beasamplesetof sizem, accordingto

P 5, and k' the hypothesisproducedby .A. Then,
forall h # A/,

SN LK @) < — Y Luh(z) @)

z€S €S

In thelimit, asm — oo

/ L(yh! (z))p(x)dz < / L(yh(z))p(z)dz.

wNPLQ $NP1,2

In particularthis holdsif h is a hypothesispro-
ducedby A whentrainedon S’, thatis sampledac-
cordingtoxz ~ Py 23. ®

5.3 Expressvity

The SM is a decisionprocessghat is conceptually
similar to a decisiontree processegRasoul and
Landgrebe1991;Mitchell, 1997),especiallyif one
allows more generalclassifiersin the decisiontree
nodes.In this sectionwe shaw that (i) the SM can
expressary DT. (i) the SM is morecompacthana
decisiontreeevenwhentheDT makesusedof more
expressve internalnodes(Murthy etal., 1994).

The next theoremshaws that for a fixed set of
functions(queries)over the input featuresary bi-
nary decisiontreecanbe representedsa SM. Ex-
tending the proof beyond binary decisiontreesis
straight-forvard.

Theorem 3 LetT bea binary decisiontreewith N
internal nodes.Thenthere exista sequentiamodel
S sud that S and T' havethe samesize and they
producethe samepredictions.

Proof (Sketch): Given a decisiontree T' on N
nodeswve shav how to constructa SM thatproduces
equialentpredictions.

1. Generatea confusionsetC the consistsof NV
classesgachrepresentingan internalnodein
T.

2. For eachinternalnodein d € T, assigna clas-
sifier: f; : X x C — [0,1]™ 1+M,

3. Ordertheclassifiersfy, ... f; suchthata clas-
sifier that is assignedo noded is processed
beforeary classifierthat wasassignedo ary
of thechildrenof 4.



4. Define eachclassifier f; that was assignedo
noded € T to have an influence on the
outcomeiff noded € T lies in the path
(bo, b1, -.., by 1) from theroot to the predicted
class.

5. Shaw thatusingstepsl-4, the predictedtarget
of T"and§ areidentical.

This completeghatproofandshaws thattheresult-
ing SM is of equivalentsizeto the original decision
tree.

We notethatgivena SM, it is alsorelatively easy
(details omitted) to constructa decisiontree that
produceghe samedecisionsasthefinal classifierof
the SM. However, the simpleconstructiorresultsin
a decisiontreethatis exponentiallylargerthanthe
original SM. Theorem4 shaws thatthis difference
in expressvity is inherent.

Theorem4 Let N be the numberof classifies in

a sequentialmodel S and the numberof internal

nodesa in decisiontree T. Let m be the set
of classesin the output of S and also the maxi-

mumdeagree of the internal nodesin T'. Denoteby

F(T), F(S) the numberof functionsrepresentable
by T, S respectively Then,whenm >> N, F(S)

is exponentiallylarger than F'(T').

Proof (Sketch): The proof follows by counting
the number of functions that can be represented
using a decisiontree with N internal nodes(Vilf,
1994),andthe numberof functionsthatcanberep-
resentedisinga sequentiamodelon N intermedi-
ateclassifier Giventhe exponentialgap, it follows
thatonemayneedexponentiallylargedecisiontrees
to representan equialent predictorto an N size
SM.

6 Conclusion

A wide range and a large number of classifica-
tion taskswill have to be usedin orderto perform
ary high level naturallanguageinferencesuchas
speechrecognitionmachinetranslationor question
answering.Althoughin eachinstantiationthe real
conflict could be only to chooseamonga small set
of candidatesheoriginal setof candidatesouldbe
very large; deriving the small setof candidateshat
arerelevantto the taskat handmay not beimmedi-
ate.

This paperaddressethis problemby developing
ageneraparadignfor multi-classclassificatiorthat

sequentiallyrestrictsthe setof candidateclassedo
a small set,in a way thatis driven by the dataob-
sened. We have describedhemethodandprovided
somejustificationsfor its advantagesespeciallyin
NLP-like domains. Preliminary experimentsalso
shav promise.

Several issuesare still missingfrom this work.
In our experimentalstudythe decompositiorof the
featurespacewasdonemanually;it would be nice
to develop methodsto do this automatically Bet-
ter understandingf methodsfor thresholdingthe
probability distributions that the classifiersoutput,
aswell as principled ways to orderthem are also
amongthe futuredirectionsof thisresearch.
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